1
|
Suteja Y, Dirgayusa IGNP, Purnama SG, Purwiyanto AIS. From sea to table: Assessing microplastic contamination in local and non-local salt in Bali, Indonesia. CHEMOSPHERE 2025; 374:144192. [PMID: 39938321 DOI: 10.1016/j.chemosphere.2025.144192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/27/2025] [Accepted: 02/02/2025] [Indexed: 02/14/2025]
Abstract
Microplastic contamination in table salt has emerged as a significant environmental and public health concern, particularly in regions like Bali, Indonesia, where salt is predominantly produced through seawater crystallization This study aimed to quantify and characterize microplastics in local and non-local table salts and estimate the potential microplastic intake. A total of 20 salt brands (10 local, 10 non-local) were collected and analyzed using density separation, stereomicroscopy, and FTIR spectroscopy. The results indicated that all salt samples contained microplastics, with an average concentration of 173 ± 119 particles/kg. Non-local salts exhibited higher contamination levels (211 ± 134 particles/kg) compared to local salts (135 ± 88 particles/kg). Fragments were the most prevalent microplastic type (55%), followed by fibers (44%), and smaller particles (≤500 μm) were the most common in size. A total of 13 polymer types were identified in the microplastic samples, with chlorobutyl (33%) and ethylene propylene rubber (29%) being the most dominant. Based on salt consumption rates, it was estimated that Bali residents ingest 1 microplastic particles per day, translating to an annual intake of 316-425 particles. These findings highlight the widespread nature of microplastic contamination in consumable salt and suggest potential health risks from the ingestion of microplastics, which may carry harmful pollutants. The study emphasizes the need for improved salt production practices, stricter pollution controls, and further research into the health implications of microplastic ingestion.
Collapse
Affiliation(s)
- Yulianto Suteja
- Marine Science Department, Faculty of Marine and Fisheries, Udayana University Indonesia. Jl. Raya Kampus Universitas Udayana, Bukit Jimbaran, Bali, Indonesia.
| | - I Gusti Ngurah Putra Dirgayusa
- Marine Science Department, Faculty of Marine and Fisheries, Udayana University Indonesia. Jl. Raya Kampus Universitas Udayana, Bukit Jimbaran, Bali, Indonesia
| | - Sang Gede Purnama
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Udayana University, Indonesia
| | - Anna Ida Sunaryo Purwiyanto
- Marine Science Department, Mathematics and Natural Science Faculty, Sriwijaya University, Palembang, Indonesia.
| |
Collapse
|
2
|
Wu L, Zhong Z, Wang Z, Du X, Tao X, Zhou J, Dang Z, Lu G. Antimony release from e-waste-derived microplastics in aqueous environments: Effect of plastic properties and environmental factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125774. [PMID: 39892455 DOI: 10.1016/j.envpol.2025.125774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/08/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Antimony (Sb) is an emerging contaminant widely concerned by researchers recently. Sb2O3, the flame-retardant synergist extensively used in plastics for electronic products, is an important source of Sb pollution. It can be released into the environment from e-waste, especially from the formed microplastics (MPs). However, the behavior and mechanisms of Sb release remain unclear. This study investigated the release behavior of Sb from two typical e-waste-derived MPs, acrylonitrile-butadiene-styrene (ABS) and high-impact polystyrene (HIPS). The effects of particle size, plastic aging, and environmental conditions (pH, humic acid, and inorganic ions) on Sb release were explored. It was found that HIPS exhibited higher total Sb (Sbtot) release than ABS, due to differences in their hydrophilicity and crystallinity. When the particle size was reduced from 2 mm to 0.15 mm, Sbtot release from HIPS and ABS increased by 620% and 350%. UV aging increased hydrophilicity and decreased crystallinity of MPs, further enhancing Sbtot release. Notably, there were about 40% Sb(III) in Sbtot released by pristine MPs, whereas in the leachate from the UV-aged MPs, Sbtot was exclusively Sb(V). Sbtot release was greatly enhanced by acidic and alkaline environments, especially at extreme pH levels, while humic acid has an inhibitory effect on the Sbtot release. These results suggest considerable amounts of Sb can be released into the environment from e-waste-derived MPs, and affected by various environmental factors. These findings improve understanding of Sb release from MPs in e-waste areas under various environmental conditions, providing insights into environmental risks tied to additive release from MPs.
Collapse
Affiliation(s)
- Lihui Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zijuan Zhong
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhengdong Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Chowdhury OS, Schmidt PJ, Anderson WB, Emelko MB. Advancing Evaluation of Microplastics Thresholds to Inform Water Treatment Needs and Risks. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:441-452. [PMID: 39049895 PMCID: PMC11264269 DOI: 10.1021/envhealth.3c00174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 07/27/2024]
Abstract
Although human health impacts of microplastics are not well understood, concern regarding chemical contaminants retained on or within them is growing. Drinking water providers are increasingly asked about these risks, but strategies for evaluating them and the extent of treatment needed to manage them are currently lacking. Microplastics can potentially induce health effects if the concentration of contaminants adsorbed to them exceeds predetermined drinking water guidelines (e.g., Maximum Contaminant Levels). The risk posed by microplastics due to adsorbed contaminants is difficult to determine, but a worst-case scenario can be evaluated by using adsorption capacity. Here, a "Threshold Microplastics Concentration" (TMC) framework is developed to evaluate whether waterborne microplastic concentrations can potentially result in the intake of regulated contaminants on/in microplastics at levels of human health concern and identify treatment targets for managing associated health risk. Exceeding the TMC does not indicate an immediate health risk; it informs the need for detailed risk assessment or further treatment evaluation to ensure particle removal targets are achieved. Thus, the TMC concept and framework provide an updateable, science-based screening tool to determine if there is a need for detailed risk assessment or treatment modification due to waterborne microplastics in supplies used for potable water production.
Collapse
Affiliation(s)
- Omar S. Chowdhury
- Department of Civil and Environmental
Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L
3G1, Canada
| | - Philip J. Schmidt
- Department of Civil and Environmental
Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L
3G1, Canada
| | - William B. Anderson
- Department of Civil and Environmental
Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L
3G1, Canada
| | - Monica B. Emelko
- Department of Civil and Environmental
Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L
3G1, Canada
| |
Collapse
|
4
|
Chen L, Zhong Z, Wu R, Lin Q, Gong Z, Yuan D. On-site monitoring of dissolved Sb species in natural waters by an automatic system using flow injection coupled with hydride generation atomic fluorescence spectrometer. Talanta 2024; 274:126037. [PMID: 38604046 DOI: 10.1016/j.talanta.2024.126037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Antimony (Sb) is a toxic and potentially carcinogenic element in the environment. The toxicity of Sb(III) is ten times that of Sb(V). Therefore, on-site monitoring technique for dissolved Sb species is crucial for the study of Sb environmental processes. In this study, an automated, portable, and cost-effective system was developed for field simultaneous analysis of Sb(III) and Sb(III + V) in natural waters. The system comprised a portable atomic fluorescence spectrometer equipped with a built-in electrochemical H2 generator to reduce the consumption of acid/borohydride solution and make the atomizer more stable for on-site analysis. Flow injection technique was also used to achieve on-line pretreatment of water samples, including filtration, acidification, pre-reduction, and hydride generation procedures. Under the optimal conditions, the limits of detection (3σ, n = 11) of the developed method were 0.015 μg/L and the linear ranges were 0.05-5.0 μg/L for both Sb(III) and Sb(III + V). The relative standard deviations (n = 11) of the spiked samples of Sb(V) were 3.2% (0.05 μg/L), 3.3% (0.2 μg/L), and 1.7% (0.5 μg/L), respectively. The spiked recoveries of lake water, treated wastewater, and seawater ranged from 97.0% to 108.5%. The novel system of flow injection coupled with hydride generation atomic fluorescence spectrometer (FI-HG-AFS) was applied to carry out an 18-h fixed-point monitoring at a secondary settling tank of a wastewater treatment facility in Xiamen University, and a 6-h real-time underway analysis in the surface seawater of Dongshan Bay, China, proving that the system was capable of long-term monitoring in the field.
Collapse
Affiliation(s)
- Luodan Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Ziyun Zhong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China
| | - Rongkun Wu
- Tairui Science and Technology Co., Ltd., Quanzhou, 362000, PR China
| | - Qinglin Lin
- Tairui Science and Technology Co., Ltd., Quanzhou, 362000, PR China
| | - Zhenbin Gong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, PR China.
| | - Dongxing Yuan
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
5
|
He D, Guo T, Dong Z, Li J, Wang F. Rare earth elements applied to phytoremediation: Enhanced endocytosis promotes remediation of antimony contamination with different valence levels in Solanum nigrum L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172253. [PMID: 38599400 DOI: 10.1016/j.scitotenv.2024.172253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Antimony (Sb) pollution poses a noteworthy risk to human health and ecosystem sustainability, therefore effective, eco-friendly, and widely accepted restoration methods are urgently needed. This study introduces a new approach of using La(III) foliar application on Solanum nigrum L. (S. nigrum), a cadmium hyperaccumulator, to improve its photosynthetic and root systems under Sb stress, resulting in a higher biomass. Notably, La(III) also enhances endocytosis in root cells, facilitating efficient and non-selective remediation of both Sb(III) and Sb(V) forms. The absorption of Sb by root cell endocytosis was observed visually with a confocal laser scanning microscope. The subcellular distribution of Sb in the cell wall of S. nigrum is reduced. And the antioxidant enzyme activity system is improved, resulting in an enhanced Sb tolerance in S. nigrum. Based on the existing bibliometric analysis, this paper identified optimal conditions for S. nigrum to achieve maximum translocation and bioconcentration factor values for Sb. The foliar application of La(III) on plants treated with Sb(III), Sb(V), and a combination of both resulted in translocation factor values of 0.89, 1.2, 1.13 and bioconcentration factor values of 11.3, 12.81, 14.54, respectively. Our work suggests that La(III)-enhanced endocytosis of S. nigrum root cells is a promising remediation strategy for Sb-contaminated environments.
Collapse
Affiliation(s)
- Ding He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Ting Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Zhongtian Dong
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jining Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Fenghe Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
6
|
Dai Y, Sun S, Cao R, Zhang H, Chen J, Geng N. Residual levels and health risk assessment of trace metals in Chinese resident diet. J Environ Sci (China) 2024; 136:451-459. [PMID: 37923455 DOI: 10.1016/j.jes.2022.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2023]
Abstract
Large-scale metal contamination across the food web is an intractable problem due to increasing pollutant emissions, atmospheric transport, and dry and wet deposition of elements. The present study focus on several trace metals that are rarely studied but have special toxicity, including tin (Sn), antimony (Sb), gold (Au), hafnium (Hf), palladium (Pd), platinum (Pt), ruthenium (Ru), tellurium (Te) and iridium (Ir). We investigated trace metals residues and distribution characteristics, and further evaluated the potential health risks from major daily food intakes in 33 cities in China. Sn, Sb, Ir, Hf, and Au were frequently detected in food samples with the concentrations ranged from ND (not detected) to 24.78 µg/kg ww (wet weight). Eggs exhibited the highest residual level of all detected metals (13.70 ± 14.70 µg/kg ww in sum), while the lowest concentrations were observed in vegetables (0.53 ± 0.17 µg/kg ww in sum). Sn accounting for more than 50% of the total trace metals concentration in both terrestrial and aquatic animal origin foods. In terrestrial plant origin foods, Sn and Ir were the most abundant elements. Hf and Au were the most abundant elements in egg samples. In addition, Sb and Ir showed a clear trophic dilution effect in terrestrial environments, while in aquatic ecosystems, Sn, Hf, and Au exhibited obvious trophic amplification effects. The calculated average estimated daily intake (EDI) via food consumption in five regions of China was 0.09 µg/(kg·day), implying the health risk of aforementioned elements was acceptable.
Collapse
Affiliation(s)
- Yubing Dai
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuai Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
7
|
Phasukarratchai N. Effects and applications of surfactants on the release, removal, fate, and transport of microplastics in aquatic ecosystem: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121393-121419. [PMID: 37999837 DOI: 10.1007/s11356-023-30926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Microplastics (MPs) and surfactants (STs) are emerging pollutants in the environment. While many studies have focused on the interactions of STs with MPs, there has not been a comprehensive review focusing on the effect of STs on MPs in aquatic ecosystems. This review summarizes methods for removal of MPs from wastewater (e.g., filtration, flotation, coagulation/flocculation, adsorption, and oxidation-reduction) and the interactions and effects of STs with MPs (adsorption, co-adsorption, desorption, and toxicity). STs can modify MPs surface properties and influence their removal using different wastewater treatments, as well as the adsorption-desorption of both organic and inorganic chemicals. The concentration of STs is a crucial factor that impacts the removal or adsorption of pollutants onto MPs. At low concentrations, STs tend to facilitate MPs removal by flotation and enhance the adsorption of pollutants onto MPs. High ST concentrations, mainly above the critical micelle concentrations, cause MPs to become dispersed and difficult to remove from water while also reducing the adsorption of pollutants by MPs. Excess STs form emulsions with the pollutants, leading to electrostatic repulsion between MPs/STs and the pollutant/STs. As for the toxicity of MPs, the addition of STs to MPs shows complicated results, with some cases showing an increase in toxicity, some showing a decrease, and some showing no effect.
Collapse
Affiliation(s)
- Naphatsarnan Phasukarratchai
- Faculty of Environment and Resource Studies, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
8
|
Peng G, Pu Z, Chen F, Xu H, Cao X, Chun Chen C, Wang J, Liao Y, Zhu X, Pan K. Metal leaching from plastics in the marine environment: An ignored role of biofilm. ENVIRONMENT INTERNATIONAL 2023; 177:107988. [PMID: 37267729 DOI: 10.1016/j.envint.2023.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/24/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
A large quantity of metal compounds in plastics are released into the marine environment every year. However, our understanding of the extent and mechanism by which polymer-bound metals leach into seawater is still limited. In this study, a comprehensive survey was conducted to measure the metal concentrations in commonly used plastics and evaluate the effects of environmental factors (temperature, radiation, and salinity) and the physiochemical properties (surface roughness, specific surface area, hydrophobicity, and crystallinity) of the plastics on their metal leaching into seawater. In particular, we observed the metal loss from six plastics submerged in coastal seawater for eight months and studied the role of biofilm in controlling the leaching of Sb, Sn, Pb, Ba, and Cr. Our results indicate that increased temperature enhanced the release of these metals, while exposure to ultraviolet radiation significantly increased the leaching of Sn from polylactide (PLA). High salinity facilitated the leaching of Sn from PLA and Pb from polyvinylchloride ball, however inhibited the leaching of Ba from PE wrap. The leaching rate was primarily determined by the inherent property of crystallinity. Metal loss from the plastics in the field was apparent during the first three weeks, but then was hindered by the development of biofilm. Our study provides the mechanisms underlying metal leaching from physical, chemical, and biological perspectives, which is useful for understanding the environmental risk of the plastic-containing metals.
Collapse
Affiliation(s)
- Guogan Peng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhengshijian Pu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Huo Xu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xue Cao
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Ciara Chun Chen
- College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, China
| | - Jingzhen Wang
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Yongyan Liao
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China
| | - Xiaoshan Zhu
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
9
|
Saad D, Chauke P, Cukrowska E, Richards H, Nikiema J, Chimuka L, Tutu H. First biomonitoring of microplastic pollution in the Vaal river using Carp fish (Cyprinus carpio) "as a bio-indicator". THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155623. [PMID: 35508237 DOI: 10.1016/j.scitotenv.2022.155623] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Fish inhabiting freshwater environments are susceptible to the ingestion of microplastics (MPs). Knowledge regarding MPs in freshwater fish in South Africa is very limited. In this study, the uptake of MPs by common carp (Cyprinus carpio) in the Vaal River in South Africa was assessed. MPs were detected in all of the twenty-six fish examined, 682 particles of MPs were recovered from the gastrointestinal tracts of the fish with an average of 26.23 ± 12.57 particles/fish, and an average abundance of 41.18 ± 52.81 particles/kg. The examination of the physical properties of MPs revealed a predominance on fibers (69%), small-sized particles of less than 0.5 mm (48%), as well as prevelance of coloured MPs (94%), mostly green, blue, and black. Using Raman Spectroscopy, the following plastic polymers were identified: high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), polyethylene terephthalate (PET), and polytetrafluoroethylene (PTFE). To the best of our knowledge, this study, is the first to report MPs uptake by freshwater biota in the Vaal River using common carp as a target organism. It provided evidence of MP contamination in the Vaal.
Collapse
Affiliation(s)
- Dalia Saad
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa.
| | - Patricia Chauke
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Ewa Cukrowska
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Heidi Richards
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Luke Chimuka
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Hlanganani Tutu
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
10
|
Waara S, Johansson F. Ecological risk assessment of trace elements accumulated in stormwater ponds within industrial areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27026-27041. [PMID: 34932183 PMCID: PMC8989822 DOI: 10.1007/s11356-021-18102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Stormwater ponds can provide flood protection and efficiently treat stormwater using sedimentation. As the ponds also host aquatic biota and attract wildlife, there is a growing concern that the sediment bound pollutants negatively affect aquatic organisms and the surrounding ecosystem. In this study, we used three methods to assess the accumulation and the potential ecological risk of 13 different heavy metals and metalloids (e.g. trace elements) including both elements that are frequently monitored and some which are rarely monitored in sediment from 5 stormwater ponds located within catchments with predominately industrial activities. Ecological risk for organisms in the older ponds was observed for both commonly (e.g. Cd, Cu, Zn) and seldom (e.g. Ag, Sb) monitored trace elements. The 3 methods ranked the degree of contamination similarly. We show that methods usually used for sediment quality assessment in aquatic ecosystems can also be used for screening the potential risk of other trace elements in stormwater ponds and may consequently be useful in stormwater monitoring and management. Our study also highlights the importance of establishing background conditions when conducting ecological risk assessment of sediment in stormwater ponds.
Collapse
Affiliation(s)
- Sylvia Waara
- Department of Environmental and Biosciences, Rydberg Laboratory of Applied Sciences, Halmstad University, Box 823, 301 18 Halmstad, Sweden
| | - Frida Johansson
- Department of Environmental and Biosciences, Rydberg Laboratory of Applied Sciences, Halmstad University, Box 823, 301 18 Halmstad, Sweden
- Present Address: SWECO Sverige AB, Halmstad, 302 20 Halmstad, Sweden
| |
Collapse
|
11
|
Bolan N, Kumar M, Singh E, Kumar A, Singh L, Kumar S, Keerthanan S, Hoang SA, El-Naggar A, Vithanage M, Sarkar B, Wijesekara H, Diyabalanage S, Sooriyakumar P, Vinu A, Wang H, Kirkham MB, Shaheen SM, Rinklebe J, Siddique KHM. Antimony contamination and its risk management in complex environmental settings: A review. ENVIRONMENT INTERNATIONAL 2022; 158:106908. [PMID: 34619530 DOI: 10.1016/j.envint.2021.106908] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Antimony (Sb) is introduced into soils, sediments, and aquatic environments from various sources such as weathering of sulfide ores, leaching of mining wastes, and anthropogenic activities. High Sb concentrations are toxic to ecosystems and potentially to public health via the accumulation in food chain. Although Sb is poisonous and carcinogenic to humans, the exact mechanisms causing toxicity still remain unclear. Most studies concerning the remediation of soils and aquatic environments contaminated with Sb have evaluated various amendments that reduce Sb bioavailability and toxicity. However, there is no comprehensive review on the biogeochemistry and transformation of Sb related to its remediation. Therefore, the present review summarizes: (1) the sources of Sb and its geochemical distribution and speciation in soils and aquatic environments, (2) the biogeochemical processes that govern Sb mobilization, bioavailability, toxicity in soils and aquatic environments, and possible threats to human and ecosystem health, and (3) the approaches used to remediate Sb-contaminated soils and water and mitigate potential environmental and health risks. Knowledge gaps and future research needs also are discussed. The review presents up-to-date knowledge about the fate of Sb in soils and aquatic environments and contributes to an important insight into the environmental hazards of Sb. The findings from the review should help to develop innovative and appropriate technologies for controlling Sb bioavailability and toxicity and sustainably managing Sb-polluted soils and water, subsequently minimizing its environmental and human health risks.
Collapse
Affiliation(s)
- Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia.
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Ekta Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Aman Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - S Keerthanan
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Son A Hoang
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya 70140, Sri Lanka
| | - Saranga Diyabalanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Prasanthi Sooriyakumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea.
| | - Kadambot H M Siddique
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
12
|
Turner A, Filella M. Polyvinyl chloride in consumer and environmental plastics, with a particular focus on metal-based additives. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1376-1384. [PMID: 34368828 DOI: 10.1039/d1em00213a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Polyvinyl chloride (PVC) is one of the most widely used thermoplastics but is also a material of concern because of the generation and release of harmful chemicals during its life cycle. Amongst the chemicals added to PVC are metal-based stabilisers and Sb-based halogenated flame retardant synergists. However, very little quantitative information exists on these additives, and in particular in PVC lost to the environment. In this study, the distribution of PVC amongst consumer plastics in societal circulation and plastics retrieved from marine and lacustrine beaches and agricultural soils are compared, along with the presence and concentrations of Ba, Cd, Pb, Sb, Sn and Zn as proxies for common metal-based additives and determined by X-ray fluorescence spectrometry. About 10% of consumer plastics and 2% of environmental plastics were constructed of PVC, with the discrepancy attributed to the long service lives and managed disposal of PVC used in the construction sector and the propensity of the plastic to sink in aquatic systems and evade detection. Metal-based additives, defined as having a metal concentration >1000 mg kg-1, were present in about 75% of consumer and environmental PVC, with Ba and Pb most abundant and Cd and Zn least abundant in both types of sample, and median concentrations statistically different only for Ba. Metals also appeared to be present as contaminants (defined as concentrations <1000 mg kg-1) arising from manufacturing or recycling. Metals in PVC are believed to pose little risk when the material is in use, but experimental evidence in the literature suggests that significant mobilisation and exposure may occur from PVC microplastics when ingested by wildlife.
Collapse
Affiliation(s)
- Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | - Montserrat Filella
- Department F.-A. Forel, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland.
| |
Collapse
|
13
|
Bridson JH, Gaugler EC, Smith DA, Northcott GL, Gaw S. Leaching and extraction of additives from plastic pollution to inform environmental risk: A multidisciplinary review of analytical approaches. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125571. [PMID: 34030416 DOI: 10.1016/j.jhazmat.2021.125571] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Plastic pollution is prevalent worldwide and has been highlighted as an issue of global concern due to its harmful impacts on wildlife. The extent and mechanism by which plastic pollution effects organisms is poorly understood, especially for microplastics. One proposed mechanism by which plastics may exert a harmful effect is through the leaching of additives. To determine the risk to wildlife, the chemical identity and exposure to additives must be established. However, there are few reports with disparate experimental approaches. In contrast, a breadth of knowledge on additive release from plastics is held within the food, pharmaceutical and medical, construction, and waste management industries. This includes standardised methods to perform migration, extraction, and leaching studies. This review provides an overview of the approaches and methods used to characterise additives and their leaching behaviour from plastic pollution. The limitations of these methods are highlighted and compared with industry standardised approaches. Furthermore, an overview of the analytical strategies for the identification and quantification of additives is presented. This work provides a basis for refining current leaching approaches and analytical methods with a view towards understanding the risk of plastic pollution.
Collapse
Affiliation(s)
- James H Bridson
- Scion, 49 Sala Street, Rotorua 3010, New Zealand; School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand.
| | | | - Dawn A Smith
- Scion, 49 Sala Street, Rotorua 3010, New Zealand
| | - Grant L Northcott
- Northcott Research Consultants Limited, 20 River Oaks Place, Hamilton 3200, New Zealand
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|