1
|
Kim TH, Kim H, Oh J, Kim S, Miligkos M, Yon DK, Papadopoulos NG. Global burden of asthma among children and adolescents with projections to 2050: a comprehensive review and forecasted modeling study. Clin Exp Pediatr 2025; 68:329-343. [PMID: 40262764 PMCID: PMC12062390 DOI: 10.3345/cep.2025.00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/26/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
Understanding pediatric asthma is crucial to its effective diagnosis and intervention, as it may alleviate the adulthood disease burden. This epidemiological review describes the prevalence of asthma among individuals under 20 years of age by categorizing them into 3 age groups: 1-4, 5-9, and 10-19 years. Estimates were obtained from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021, which covered the prevalence of asthma from 1990 to 2021 across 21 GBD regions with 95% uncertainty intervals (UIs). We also projected the prevalence of pediatric asthma in 2050 by using a logistic regression predictive model from the existing literature and incorporating body mass index as a covariate with fixed coefficients over time. Overall, a continuous decline in asthma prevalence rates among children and adolescents was observed from 1990 to 2021, with higher rates in males and a peak prevalence rate in the 5-9 years group. Central Europe showed significantly increased prevalence rates compared to those of other regions. Our projection suggests that the prevalence rate of pediatric asthma will decline to approximately 2,608.05 per 100,000 population by 2050 (95% UI, 1,632.94-3,868.26), representing a 39.5% decrease from the 2021 figures. Despite these trends, asthma remains a substantial health burden for children and adolescents that may persist into adulthood. Therefore, proactive diagnosis and intervention are essential to mitigating the associated disease burden.
Collapse
Affiliation(s)
- Tae Hyeon Kim
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, Korea
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, Korea
| | - Hyunjee Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, Korea
| | - Jiyeon Oh
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, Korea
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, Korea
| | - Soeun Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, Korea
| | - Michael Miligkos
- Allergy Department, Second Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Dong Keon Yon
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, Korea
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, Korea
- Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Korea
| | - Nikolaos G Papadopoulos
- Allergy Department, Second Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Lydia Becker Institute, University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Dearborn LC, Hazlehurst MF, Melough MM, Szpiro AA, Sherris AR, Adgent MA, Ni Y, Wright RJ, Thakur N, Bush NR, Moore PE, Loftus CT, Karr CJ, Carroll KN. Prenatal ozone exposure and child lung function: Exploring effect modification by oxidative balance score. Int J Hyg Environ Health 2025; 264:114491. [PMID: 39671893 PMCID: PMC11788037 DOI: 10.1016/j.ijheh.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Prenatal exposures to ozone (O3) may impact child lung function, including through oxidative stress pathways, contributing to lifelong morbidity. Diet, reflected in oxidative balance scores (OBS), may modify these pathways and is a potential target for interventions to mitigate O3 effects. METHODS We examined associations between prenatal exposure to O3 and child lung function at age 8-9 years via spirometry in the CANDLE cohort within the ECHO-PATHWAYS Consortium. O3 was estimated using a point-based spatiotemporal model and averaged over fetal morphological lung development phases: pseudoglandular, canalicular, and saccular. Lung function z-scores were calculated for FEV1, FVC, FEV1/FVC, and FEF25-75. OBS during pregnancy was derived using maternal diet and lifestyle factors. Linear regression models adjusted for child, maternal, and neighborhood characteristics and exposure in other prenatal windows. Using two and three-way multiplicative interaction terms, we explored effect modification by OBS and maternal race. RESULTS Women (N = 661) self-identified as Black (61%), White (33%), or another race (6%); 40.7% attended some college/technical school. Mean O3 concentrations ranged from 26.1 to 29.5 ppb across exposure windows. No associations between prenatal O3 exposure and lung function were observed in primary models, although there was a suggestive adverse association of 10 ppb higher O3 in the saccular window (24-35 weeks) with lower z-scores for FEV1/FVC (-0.23, 95% CI: -0.52, 0.05) and FEF25-75 (-0.17, 95% CI: -0.43, 0.09). No effect modification by OBS or maternal race was found in two-way models. In three-way interaction models, higher O3 was associated with lower child FEV1 among Black women with lower OBS and among White women with higher OBS although data was sparse for those with the highest OBS. CONCLUSIONS In a large, well-characterized pregnancy cohort, we did not find robust evidence of an effect of prenatal O3 on lung function. There was suggestion of enhanced vulnerability for some subgroups in exploratory analyses.
Collapse
Affiliation(s)
- Logan C Dearborn
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.
| | - Marnie F Hazlehurst
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Melissa M Melough
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, DE, USA
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Allison R Sherris
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Margaret A Adgent
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Ni
- Division of Epidemiology and Biostatistics, School of Public Health, College of Health and Human Services, San Diego State University, San Diego, CA, USA
| | - Rosalind J Wright
- Department of Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neeta Thakur
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole R Bush
- Department of Psychiatry and Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Paul E Moore
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Catherine J Karr
- Department of Pediatrics, School of Medicine, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Kecia N Carroll
- Department of Pediatrics, Department of Environmental Medicine & Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Bao L, Liu Y, Zhang Y, Qian Q, Wang Y, Li W, Yu Y. Association analysis of maternal exposure to air pollution during pregnancy and offspring asthma incidence. Reprod Health 2025; 22:29. [PMID: 39994770 PMCID: PMC11849349 DOI: 10.1186/s12978-025-01967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Air pollution has a significant negative impact on human health. Pregnant mothers and children are typical susceptible groups, and environmental exposure has a crucial impact on children's health. We established a childhood asthma cohort to analyze the factors influencing the development of asthma in offspring, with a focus on prenatal exposure to air pollutants. The goal was to explore potential early preventive measures to reduce the incidence of childhood asthma. METHODS This nested case-control study included mothers who were registered and delivered at Lianyungang Maternal and Child Health Hospital between 2015 and 2018, covering pre-pregnancy, first, second, and third trimesters. Children diagnosed with asthma before the age of four were included in the asthma group. To assess environmental exposure, we gathered data from 29 national and provincial air pollution monitoring stations and 16 meteorological monitoring sites in Lianyungang and surrounding areas. We used spatial interpolation with inverse distance weighting (IDW) to estimate individual exposure to air pollutants, including particulate matter (PM2.5, PM10), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3). Univariate and multivariate regression analyses were conducted to examine the association between maternal exposure during pregnancy and the risk of childhood asthma. RESULTS A total of 292 mother-child pairs in the asthma group and 1423 mother-child pairs in the healthy control group were included. The second (AOR = 1.04, 95%CI 1.01-1.06) and whole gestation (AOR = 1.06, 95%CI 1.03-1.10) exposure to PM2.5 was associated with higher odds of childhood-onset asthma. Exposure during the third trimester (AOR = 1.02, 95%CI 1.01-1.03) and whole gestation (AOR = 1.02, 95%CI 1.01-1.04) of PM10 was associated with higher odds of childhood-onset asthma. The first (AOR = 1.06, 95%CI 1.02-1.09) and second (AOR = 0.95, 95%CI 0.92-0.98) trimesters exposure to NO2 was associated with higher and lower odds of childhood-onset asthma, respectively. SO2 whole pregnancy exposure (AOR = 1.04, 95%CI 1.01-1.07) was associated with higher odds of childhood-onset asthma. CONCLUSIONS Exposure to PM2.5, PM10, and SO2 during pregnancy can lead to an elevated risk of childhood asthma. Reducing or avoiding exposure to pollutants during pregnancy can reduce the incidence of childhood asthma. We should protect the environment and reduce the harm of environmental pollution to health.
Collapse
Affiliation(s)
- Lili Bao
- Department of Pediatrics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215006, China
| | - Yuan Liu
- Children Asthma Department, Lianyungang Maternal and Child Health Hospital, Lianyungang, 222006, China
| | - Yuhong Zhang
- Children Asthma Department, Lianyungang Maternal and Child Health Hospital, Lianyungang, 222006, China
| | - Qian Qian
- Children Asthma Department, Lianyungang Maternal and Child Health Hospital, Lianyungang, 222006, China
| | - Yifen Wang
- Children Asthma Department, Lianyungang Maternal and Child Health Hospital, Lianyungang, 222006, China
| | - Wei Li
- Children Asthma Department, Lianyungang Maternal and Child Health Hospital, Lianyungang, 222006, China
| | - Yanyan Yu
- Department of Pediatrics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215006, China.
| |
Collapse
|
4
|
Wang KCW, James AL, Donovan GM, Noble PB. Prenatal Origins of Obstructive Airway Disease: Starting on the Wrong Trajectory? Compr Physiol 2024; 14:5729-5762. [PMID: 39699087 DOI: 10.1002/cphy.c230019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
From the results of well-performed population health studies, we now have excellent data demonstrating that deficits in adult lung function may be present early in life, possibly as a result of developmental disorders, incurring a lifelong risk of obstructive airway diseases such as asthma and chronic obstructive pulmonary disease. Suboptimal fetal development results in intrauterine growth restriction and low birth weight at term (an outcome distinct from preterm complications), which are associated with subsequent obstructive disease. Numerous prenatal exposures and disorders compromise fetal development and these are summarized herein. Various physiological, structural, and mechanical abnormalities may result from prenatal disruption, including changes to airway smooth muscle structure-function, goblet cell biology, airway stiffness, geometry of the bronchial tree, lung parenchymal structure and mechanics, respiratory skeletal muscle contraction, and pulmonary inflammation. The literature therefore supports the need for early life intervention to prevent or correct growth defects, which may include simple nutritional or antioxidant therapy. © 2024 American Physiological Society. Compr Physiol 14:5729-5762, 2024.
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
5
|
Tian Y, Xu P, Wu X, Gong Z, Yang X, Zhu H, Zhang J, Hu Y, Li G, Sang N, Yue H. Lung injuries induced by ozone exposure in female mice: Potential roles of the gut and lung microbes. ENVIRONMENT INTERNATIONAL 2024; 183:108422. [PMID: 38217903 DOI: 10.1016/j.envint.2024.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Ozone (O3) is one of the most harmful pollutants affecting health. However, the potential effects of O3 exposure on microbes in the gut-lung axis related to lung injuries remain elusive. In this study, female mice were exposed to 0-, 0.5- and 1-ppm O3 for 28 days, followed by routine blood tests, lung function tests and histopathological examination of the colon, nasal cavity and lung. Mouse faeces and lungs were collected for 16s rRNA sequencing to assess the overall microbiological profile and screen for key differential enriched microbes (DEMs). The key DEMs in faecal samples were Butyricimonas, Rikenellaceae RC9 and Escherichia-Shigella, whereas those in lung samples were DNF00809, Fluviicola, Bryobacter, Family XII AD3011 group, Sharpea, MND1 and unclassified Phycisphaeraceae. After a search in microbe-disease databases, these key DEMs were found to be associated with lung diseases such as lung neoplasms, cystic fibrosis, pneumonia, chronic obstructive pulmonary disease, respiratory distress syndrome and bronchiectasis. Subsequently, we used transcriptomic data from Gene Expression Omnibus (GEO) with exposure conditions similar to those in this study to cross-reference with Comparative Toxicogenomic Database (CTD). Il-6 and Ccl2 were identified as the key causative genes and were validated. The findings of this study suggest that exposure to O3 leads to significant changes in the microbial composition of the gut and lungs. These changes are associated with increased levels of inflammatory factors in the lungs and impaired lung function, resulting in an increased risk of lung disease. Altogether, this study provides novel insights into the role of microbes present in the gut-lung axis in O3 exposure-induced lung injury.
Collapse
Affiliation(s)
- Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Pengchong Xu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zhihua Gong
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tong ji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, PR China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huizhen Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Jiyue Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yangcheng Hu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
6
|
Bai S, Cui L, Du S, Zhao X, Lin S, Yang X, Zhang J, Liang Y, Wang Z. A life course approach to asthma and wheezing among young children caused by ozone: A prospective birth cohort in northern China. ENVIRONMENTAL RESEARCH 2023; 226:115687. [PMID: 36925033 DOI: 10.1016/j.envres.2023.115687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Given differences in vulnerability of children in early life, a life course approach to asthma and wheezing (AW) in young children caused by ozone (O3) is not fully understood. METHODS We conducted a birth cohort in Jinan, China from 2018 to 2021 to elucidate the onset model of childhood AW due to O3 exposure. An inverse distance weighted model was used for individual exposure assessment. The time-dependent Cox proportional-hazard model and logistic model were used to investigate the effects of O3 exposure on AW. Principal component analysis, interaction analysis, and distributed lag model were used to analyze the life course approach. RESULTS The cumulative incidence rate for AW among 6501 children aged 2 was 1.4%. A high level of O3 was related to AW (HR: 2.10, 95% CI: 1.31, 3.37). Only O3 exposure after birth was associated with AW, with an OR of 1.82 (1.08, 3.12), after adjusting for the effect before birth. Furthermore, adjusting for other air pollutants, the HR for the individual effect of high O3 exposure on AW was 2.44 (1.53, 3.89). Interestingly, P values for interactions for O3 and the principal components of other pollutants, as well as the characteristic variable of open windows were less than 0.1. Moreover, an increase in the IQR of O3 exposure at the 31st to 37th weeks before birth and the 1st to 105th weeks after birth was associated with an increase in the HRs for AW. CONCLUSIONS High-level of O3 exposure after birth could lead to AW among young children. Importantly, the AW onset model may include the risk factors accumulation and the sensitive period model. Specifically, there are two sensitive windows in early life, and the correlated insults between the high level of O3 and other pollutants as well as open windows in the asthma-inducing effect.
Collapse
Affiliation(s)
- Shuoxin Bai
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Liangliang Cui
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, PR China
| | - Shuang Du
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Xiaodong Zhao
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, PR China
| | - Shaoqian Lin
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, PR China
| | - Xiwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Jiatao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Yuxiu Liang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
7
|
Hsu HHL, Wilson A, Schwartz J, Kloog I, Wright RO, Coull BA, Wright RJ. Prenatal Ambient Air Pollutant Mixture Exposure and Early School-age Lung Function. Environ Epidemiol 2023; 7:e249. [PMID: 37064424 PMCID: PMC10097575 DOI: 10.1097/ee9.0000000000000249] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/19/2023] [Indexed: 04/09/2023] Open
Abstract
Research linking prenatal ambient air pollution with childhood lung function has largely considered one pollutant at a time. Real-life exposure is to mixtures of pollutants and their chemical components; not considering joint effects/effect modification by co-exposures contributes to misleading results. Methods Analyses included 198 mother-child dyads recruited from two hospitals and affiliated community health centers in Boston, Massachusetts, USA. Daily prenatal pollutant exposures were estimated using satellite-based hybrid chemical-transport models, including nitrogen dioxide(NO2), ozone(O3), and fine particle constituents (elemental carbon [EC], organic carbon [OC], nitrate [NO3 -], sulfate [SO4 2-], and ammonium [NH4 +]). Spirometry was performed at age 6.99 ± 0.89 years; forced expiratory volume in 1s (FEV1), forced vital capacity (FVC), and forced mid-expiratory flow (FEF25-75) z-scores accounted for age, sex, height, and race/ethnicity. We examined associations between weekly-averaged prenatal pollution mixture levels and outcomes using Bayesian Kernel Machine Regression-Distributed Lag Models (BKMR-DLMs) to identify susceptibility windows for each component and estimate a potentially complex mixture exposure-response relationship including nonlinear effects and interactions among exposures. We also performed linear regression models using time-weighted-mixture component levels derived by BKMR-DLMs adjusting for maternal age, education, perinatal smoking, and temperature. Results Most mothers were Hispanic (63%) or Black (21%) with ≤12 years of education (67%). BKMR-DLMs identified a significant effect for O3 exposure at 18-22 weeks gestation predicting lower FEV1/FVC. Linear regression identified significant associations for O3, NH4 +, and OC with decreased FEV1/FVC, FEV1, and FEF25-75, respectively. There was no evidence of interactions among pollutants. Conclusions In this multi-pollutant model, prenatal O3, OC, and NH4 + were most strongly associated with reduced early childhood lung function.
Collapse
Affiliation(s)
- Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Joel Schwartz
- Department of Environmental Health, TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brent A. Coull
- Department of Biostatistics, TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|