1
|
Jeong N, Park S, Mahajan S, Zhou J, Blotevogel J, Li Y, Tong T, Chen Y. Elucidating governing factors of PFAS removal by polyamide membranes using machine learning and molecular simulations. Nat Commun 2024; 15:10918. [PMID: 39738140 DOI: 10.1038/s41467-024-55320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) have recently garnered considerable concerns regarding their impacts on human and ecological health. Despite the important roles of polyamide membranes in remediating PFASs-contaminated water, the governing factors influencing PFAS transport across these membranes remain elusive. In this study, we investigate PFAS rejection by polyamide membranes using two machine learning (ML) models, namely XGBoost and multimodal transformer models. Utilizing the Shapley additive explanation method for XGBoost model interpretation unveils the impacts of both PFAS characteristics and membrane properties on model predictions. The examination of the impacts of chemical structure involves interpreting the multimodal transformer model incorporated with simplified molecular input line entry system strings through heat maps, providing a visual representation of the attention score assigned to each atom of PFAS molecules. Both ML interpretation methods highlight the dominance of electrostatic interaction in governing PFAS transport across polyamide membranes. The roles of functional groups in altering PFAS transport across membranes are further revealed by molecular simulations. The combination of ML with computer simulations not only advances our knowledge of PFAS removal by polyamide membranes, but also provides an innovative approach to facilitate data-driven feature selection for the development of high-performance membranes with improved PFAS removal efficiency.
Collapse
Affiliation(s)
- Nohyeong Jeong
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shinyun Park
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA
| | - Subhamoy Mahajan
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ji Zhou
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Waite Campus, Urrbrae, 5064, Australia
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, 80523, USA.
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA.
| | - Yongsheng Chen
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Zhang W, Lu Q, Chen H, Li Y, Hua Y, Wang J, Chen F, Zheng R. A novel high-throughput quantitative method for the determination of per- and poly-fluoroalkyl substances in human plasma based on UHPLC-Q/Orbitrap HRMS coupled with isotope internal standard. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136138. [PMID: 39467434 DOI: 10.1016/j.jhazmat.2024.136138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
A novel method for the quantitative analysis of 56 per- and polyfluoroalkyl substances (PFASs) in human plasma was established on the basis of ultrahigh performance liquid chromatography tandem quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Q/Orbitrap HRMS) in combination with accurate customized mass databases and isotopic internal standards. A streamlined, high-throughput, and high-recovery (RE) sample pretreatment method was developed. The method's performance was evaluated in terms of linearity, limit of quantification, RE, repeatability, reproducibility, and matrix effect. The proposed method was applied in the simultaneous analysis of 56 PFASs in human plasma, and its results demonstrated high sensitivity, accuracy, and precision. The optimized method was implemented to analyze PFASs in 135 plasma samples, and 12 components were detected. The comparative analysis of the results from 135 plasma samples with domestic and international studies revealed elevated contents of PFOA, PFOS, PFBA, and PFTrDA, the moderate amounts of PFHxS, PFUdA, PFBS, and PFHpS, and the low concentrations of PFNA and PFDA. Notably, GenX was detected in human plasma for the first time. This finding suggests that the study region is contaminated with this substance. Correlation analysis revealed a strong relationship among PFNA, PFDA, and PFUdA, implying that these substances may have similar exposure sources.
Collapse
Affiliation(s)
- Wenting Zhang
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China
| | - Qiuyan Lu
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China
| | - Huafeng Chen
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China
| | - Yuxiang Li
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China
| | - Yongyou Hua
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China
| | - Jing Wang
- School of Public Health, Fujian Medical University, Fuzhou 350112, Fujian, China
| | - Fa Chen
- School of Public Health, Fujian Medical University, Fuzhou 350112, Fujian, China
| | - Renjin Zheng
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China; School of Public Health, Fujian Medical University, Fuzhou 350112, Fujian, China.
| |
Collapse
|
3
|
Huang D, Liu C, Zhou H, Wang X, Zhang Q, Liu X, Deng Z, Wang D, Li Y, Yao C, Song W, Rao Q. Simultaneous and High-Throughput Analytical Strategy of 30 Fluorinated Emerging Pollutants Using UHPLC-MS/MS in the Shrimp Aquaculture System. Foods 2024; 13:3286. [PMID: 39456348 PMCID: PMC11507328 DOI: 10.3390/foods13203286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study established novel and high-throughput strategies for the simultaneous analysis of 30 fluorinated emerging pollutants in different matrices from the shrimp aquaculture system in eastern China using UHPLC-MS/MS. The parameters of SPE for analysis of water samples and of QuEChERS methods for sediment and shrimp samples were optimized to allow the simultaneous detection and quantitation of 17 per- and polyfluoroalkyl substances (PFASs) and 13 fluoroquinolones (FQs). Under the optimal conditions, the limits of detection of 30 pollutants for water, sediment, and shrimp samples were 0.01-0.30 ng/L, 0.01-0.22 μg/kg, and 0.01-0.23 μg/kg, respectively, while the limits of quantification were 0.04-1.00 ng/L, 0.03-0.73 μg/kg, and 0.03-0.76 μg/kg, with satisfactory recoveries and intra-day precision. The developed methods were successfully applied to the analysis of multiple samples collected from aquaculture ponds in eastern China. PFASs were detected in all samples with concentration ranges of 0.18-0.77 μg/L in water, 0.13-1.41 μg/kg (dry weight) in sediment, and 0.09-0.96 μg/kg (wet weight) in shrimp, respectively. Only two FQs, ciprofloxacin and enrofloxacin, were found in the sediment and shrimp. In general, this study provides valuable insights into the prevalence of fluorinated emerging contaminants, assisting in the monitoring and control of emerging contaminants in aquatic foods.
Collapse
Affiliation(s)
- Di Huang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Chengbin Liu
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
- Shanghai Co-Elite Agri-Food Testing Technical Service Co., Ltd., Shanghai 201403, China
| | - Huatian Zhou
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- School of Health Science and Engineering, University of Shanghai for Science & Technology, Shanghai 100049, China
| | - Xianli Wang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Qicai Zhang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Xiaoyu Liu
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
| | - Zhongsheng Deng
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
| | - Danhe Wang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Yameng Li
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Chunxia Yao
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Weiguo Song
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
- Shanghai Co-Elite Agri-Food Testing Technical Service Co., Ltd., Shanghai 201403, China
- School of Health Science and Engineering, University of Shanghai for Science & Technology, Shanghai 100049, China
| | - Qinxiong Rao
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| |
Collapse
|
4
|
Zhong C, Deng J, Yang Y, Zeng H, Feng L, Luan T. Rapid and sensitive determination of legacy and emerging per- and poly-fluoroalkyl substances with solid-phase microextraction probe coupled with mass spectrometry. Talanta 2024; 276:126233. [PMID: 38739954 DOI: 10.1016/j.talanta.2024.126233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
This study was designed to develop a rapid and sensitive method for quantifying legacy and emerging per- and polyfluoroalkyl substances (PFASs) in environmental samples with solid-phase microextraction (SPME) coupled with mass spectrometry (MS). An innovative SPME probe was fabricated via in situ polymerization, and the probe coating was optimized with response surface methodology to maximize the fluorine-fluorine interactions and electrostatic properties and ensure high selectivity for the target PFASs with enrichment factors of 48-491. The coupled SPME and MS provided a rapid and sensitive method for analyses of PFASs, with excellent linearity (r ≥ 0.9962) over the concentration range 0.001-1 μg/L and remarkably low detection limits of 0.1-13.0 ng/L. This method was used to analyze trace PFASs in tap water, river water, and wastewater samples and proved to be a simple and efficient analytical method for selective enrichment and detection of contaminants in the environment.
Collapse
Affiliation(s)
- Chunfei Zhong
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiewei Deng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yunyun Yang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Haishen Zeng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Longkuan Feng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
5
|
Li S, Ma J, Cheng J, Wu G, Wang S, Huang C, Li J, Chen L. Metal-Organic Framework-Based Composites for the Adsorption Removal of Per- and Polyfluoroalkyl Substances from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38301280 DOI: 10.1021/acs.langmuir.3c02939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The increasing health risks posed by per- and polyfluoroalkyl substances (PFASs) in the environment highlight the importance of implementing effective removal techniques. Conventional wastewater treatment processes are inadequate for removing persistent organic pollutants. Recent studies have increasingly demonstrated that metal-organic frameworks (MOFs) are capable of removing PFASs from water through adsorption techniques. However, there is still constructive discussion on the potential of MOFs in adsorbing and removing PFASs for large-scale engineering applications. This review systematically investigates the use of MOFs as adsorbents for the removal of PFAS in water treatment. This primarily involved a comprehensive analysis of existing literature to understand the adsorption mechanisms of MOFs and to identify factors that enhance their efficiency in removing PFASs. We also explore the critical aspects of regeneration and stability of MOFs, assessing their reusability and long-term performance, which are essential for large-scale water treatment applications. Finally, our study highlights the challenges of removing PFASs using MOFs. Especially, the efficient removal of short-chain PFASs with hydrophilicity is a major challenge, while medium- to long-chain PFASs are frequently susceptible to being captured from water by MOFs through multiple synergistic effects. The ion-exchange force may be the key to solving this difficulty, but its susceptibility to ion interference in water needs to be addressed in practical applications. We hope that this review can provide valuable insights into the effective removal and adsorption mechanisms of PFASs as well as advance the sustainable utilization of MOFs in the field of water treatment, thereby presenting a novel perspective.
Collapse
Affiliation(s)
- Shuang Li
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong 266033, People's Republic of China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong 266033, People's Republic of China
| | - Jiawen Cheng
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong 266033, People's Republic of China
| | - Gege Wu
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong 266033, People's Republic of China
| | - Shasha Wang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong 266033, People's Republic of China
| | - Chaonan Huang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong 266033, People's Republic of China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, People's Republic of China
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, People's Republic of China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, People's Republic of China
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, People's Republic of China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, People's Republic of China
| |
Collapse
|
6
|
Deng J, Xie J, Wang C, Wu Y, Luan T, Yang Y. Inner-Wall Coated Nanopipette Microextraction for Quantitative Analysis of Per- and Polyfluoroalkyl Substances in Single Cells Using Mass Spectrometry. Anal Chem 2024; 96:1391-1396. [PMID: 38227719 DOI: 10.1021/acs.analchem.3c05141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a series of organic pollutants with potential cytotoxicity and biotoxicity. Accurate and sensitive detection of trace PFASs in single cells can provide insights into investigating their cytotoxicity, carcinogenicity, and mutagenicity. Here we report the development of an inner-wall coated nanopipette microextraction coupled with induced nanoelectrospray ionization mass spectrometry (InESI-MS) method and its application for rapid, sensitive, and accurate analysis of trace PFASs in single cells. A specially designed inner-wall coated nanopipette was prepared for sampling of the cytoplasm from a single cell, and the trace PFASs in the cytoplasm were selectively enriched into the coating via reversed-phase adsorption, ion bonding adsorption, and π-π interaction mechanisms. After the extraction, the cytoplasm was removed, and the enriched PFASs were then desorbed into some organic solvent, applying an alternating current (AC) voltage to the inner-wall coated nanopipette for InESI-MS analysis. The inner-wall coated nanopipette showed an exhaustive extraction to the trace PFASs in one single cell, and thus, the mass of each target analyte in the cytoplasm can be calculated via an internal standard calibration curve method, avoiding the measurement of ultrasmall volume cytoplasm for one single cell. By using the inner-wall coated nanopipette microextraction coupled with InESI-MS method, trace PFASs accumulated in the LO2 cells with pollutant exposure were successfully detected, and the accumulative behaviors and heterogeneities of PFASs in single cells were explored.
Collapse
Affiliation(s)
- Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Jialiang Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - YueHua Wu
- Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Tiangang Luan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Yunyun Yang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| |
Collapse
|
7
|
San Román A, Abilleira E, Irizar A, Santa-Marina L, Gonzalez-Gaya B, Etxebarria N. Optimization for the analysis of 42 per- and polyfluorinated substances in human plasma: A high-throughput method for epidemiological studies. J Chromatogr A 2023; 1712:464481. [PMID: 37948771 DOI: 10.1016/j.chroma.2023.464481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
There is an increasing awareness about the presence of per- and polyfluoroalkyl substances (PFAS) in many environmental and biological compartments, including human biofluids and tissues. However, the increase of PFAS replacements, including alternatives with shorter chain or less bioaccumulative potential, has broaden the exposure and the need for wider identification procedures. Moreover, the low volumes available for human blood or plasma, and the high number of samples needed to assess adequately epidemiologic studies, require particularly fast, reproducible and, if possible, miniaturized protocols. Therefore, accurate and robust analytical methods are still needed to quantify the PFAS's burden in humans and to understand potential health risks. In this study, we have developed and validated the analysis of 42 PFAS in human plasma by means of a Captiva 96-well micro extraction plate and a LC-q-Orbitrap. For the optimization of the analytical workflow, three extraction/clean-up methods were tested, and the selected one was validated using spiked artificial and bovine plasma at four concentration levels. The final method showed high absolute recoveries for the 42 PFAS, ranging from 52% to 130%, instrumental detection limits between 0.001-0.6 ng mL-1, overall good precision (CV < 20% for most of the PFAS) and a low uncertainty (< 30% of relative expanded deviation, k = 2). The method was further validated both with the NIST plasma Standard Reference Material 1950, showing that the accuracy of the provided results was between 63%-101%, and by the proficiency test arranged by the Arctic Monitoring Assessment Program (AMAP, 2022) obtaining satisfactory results within 95% confidence interval of the assigned value.
Collapse
Affiliation(s)
- Anne San Román
- Institute of Health Research Biodonostia, Paseo Dr. Begiristain, s/n, 20014 Donostia Gipuzkoa, Basque Country; Plentzia Marine Station (PiE), University of Basque Country (UPV/EHU), Areatza Hiribidea, 47, 48620 Plentzia, Bizkaia, Basque Country; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Department of Public Health from the Basque Government, Avenida Navarra, 4, 20013 Donostia Gipuzkoa, Basque Country.
| | - Eunate Abilleira
- Institute of Health Research Biodonostia, Paseo Dr. Begiristain, s/n, 20014 Donostia Gipuzkoa, Basque Country; Department of Public Health from the Basque Government, Avenida Navarra, 4, 20013 Donostia Gipuzkoa, Basque Country
| | - Amaia Irizar
- Institute of Health Research Biodonostia, Paseo Dr. Begiristain, s/n, 20014 Donostia Gipuzkoa, Basque Country
| | - Loreto Santa-Marina
- Institute of Health Research Biodonostia, Paseo Dr. Begiristain, s/n, 20014 Donostia Gipuzkoa, Basque Country; Department of Public Health from the Basque Government, Avenida Navarra, 4, 20013 Donostia Gipuzkoa, Basque Country
| | - Belen Gonzalez-Gaya
- Plentzia Marine Station (PiE), University of Basque Country (UPV/EHU), Areatza Hiribidea, 47, 48620 Plentzia, Bizkaia, Basque Country; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain
| | - Nestor Etxebarria
- Plentzia Marine Station (PiE), University of Basque Country (UPV/EHU), Areatza Hiribidea, 47, 48620 Plentzia, Bizkaia, Basque Country; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain
| |
Collapse
|
8
|
Yuan Y, Qiao Y, Zheng X, Yu X, Dong Y, Wang H, Sun L. Simultaneous determination of four active compounds in Centella asiatica by supramolecular solvent-based extraction coupled with high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2023; 1708:464298. [PMID: 37660564 DOI: 10.1016/j.chroma.2023.464298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
In the present study, a new and rapid method for determining four bioactive compounds of Centella asiatica (C. asiatica) in herbs was developed based on high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Supramolecular solvent (SUPRAS), formed by n-hexanol, tetrahydrofuran (THF) and water, was used for extracting madecassoside (MS), asiaticoside (AS), asiatic acid (AA) and madecassic acid (MA) from herbs. The sample was extracted with 4 mL of SUPRAS for 5 min. Then centrifugation was performed for phase separation followed by direct analysis by HPLC-MS/MS. Driving forces for the extraction of herbs in the SUPRAS involved both dispersion and hydrogen bond interactions. The effect of the parameters, including compounds of supramolecular solvents, dosage and vortex time, on the extraction efficiency was investigated. The recoveries were carried out at three levels with spiked samples and in the range of 91.6%-99.9%, with relative standard deviations between 1.7%-7.9%. The novel SUPRAS method, coupled with HPLC-MS/MS, was proved to be efficiency, green, and sensitive. It was applied for determination of four target compounds in herbs.
Collapse
Affiliation(s)
- Yingying Yuan
- National Institutes for Food and Drug Control/NMPA Key Laboratory for Research and Evaluation of Cosmetics, Beijing 100050, China
| | - Yasen Qiao
- National Institutes for Food and Drug Control/NMPA Key Laboratory for Research and Evaluation of Cosmetics, Beijing 100050, China
| | - Xin Zheng
- Beijing Analytical Center-SSL Shimadzu (China) Co. Ltd., Beijing 100020, China
| | - Xinlan Yu
- Xinjiang Uygur Autonomous Region Institute for Drug Control, Urumchi 830004, China
| | - Yalei Dong
- National Institutes for Food and Drug Control/NMPA Key Laboratory for Research and Evaluation of Cosmetics, Beijing 100050, China.
| | - Haiyan Wang
- National Institutes for Food and Drug Control/NMPA Key Laboratory for Research and Evaluation of Cosmetics, Beijing 100050, China
| | - Lei Sun
- National Institutes for Food and Drug Control/NMPA Key Laboratory for Research and Evaluation of Cosmetics, Beijing 100050, China.
| |
Collapse
|
9
|
Fan Z, Jia W. Ambient 1,2-propanediol exposure accelerates the degradation of lipids and amino acids in milk via allosteric effects and affects the utilization of nutrients containing amide bond. Food Res Int 2023; 170:112965. [PMID: 37316053 DOI: 10.1016/j.foodres.2023.112965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/22/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
The scandal of detecting 1, 2-propanediol (PL) in milk brought a crisis to the trust of consumers in the dairy industry, and the potential toxicity of PL has aroused the public concern about dietary exposure. A total of 200 pasteurized milk samples were collected from 15 regions, and the quantity of PL ranged between 0 and 0.31 g kg-1. Pseudo-targeted quantitative metabolomics integrated with proteomics demonstrated that PL enhanced the reduction of κ-casein, β-casein, and 107 substances (41 amines and 66 amides) containing amide bonds. Pathway enrichment and topological analysis indicated that PL induced the metabolism of lipids, amino acids, oligosaccharide nucleotides, and alkaloids by accelerating the rate of nucleophilic reaction, and acetylcholinesterase, sarcosine oxidase, and prolyl 4-hydroxylase were determined as the vital enzymes related to the degradation of above nutrients. The results of molecular simulation calculation illustrated that the number of hydrogen bonds between acetylcholinesterase, sarcosine oxidase, and substrate increased to 2 and 3, respectively, while the position of hydrogen bonds between prolyl 4-hydroxylase and proline was shifted, indicating the change of conformation and the enhancement of hydrogen bond force were essential factors for the up-regulation of enzyme activity. This study first revealed the mechanism of deposition and transformation of PL in milk, which contributed to the knowledge of the quality control of milk and provided vital indicators to evaluate the adverse risks of PL in dairy products.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
10
|
Jia W, Wang X. Zanthoxylum bungeanum as a natural pickling spice alleviates health risks in animal-derived foods via up-regulating glutathione S-transferase, down-regulating cytochrome P450 1A. Food Chem 2023; 411:135535. [PMID: 36701916 DOI: 10.1016/j.foodchem.2023.135535] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Endogenous aflatoxin B1 (AFB1) was quantified in five hundred and forty Hengshan goat meat samples (0.00 ± 23.09 μg kg-1). Zanthoxylum bungeanum (Z. bungeanum), as a natural pickling spice, can ameliorate the flavor of animal-derived food (goat meat). Yet, considering the direct administration of Z. bungeanum in AFB1-contaminated goat meat, the degradation mechanisms of AFB1 remain elusive. Here, UHPLC-Q-Orbitrap HRMS-based integrative metabolomics (LOQ: 1.74-59.54 μg kg-1) and proteomics analyses were executed to determine the effects of Z. bungeanum in the biotransformation of AFB1. Z. bungeanum (1.50 %, w/w) application mediated the metabolism of xenobiotics by cytochrome P450, significantly down-regulated cytochrome P450 1A and stimulated the up-regulation of glutathione S-transferase levels in AFB1-contaminated goat meat, leading to degradation of AFB1 (20.00-3.39 μg kg-1). Metabolomics assays indicated that Z. bungeanum up-regulated l-histidine (1.43-2.21 mg kg-1) and l-arginine, manifesting potential applications for the contribution of Z. bungeanum to the nutritional value of goat meat.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
11
|
Jia W, Ma R. Cross-modal interactions caused by nonvolatile compounds derived from fermentation, distillation and aging to harmonize flavor. Crit Rev Food Sci Nutr 2023; 64:6686-6713. [PMID: 36718555 DOI: 10.1080/10408398.2023.2172714] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chinese liquor (Baijiu), unique liquor produced in China and among the six world-renowned distilled liquors, is never a follower of others. Flavor is the essential characteristics of Baijiu which largely affect consumers' acceptance and selection. Though the flavor of Baijiu has been widely explored, the majority of research and review mainly focused on the volatile compounds in Baijiu. The research status on detection, source and flavor contribution of nonvolatile compounds in Baijiu is clarified in the article based on available literatures and knowledge. The nonvolatile composition of Baijiu is the result of contributions of different degrees from each step involved in the production process. Gas chromatography-mass spectrometry combined with derivatization and ultra-high performance liquid chromatography coupled to mass spectrometry is the generally adopted methods for the characterization of nonvolatile compounds in Baijiu. Certain nonvolatile compounds are taste-active compounds. Cross-modal interactions caused by nonvolatile composition could affect the aroma intensity of flavor compounds in Baijiu. The work provides numerous incompletely explored but useful points for the flavor chemistry of Baijiu and lays a theoretical foundation for the better understanding of Baijiu flavor and rapid development of Baijiu industry.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| | - Rutian Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
12
|
Kamyab H, Chelliapan S, Tavakkoli O, Mesbah M, Bhutto JK, Khademi T, Kirpichnikova I, Ahmad A, ALJohani AA. A review on carbon-based molecularly-imprinted polymers (CBMIP) for detection of hazardous pollutants in aqueous solutions. CHEMOSPHERE 2022; 308:136471. [PMID: 36126738 DOI: 10.1016/j.chemosphere.2022.136471] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
This article discusses the unique properties and performance of carbon-based molecularly-imprinted polymers (MIPs) for detecting hazardous pollutants in aqueous solutions. Although MIPs have several advantages such as specific recognition sites, selectivity, and stability, they suffer from a series of drawbacks, including loss of conductivity, electrocatalytic activity, and cost, which limit their use in various fields. Carbon-based MIPs, which utilize carbon electrodes, carbon nanoparticles, carbon dots, carbon nanotubes, and graphene substrates, have been the focus of research in recent years to enhance their properties and remove their weaknesses as much as possible. These carbon-based nanomaterials have excellent sensitivity and specificity for molecular identification. As a result, they have been widely used in various applications, such as assessing the environmental, biological, and food samples. This article examines the growth of carbon-based MIPs and their environmental applications.
Collapse
Affiliation(s)
- Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Department of Electric Power Stations, Network and Supply Systems, South Ural State University (National Research University), 76 Prospekt Lenina, 454080, Chelyabinsk, Russian Federation.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Omid Tavakkoli
- Department of Petroleum Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Mohsen Mesbah
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Tayebeh Khademi
- Azman Hashim International Business School (AHIBS), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Irina Kirpichnikova
- Department of Electric Power Stations, Network and Supply Systems, South Ural State University (National Research University), 76 Prospekt Lenina, 454080, Chelyabinsk, Russian Federation
| | - Akil Ahmad
- Chemistry Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Anas Ayesh ALJohani
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
13
|
Zhu A, Jiao T, Ali S, Xu Y, Ouyang Q, Chen Q. Dispersive micro solid phase extraction based ionic liquid functionalized ZnO nanoflowers couple with chromatographic methods for rapid determination of aflatoxins in wheat and peanut samples. Food Chem 2022; 391:133277. [PMID: 35623281 DOI: 10.1016/j.foodchem.2022.133277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/04/2022]
Abstract
Aflatoxins (AFs) contaminate agricultural products in a wide range of ways during their harvesting, storage and transport. Therefore, the detection of AFs has certain practical significance. Herein, a dispersive micro solid phase extraction (D-µSPE) technology was constructed based on 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF6]) fabricated ZnO nanoflowers for AFs extraction from food matrix before HPLC procedure. The key parameters affecting the extraction efficiency were studied. Under optimal experimental conditions, the method showed excellent linearity with high correlation coefficients (≥0.994). LOD and LOQ were 0.034 and 0.114 μg/kg for AFB1, 0.024 and 0.082 μg/kg for AFB2, 0.067 and 0.226 μg/kg for AFG1 and 0.025 and 0.084 μg/kg for AFG2. The recovery of actual samples spiked with analytes (at 5, 15 and 20 μg/kg) were from 93.8 to 105.1%. Overall, an accurate AFs analysis method was developed and could be applied to the determination of AFs in various food and agricultural products.
Collapse
Affiliation(s)
- Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Tianhui Jiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
14
|
Luo D, Guan J, Dong H, Chen J, Liang M, Zhou C, Xian Y, Xu X. Simultaneous determination of twelve mycotoxins in edible oil, soy sauce and bean sauce by PRiME HLB solid phase extraction combined with HPLC-Orbitrap HRMS. Front Nutr 2022; 9:1001671. [PMID: 36245528 PMCID: PMC9555343 DOI: 10.3389/fnut.2022.1001671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
A solid phase extraction-high-performance liquid chromatography-tandem Orbitrap high resolution mass spectrometry (HPLC-Orbitrap HRMS) method was established for the determination of 12 mycotoxins (ochratoxin A, ochratoxin B, aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, HT-2 toxin, sterigmatocystin, diacetoxysciroenol, penicillic acid, mycophenolic acid, and citreoviridin) in edible oil, soy sauce, and bean sauce. Samples were extracted by 80:20 (v:v) acetonitrile-water solution, purified by PRiME HLB column, separated by aQ C18 column with mobile phase consisting of 0.5 mmol/L ammonium acetate-0.1% formic acid aqueous solution and methanol. The results showed that the limits of detection (LODs) and limits of quantification (LOQs) of 12 mycotoxins were 0.12–1.2 μg/L and 0.40–4.0 μg/L, respectively. The determination coefficients of 12 mycotoxins in the range of 0.20–100 μg/L were > 0.998. The average recoveries in soy sauce and bean sauce were 78.4–106.8%, and the relative standard deviations (RSDs) were 1.2–9.7% under three levels, including LOQ, 2× LOQ and 10 × LOQ. The average recoveries in edible oil were 78.3–115.6%, and the precision RSD (n = 6) was 0.9–8.6%. A total of 24 edible oils, soy sauce and bean sauce samples were analyzed by this method. AFB1, AFB2, sterigmatocystin and mycophenolic acid were detected in several samples at concentrations ranging from 1.0 to 22.1 μg/kg. The method is simple, sensitive, and rapid and can be used for screening and quantitative analysis of mycotoxin contamination in edible oil, soy sauce, and bean sauce.
Collapse
Affiliation(s)
- Donghui Luo
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou, China
| | - Jingjing Guan
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| | - Hao Dong
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Sciences, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- *Correspondence: Hao Dong
| | - Jin Chen
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| | - Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Chunxia Zhou
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
- Xiaofei Xu
| |
Collapse
|
15
|
Chen S, Li S, Fang K, Wang Y, Yang Y, Han C, Shen Y. Rapid determination of 93 banned industrial dyes in beverage, fish, cookie using solid-supported liquid-liquid extraction and ultrahigh-performance liquid chromatography quadrupole orbitrap high-resolution mass spectrometry. Food Chem 2022; 388:132976. [PMID: 35447592 DOI: 10.1016/j.foodchem.2022.132976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/04/2022]
Abstract
Banned industrial dyes are composed of a large number of chemicals with diverse physical and chemical properties, making their simultaneous determination a challenging task. A one-step extraction and purification of 93 banned industrial dyes from beverage, fish and cookie sample methods was proposed by using solid supported liquid-liquid extraction (SLE). The extract was analyzed by ultrahigh-performance liquid chromatography quadrupole orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap-HRMS). The quantitative and qualitative mode adopts Q-Orbitrap-HRMS full scan MS (full scan MS1) and data-dependent MS/MS (dd-MS2) acquisition mode. The mass resolution was screened under 70,000 FWHM for full-scan MS1 and 35,000 FWHM for dd-MS2. Linearity was observed in the range of 0.01 ∼ 0.5 μg/mL and the limits of quantification were 0.04 ∼ 0.2 mg/kg for 93 dyes. The average recoveries were 70.5-105.8%, with RSD ≤ 10%. The proposed method has the ability to simultaneously screen many banned dyes in foods with high throughput, sensitivity and reliability.
Collapse
Affiliation(s)
- Shubing Chen
- Technical Center of Ningbo Customs, Ningbo 315040, China
| | - Shuang Li
- Technical Center of Ningbo Customs, Ningbo 315040, China
| | - Keyi Fang
- Technical Center of Ningbo Customs, Ningbo 315040, China
| | - Yongjian Wang
- Technical Center of Ningbo Customs, Ningbo 315040, China
| | - Yan Yang
- Technical Center of Ningbo Customs, Ningbo 315040, China
| | - Chao Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Yan Shen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
16
|
Koronaiou LA, Nannou C, Xanthopoulou N, Seretoudi G, Bikiaris D, Lambropoulou DA. High-resolution mass spectrometry-based strategies for the target analysis and suspect screening of per- and polyfluoroalkyl substances in aqueous matrices. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Huerta B, McHugh B, Regan F. Development and application of an LC-MS method to the determination of poly- and perfluoroalkyl substances (PFASs) in drinking, sea and surface water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2090-2099. [PMID: 35551566 DOI: 10.1039/d2ay00300g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Poly- and perfluoroalkyl substances (PFASs) are a group of synthetic organic surfactants that have become a global concern because of their toxicity and widespread presence in the aquatic environment and organisms globally. In this study, a new analytical method has been developed and validated for the analysis of 15 perfluorinated compounds in different water matrices: river water, drinking water and seawater. Water extraction was performed in anion exchange solid phase extraction cartridges, and extracts were analysed by liquid chromatography in tandem with mass spectrometry. Recoveries for target analytes were between 35 and 120%, depending on the water matrix. Method detection limits were in the range of 0.5-17 ng L-1. The validated method was applied to the determination of perfluorinated compounds in water samples around Ireland. Eight compounds out of fifteen were detected at least in one sample. Measured concentrations were higher in river water than seawater, and drinking water had the lowest levels, although still detectable for a considerable amount of compounds. The most prevalent compounds were PFPeA, PFOA and PFHxA, present in all types of water, and they had the highest concentrations.
Collapse
Affiliation(s)
- Belinda Huerta
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Brendan McHugh
- Marine Institute, Rinville, Oranmore, Co. Galway, H91 R673, Ireland
| | - Fiona Regan
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
18
|
Zhao W, Qian M, Dong H, Liu X, Bai W, Liu G, Lv XC. Effect of Hong Qu on the flavor and quality of Hakka yellow rice wine (Huangjiu) produced in Southern China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Carvalho AR, Pérez-Pereira AI, Couto CMC, Tiritan ME, Ribeiro CMR. Assessment of effluents quality through ecotoxicological assays: evaluation of three wastewater treatment plants with different technologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:963-976. [PMID: 34345989 DOI: 10.1007/s11356-021-15671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The water quality of the effluents is mainly focused on physicochemical and microbiological parameters. However, the ecotoxicological assessments are crucial to ensure an effective water quality of the effluents. This work aims to assess the ecotoxicity of effluents originated from WWTPs with different wastewater treatment technologies. For that, effluent samples from three WWTPs with different treatment processes were seasonally collected. Physicochemical parameters were determined, the toxicity towards daphnia, protozoan, and microalgae organisms was evaluated, and data correlated. Toxicity assays showed different susceptibility of the organisms to the effluents and that toxicity is dependent on the season and wastewater treatment technology. No toxicity was observed to daphnia in winter and spring, but ~100% of mortality was observed in effluent from WWTP A in summer. Growth inhibition was observed for both protozoan and microalgae for all effluents and in all seasons with highest values in spring in WWTP C (~80%) for the protozoan while the highest microalgae growth inhibition percentage was observed for WWTP B in both spring (~80%) and summer (~80%). These results show that effluents might have negative impacts into their receiving water systems and highlight that a global assessment of effluent quality should include ecotoxicological assays to complement physicochemical and microbiological data for an operative environmental management of wastewater treatment plants.
Collapse
Affiliation(s)
- Ana Rita Carvalho
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - Ariana Isabel Pérez-Pereira
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116, Gandra, Portugal
| | - Cristina Maria Cavadas Couto
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116, Gandra, Portugal
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Maria Elizabeth Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116, Gandra, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Matosinhos, Portugal
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Cláudia Maria Rosa Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal.
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116, Gandra, Portugal.
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Matosinhos, Portugal.
| |
Collapse
|
20
|
Advances in Analysis of Contaminants in Foodstuffs on the Basis of Orbitrap Mass Spectrometry: a Review. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Ma Y, Wang P, Hua Z, Lu Y, Yang Y. Ship navigation disturbance alters multiphase distribution of perfluoroalkyl acids and increases their ecological risk in waterways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148576. [PMID: 34175611 DOI: 10.1016/j.scitotenv.2021.148576] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
As a global persistent organic pollutant, perfluoroalkyl acids (PFAAs) have aroused great public concern. However, little is known regarding the effect of ship navigation disturbance on the transport and fate of PFAAs in inland waterways developed regions. In the present study, overlying water, pore water, suspended particulate matter (SPM), and sediment were collected from waterways (WWs), non-navigable channels (NCs), and ports (PTs) in Taihu Lake Basin. The results revealed that the total concentrations of PFAAs (ΣPFAAs) in WWs, NCs, and PTs varied considerably in different media. In overlying water, the mean ΣPFAAs in WWs were the highest, while those of NCs were relatively higher in the remaining three media. A comparison of PFAA distribution coefficients revealed that the values in NCs were generally higher than those of WWs and PTs, suggesting the critical role of ship navigation in PFAA transport. Furthermore, a structural equation model was applied to estimate direct and indirect effects of environmental factors on PFAA partitioning behavior. The results revealed that ship traffic volume (STV) exerted indirect effects on PFAA distribution between solid and dissolved phases by influencing dissolved oxygen, total suspended solid concentration, clay and sand contents, and median diameter. PFAAs were more readily to be released into overlying water from pore water than in sediment, and the ΣPFAAs carried per gram of SPM decreased with an increase in STV. Ecological risk assessment and Monte Carlo simulation results revealed that ship navigation could exert adverse effects on aquatic organisms, making the average probability of RQmix values to exceed corresponding risk values in WWs, which were 1.3-2-fold higher than in NCs. The present study provides crucial information for simulating the environmental behaviors of PFAAs under the influence of ship navigation and is significant for the integration of inland water transport development and aquatic environmental protection.
Collapse
Affiliation(s)
- Yixin Ma
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Peng Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Ying Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yundong Yang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
22
|
Yan W, Yu Y, Wang Y, Yang S, Li X, Lu S, Zha L, Cai J. Forensic examination and application of areca nuts as material evidence. J Forensic Sci 2021; 67:321-327. [PMID: 34606109 DOI: 10.1111/1556-4029.14900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/15/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022]
Abstract
In this study, we aimed to explore the possibility of DNA analysis of areca nut as material evidence and the value of short tandem repeat (STR) typing of areca nut as material evidence under the condition of simulating external environment. In this study, water soaking, soil burial, sun exposure, and wet environment were used to treat areca nut residues. Chelex 100 was used to extract DNA, the PowerPlex21 kit to amplify, and the ABI PRISM® 310 Genetic Analyzer to analyze the DNA of areca nut residues. DNA and STR typing were performed to analyze the residue after chewing. The results showed that the number of residual sites decreased with time under the conditions of water soaking, soil burial, sun exposure, and wet environment. Thus, areca nut can be used as forensic material evidence for DNA analysis and individual identification.
Collapse
Affiliation(s)
- Weitao Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yang Yu
- School of Basic Medical Science, Changsha Medical University, Changsha, Hunan, China
| | - Yuxin Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Shu Yang
- School of Basic Medical Science, Changsha Medical University, Changsha, Hunan, China
| | - Xi Li
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shuang Lu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Lagabaiyila Zha
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Sample preparation optimization by central composite design for multi class determination of 172 emerging contaminants in wastewaters and tap water using liquid chromatography high-resolution mass spectrometry. J Chromatogr A 2021; 1652:462369. [PMID: 34246959 DOI: 10.1016/j.chroma.2021.462369] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Multi-residue analysis is highly desirable for water quality control. To this end, a comprehensive workflow for the quantitative analysis of 172 anthropogenic organic compounds belonging to emerging contaminants (pharmaceuticals and personal care products, illicit drugs, organophosphate flame retardants and perfluoroalkyl substances) has been developed for application to wastewater and tap water, based on solid phase extraction (SPE) and Orbitrap high resolution mass spectrometry (HRMS). Due to the large number of analytes with various physicochemical characteristics that should be efficiently extracted, the response surface methodology (RSM) employing a central composite design (CCD) and desirability function (DF) approach was exploited to optimize the sample preparation process, instead of the conventional single-factor analysis. The factors included in the design of experiments (DoE) were sample pH, eluent solvents composition and volume. Statistical analysis (ANOVA) proved the adequacy of the proposed model (2- factor interaction) as p-value < 0.05 followed by different diagnostic tests confirmed the good fitting. The best values to acquire DF close to 1 were pH 3.5, methanol/ethyl acetate ratio 87:13 and eluent volume 6 mL. The streamlined method was validated in terms of accuracy, linearity, method limits, reproducibility, and matrix effect. The proposed workflow combines sensitivity and robustness, with recoveries over 70%, method quantification limits <1 ng/L, and relative standard deviations <20% for most of the compounds. Slight matrix effect (ME) was observed for most of PPCPs, IDs and PFAs, in contrast with most of the OPFRs, for which strong ME was calculated. Method applicability was tested over wastewater collected from a municipal wastewater treatment plant in Thessaloniki (Greece), revealing the presence of 69 and 40 compounds in influents and effluents, respectively, at varying concentrations.
Collapse
|
24
|
Abafe OA, Macheka LR, Olowoyo JO. Confirmatory Analysis of Per and Polyfluoroalkyl Substances in Milk and Infant Formula Using UHPLC-MS/MS. Molecules 2021; 26:molecules26123664. [PMID: 34208500 PMCID: PMC8234569 DOI: 10.3390/molecules26123664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
An ultra-high performance liquid chromatography tandem mass spectrometry method was developed and validated for the sensitive determination and unambiguous confirmation of residues of per and polyfluorinated alkyl substances (PFAS) in breastmilk, retail milk and infant formulas following two sample preparation methods. Sample pre-treatment was carried out by a simplified QuEChERS method without requiring dSPE or any further clean-up. The method was validated in accordance with the requirements of Commission Decision 657/2002/EC with slight modifications. The method displayed good linearity with R2 ranging from 0.9843–0.9998 for all target PFAS. The recovery and within-laboratory reproducibility of the method (n = 63) were in the range 60–121% and 5–28%, respectively. The decision limit, detection capability and limit of quantitation ranged from 30–60 ng kg−1 to 40–100 ng kg−1 and 5–50 ng kg−1, respectively. Acceptable matrix effect values in the range −45–29% were obtained with uncertainty of measurement lower than 25% for all target PFAS. The method displays its suitability for the sensitive and high-throughput confirmatory analysis of C4–C14 PFAS in breastmilk, dairy milk and infant formulas.
Collapse
Affiliation(s)
- Ovokeroye A. Abafe
- Residue Analysis Laboratory, Agricultural Research Council-OVR, Pretoria 0110, South Africa;
- School of Health Sciences, University of KwaZulu-Natal, Private Bag x5400, Durban 4001, South Africa
- Correspondence: or
| | - Linda R. Macheka
- Residue Analysis Laboratory, Agricultural Research Council-OVR, Pretoria 0110, South Africa;
- School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa;
| | - Joshua O. Olowoyo
- School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa;
| |
Collapse
|
25
|
Sustainable green solvents for microextraction techniques: Recent developments and applications. J Chromatogr A 2021; 1640:461944. [PMID: 33556679 DOI: 10.1016/j.chroma.2021.461944] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/20/2023]
Abstract
The development and application of alternative green solvents in analytical techniques consist of trends in sample preparation, since this subject represents an important step toward sustainability in experimental procedures. This review is focused on the main theoretical aspects related to deep eutectic solvents (DES), switchable hydrophilicity solvents (SHS) and supramolecular solvents (SUPRAS). Recent applications are highlighted, particularly for the extraction of different analytes from environmental, biological and food matrices. Moreover, novel configurations are emphasized, aiming for efficient, automated and high-throughput procedures. This review also provides some critical points regarding the use of these solvents and their green aspects.
Collapse
|
26
|
Determination of bongkrekic acid and isobongkrekic acid in rice noodles by HPLC-Orbitrap HRMS technology using magnetic halloysite nanotubes. Food Chem 2020; 344:128682. [PMID: 33246684 DOI: 10.1016/j.foodchem.2020.128682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 01/06/2023]
Abstract
The existing extraction and detection methods of bongkrekic acid (BKA) and isobongkrekic acid (IBKA) are complex, time-consuming and solvent-consuming. In this work, a simple and fast pre-concentration procedure based on Fe3O4/HNTs was developed for the determination of BKA and IBKA in rice noodles using HPLC-Orbitrap HRMS. The structure and morphology of Fe3O4/HNTs was characterized by means of XRD, SEM, FT-IR and VSM. Parameters affecting the extraction efficiency including adsorbent amount, pH, extraction time, type and volume of eluent were investigated by employing the response surface method. Results indicated that the proposed method had favorable linearity in the concentration range of 2-200 μg/L with a correlation coefficient >0.998. Method LOD and LOQ were 0.3 μg/kg and 1.0 μg/kg, respectively. Finally, the method was successfully applied to determine BKA and IBKA in rice noodle samples from southern China with recoveries ranging from 79.8% to 102.6% and relative standard deviation (RSD) of 4.2%-7.1%.
Collapse
|
27
|
Molecularly imprinted polymer-based electrochemical sensors for environmental analysis. Biosens Bioelectron 2020; 172:112719. [PMID: 33166805 DOI: 10.1016/j.bios.2020.112719] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
The ever-increasing presence of contaminants in environmental waters is an alarming issue, not only because of their harmful effects in the environment but also because of their risk to human health. Pharmaceuticals and pesticides, among other compounds of daily use, such as personal care products or plasticisers, are being released into water bodies. This release mainly occurs through wastewater since the treatments applied in many wastewater treatment plants are not able to completely remove these substances. Therefore, the analysis of these contaminants is essential but this is difficult due to the great variety of contaminating substances. Facing this analytical challenge, electrochemical sensing based on molecularly imprinted polymers (MIPs) has become an interesting field for environmental monitoring. Benefiting from their superior chemical and physical stability, low-cost production, high selectivity and rapid response, MIPs combined with miniaturized electrochemical transducers offer the possibility to detect target analytes in-situ. In most reports, the construction of these sensors include nanomaterials to improve their analytical characteristics, especially their sensitivity. Moreover, these sensors have been successfully applied in real water samples without the need of laborious pre-treatment steps. This review provides a general overview of electrochemical MIP-based sensors that have been reported for the detection of pharmaceuticals, pesticides, heavy metals and other contaminants in water samples in the past decade. Special attention is given to the construction of the sensors, including different functional monomers, sensing platforms and materials employed to achieve the best sensitivity. Additionally, several parameters, such as the limit of detection, the linear concentration range and the type of water samples that were analysed are compiled.
Collapse
|