1
|
Chitose N, Fujita K, Chujo M, Inui H. Can the agrochemical Oryzemate treatment control the uptake of pyrene by Cucurbita pepo through the regulation of major latex-like proteins? JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154385. [PMID: 39616727 DOI: 10.1016/j.jplph.2024.154385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/21/2025]
Abstract
Members of the Cucurbitaceae family accumulate several hydrophobic organic pollutants in their above-ground parts at high concentrations. Major latex-like proteins (MLPs) identified in Cucurbita pepo bind to hydrophobic organic pollutants, such as pyrene and dieldrin, in roots, forming complexes that are transported via xylem vessels to the above-ground plant parts. However, soil remediation of hydrophobic organic pollutants utilizing MLPs has not been established. In this study, the uptake of the hydrophobic organic pollutant pyrene by C. pepo was promoted through the upregulation of the expression of MLP genes following agrochemical treatment. Probenazole, an active ingredient in the agrochemical Oryzemate, was previously found to upregulate the promoter activity of MLP genes in the roots of transgenic tobacco plants. Here, Oryzemate treatment increased the levels of MLPs in the roots and xylem sap of C. pepo. Oryzemate treatment slightly increased and significantly decreased the pyrene concentration in the xylem sap of C. pepo cultivated in high- and low-contamination soils, respectively. Probenazole competitively inhibited the binding of MLPs to pyrene in vitro, thereby likely suppressing its uptake by C. pepo in low-contamination soil. This study demonstrated that Oryzemate possesses dual effects: effective phytoremediation and safe crop production, depending on the soil contamination level.
Collapse
Affiliation(s)
- Natsumi Chitose
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Kentaro Fujita
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Maho Chujo
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Hideyuki Inui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan; Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
2
|
Affholder MC, Mench M, Gombert-Courvoisier S, Cohen GJV. Dieldrin accumulation, distribution in plant parts and phytoextraction potential for several plant species and Cucurbita pepo varieties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172968. [PMID: 38705310 DOI: 10.1016/j.scitotenv.2024.172968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Dieldrin, an organochlorine pesticide (OCP) widely used for crop protection in the second half of the 20th century till the 70's, is worldwide still present in arable soils. It can be transferred to crops, notably cucurbits, depending on plant species and cultivars. Finding strategies to decrease OCP bioavailability in soil is therefore a main concern. Phytomanagement strategies could provide (i) ready-to-use short term solution for maintaining the production of edible plant parts with dieldrin concentrations below the Maximum Residue Limits (MRL) and (ii) long-term solution for dieldrin phytoextraction reducing progressively its bioavailability in the soil. This field study aimed at determining dieldrin accumulation capacities and allocation pattern in 17 non-Cucurbitaceae species and 10 Cucurbita pepo varieties, and assessing the dieldrin phytoextraction potential of these plant species when grown to maturity in a historically dieldrin-contaminated soil. Out of the non-Cucurbitaceae species, vetiver was the only one able to accumulate significant amounts of dieldrin, which mainly remained in its roots. All C. pepo varieties were able to uptake and translocate high dieldrin amounts into the shoots, leading to the highest phytoextraction potential. Despite the intraspecific variability in dieldrin concentration in zucchini plant parts, mainly in the reproductive organs, the phytoextraction capacity for shoots and fruits was high for all tested varieties (147 to 275 μg dieldrin plant-1, corresponding to 5.6 % of the n-heptane extractable soil dieldrin), even for the one with low fruit dieldrin concentration. Both food safety and phytoextraction could be achieved by selecting productive zucchini varieties displaying low dieldrin concentration in fruits and high one in shoots.
Collapse
Affiliation(s)
- M-C Affholder
- Univ. Bordeaux, CNRS, Bordeaux-INP, EPOC-PROMESS UMR 5805, 1 allée F. Daguin, 33607 Pessac, France; Univ. Bordeaux, INRAE, BIOGECO, Allée Geoffroy St-Hilaire - bât. B2, CS 50023, 33615 Pessac Cedex, France
| | - M Mench
- Univ. Bordeaux, INRAE, BIOGECO, Allée Geoffroy St-Hilaire - bât. B2, CS 50023, 33615 Pessac Cedex, France
| | - S Gombert-Courvoisier
- Univ. Bordeaux-Montaigne, Univ. Bordeaux, Ecole Nationale Supérieure d'Architecture et de Paysage de Bordeaux, CNRS, PASSAGES UMR 5319, Pessac, France
| | - G J V Cohen
- Univ. Bordeaux, CNRS, Bordeaux-INP, EPOC-PROMESS UMR 5805, 1 allée F. Daguin, 33607 Pessac, France.
| |
Collapse
|
3
|
Li WZ, Li J, Ma WL, Zhang XS, Liu Y, Luan J. Fabrication of nanofibrous membranes decorated with metal-organic frameworks for detection of pollutants in water. Talanta 2024; 269:125496. [PMID: 38043341 DOI: 10.1016/j.talanta.2023.125496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
The environmental pollution caused by antibiotics, Fe3+ and MnO4- pollutants is becoming increasingly serious. Polyacrylonitrile (PAN) and polymethyl methacrylate (PMMA) were used and decorated with metal-organic frameworks (MOFs) to fabricated three kinds of nanofibrous membranes (NFMs) with different shapes and sizes were prepared by electrospinning technology using in situ growth method and mixed spinning method. The structures and properties of the above three kinds of NFMs were characterized. Among them, PAN@Co/Mn-MOF-74 NFM prepared by in-situ growth method based on PAN was a kind of nano-fluorescent NFM sensor with uniform structure and good fluorescence performance. It showed unique specificity and excellent sensitivity in the detection of ORN, Fe3+ and MnO4-. Compared with previously reported functionalized MOFs, PAN@Co/Mn-MOF-74 NFM has a lower limit of detection (LOD). This study provides a feasible technical route for the preparation of nano-fluorescent NFMs and the targeted detection of trace metal ions and antibiotics.
Collapse
Affiliation(s)
- Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Jing Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Wan-Lin Ma
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Xiao-Sa Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Yu Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
4
|
Fujita K, Sonoda C, Chujo M, Inui H. Major latex-like proteins show pH dependency in their binding to hydrophobic organic pollutants. JOURNAL OF PESTICIDE SCIENCE 2023; 48:71-77. [PMID: 37745171 PMCID: PMC10513956 DOI: 10.1584/jpestics.d23-014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/30/2023] [Indexed: 09/26/2023]
Abstract
The Cucurbitaceae family accumulates hydrophobic organic pollutants in its aerial parts at high concentrations. Major latex-like proteins (MLPs) were identified in zucchini (Cucurbita pepo) as a transporting factor for hydrophobic organic pollutants. MLPs bind to hydrophobic organic pollutants in the roots, are secreted to xylem vessels as complexes, and are transported to the aerial parts. However, the suitable conditions for binding MLPs to hydrophobic organic pollutants remain elusive. In the present study, we show that MLPs bind to the hydrophobic organic pollutant pyrene with higher affinity under acidic conditions. Our results demonstrated that pH regulates the binding of MLPs to hydrophobic organic pollutants.
Collapse
Affiliation(s)
- Kentaro Fujita
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Chihiro Sonoda
- Graduate School of Agricultural Science, Kobe University
| | | | - Hideyuki Inui
- Graduate School of Agricultural Science, Kobe University
- Biosignal Research Center, Kobe University
| |
Collapse
|
5
|
Fujita K, Yoshihara R, Hirota M, Goto J, Sonoda C, Inui H. A20/AN1 zinc-finger proteins positively regulate major latex-like proteins, transporting factors toward dioxin-like compounds in Cucurbita pepo. CHEMOSPHERE 2022; 305:135536. [PMID: 35772518 DOI: 10.1016/j.chemosphere.2022.135536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/13/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The Cucurbitaceae family accumulates dioxin-like compounds in its fruits. We previously showed that A20/AN1 zinc finger protein (ZFP) genes were highly expressed in the zucchini (Cucurbita pepo) subspecies pepo, which accumulates dioxin-like compounds at high concentrations. Transgenic tobacco (Nicotiana tabacum) plants overexpressing A20/AN1 ZFP genes show accumulation of dioxin-like compounds in their upper parts. However, the mechanisms underlying the accumulation of dioxin-like compounds regulated by the A20/AN1 ZFPs remain unclear. Here, we show that A20/AN1 ZFPs positively regulate the expression of the major latex-like protein (MLP) and its homolog genes in N. tabacum and C. pepo. MLPs are involved in the transport of dioxin-like compounds from the roots to the upper parts of C. pepo. Overexpression of A20/AN1 ZFP genes in N. tabacum leads to the upregulation of pathogenesis-related protein class-10 genes with the binding ability toward dioxin-like compounds. Our results demonstrated that A20/AN1 ZFPs upregulate MLP and its homolog genes in N. tabacum and C. pepo, resulting in the accumulation of dioxin-like compounds.
Collapse
Affiliation(s)
- Kentaro Fujita
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Ryouhei Yoshihara
- Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Matashi Hirota
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Junya Goto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Chihiro Sonoda
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Hideyuki Inui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan; Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
6
|
Fujita K, Inui H. Review: Biological functions of major latex-like proteins in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110856. [PMID: 33775363 DOI: 10.1016/j.plantsci.2021.110856] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 05/23/2023]
Abstract
Major latex-like proteins (MLPs) have been identified in dicots and monocots. They are members of the birch pollen allergen Bet v 1 family as well as pathogenesis-related proteins class 10. MLPs have two main features. One is binding affinity toward various hydrophobic compounds, such as long-chain fatty acids, steroids, and systemic acquired resistance signals, via its internal hydrophobic cavity or hydrophobic residues on its surface. MLPs transport such compounds to other organs via phloem and xylem vessels and contribute to the expression of physiologically important ligands' activity in the particular organs. The second feature is responses to abiotic and biotic stresses. MLPs are involved in drought and salt tolerance through the mediation of plant hormone signaling pathways. MLPs generate resistance against pathogens by the induction of pathogenesis-related protein genes. Therefore, MLPs play crucial roles in drought and salt tolerance and resistance against pathogens. However, knowledge of MLPs is fragmented, and an overview of them is needed. Herein, we summarize the current knowledge of the biological functions of MLPs, which to our knowledge, is the first review about MLPs that has been reported.
Collapse
Affiliation(s)
- Kentaro Fujita
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Hideyuki Inui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|