1
|
Li S, Chen W, Liu Y, Wang H, Li Y, Zhang Z, Yang X. Unraveling the spatiotemporal trends and source attribution of polycyclic aromatic hydrocarbons and oxygenated derivatives in Guangzhou agricultural ditch sediment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117425. [PMID: 39616668 DOI: 10.1016/j.ecoenv.2024.117425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/26/2025]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) have garnered significant scientific attention due to their heightened toxicity and mobility compared to their parent PAHs. This study investigated the occurrence of 11 OPAHs and 16 PAHs within agricultural ditch sediment of Guangzhou City, China. The ΣPAH and ΣOPAH concentrations ranged from 63.8-3955 ng/g and 16.5-522 ng/g, respectively. Notably, concentrations were elevated during the rainy season, attributed to intensified atmospheric deposition and surface runoff during the rainy season. Spatially, Pearson correlation and path analysis disclosed a linkage between OPAHs and high-molecular-weight PAHs and adjacent agricultural practices, whereas low-molecular-weight PAHs were associated with human and industrial operations. This disparity was linked to the restricted mobility of high-molecular-weight PAHs, rendering them particularly susceptible to proximal sources. Diagnostic ratios and principal component analysis-multiple linear regression (PCA-MLR) implicated fossil fuel combustion and vehicle emissions as major contributor to the sedimentary OPAHs and PAHs. Further correlations between estimated source contributions and water quality, strengthened by spatial interpolation, clearly identified agricultural activities, and atmospheric deposition associated with traffic emissions and fossil fuel combustion as primary contributor to sedimentary OPAHs and PAHs. Secondary sources encompassed coal combustion, road runoff, and wastewater from both industrial and shipping activities. The risk quotients (RQs) for PAH and OPAH mixtures indicated moderate to high ecological hazards. This study demonstrated the importance of employing the integrated approach, combining PCA-MLR, diagnostic ratios, and correlation of source contributions with water quality in precisely delineating the origins of OPAHs and PAHs in agricultural ditch sediment.
Collapse
Affiliation(s)
- Shaomin Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Weisong Chen
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yichen Liu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Haoyu Wang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China; Key Laboratory of Arable Land Conservation (South China), MOA, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China; Key Laboratory of Arable Land Conservation (South China), MOA, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China; Key Laboratory of Arable Land Conservation (South China), MOA, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Zhong H, Yu L, Lv X, Yu Y, Hu J. A novel approach to assess the health risk of aryl hydrocarbon receptor-bound contaminants via inhalation exposure using CYP1A1 expression as a biomarker. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116466. [PMID: 38759533 DOI: 10.1016/j.ecoenv.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and dioxins are potential causes of multiple diseases by activating the aryl hydrocarbon receptor (AhR) pathway. Health risk assessment of chemicals primarily relies on the relative potency factor (RPF), although its accuracy may be limited when solely using EC50 values. The induction of cytochrome P4501A1 (CYP1A1) serves as a biomarker for AhR activation and is an integrator of dioxin-like toxicity. Here, we present a method for evaluating the risks associated with AhR activation using mathematical models of dose-CYP1A1 induction. The dose-effect curves for certain PAHs and dioxins, including Ant, BghiP, 1,2,3,4,7,8-HxCDD, and others, exhibited a non-classical S-shaped form. The toxic equivalent factor (TEF) profiles revealed a broad range of toxic equivalent factor values. The TEFs for PAHs ranged from approximately 0.01 to 6, with higher values being observed when the concentration was less than 10-10 M, with the exceptions of Ace, Phe, and BghiP. Most congeners of dioxins got the lowest TEF value at around 10-10 M, ranging from 0.04 to 1.00. The binding affinity of AhR to ligands did not display a strong correlation with the EC50 of CYP1A1 expression, suggesting that the AhR-mediated effects of PAHs and dioxins are not fixed but instead fluctuate with the dose. Air samples acquired from a parking area were used to compare the proficiency of RPF and our current approach. In the current method, naphthalene and chrysene were the primary contributors of PAHs to AhR-mediated risks in parking lots air samples, respectively. However, the contributions of naphthalene and chrysene could be disregarded in the RPF approach.
Collapse
Affiliation(s)
- Huixia Zhong
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lili Yu
- Shenzhen People's Hospital, The 2nd Clinical Medical College of Jinan University, Shenzhen, 518020, PR China
| | - Xiaomei Lv
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China.
| |
Collapse
|
3
|
Flores-Ramírez R, Mendoza-Rivera SP, García-Grajales J, Buenrostro-Silva A, Sanjuan-Meza EU, Berumen-Rodríguez AA, Espinosa-Reyes G. Persistent organic pollutants in the olive ridley turtle (Lepidochelys olivacea) during the nesting stage in the "La Escobilla" Sanctuary, Oaxaca, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10911-10919. [PMID: 38214861 DOI: 10.1007/s11356-024-31833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
Persistent organic pollutants (POPs) are chemical substances widely distributed in the environment by the runoff from anthropic activities and can be distributed and bioaccumulated or biomagnified in the environment, affecting the health of organisms. The sea turtle, Lepidochelys olivacea, is a long-lived organism, with migratory habits and feeding behaviors that allow exposure to various pollutants. This work aimed to determine long-term exposure to POPs in adult olive ridley turtles (L. olivacea), sampled during the nesting season, in "La Escobilla" Sanctuary. Blood samples were collected and processed to obtain plasma. The quantification of POPs in blood was carried out with an extraction technique with a focused ultrasound probe. Twenty-seven POP analytes were determined. The concentrations of hexachlorocyclohexane, endosulfan isomers, dichlorodiphenyltrichloroethane, total polychlorinated biphenyls, and the total sum of POPs found in plasma are higher than those reported in other studies, which reported effects such as hematological and biochemical changes in blood, changes in immune system cells and enzymatic activity related to oxidative stress. These results are important to demonstrate the chronic exposure to POPs in olive ridley turtles in marine ecosystems and to highlight the importance of assessing the associated health risks, considering that these contaminants could be transferred to the offspring and affect future generations of this reptile. It is important to carry out studies that develop conservation strategies for the olive ridley turtle. Also, it is necessary to control the emissions of pollutants into the atmosphere, as well as reduce urban, agricultural, and industrial waste in the environment and marine ecosystems.
Collapse
Affiliation(s)
- Rogelio Flores-Ramírez
- Facultad de Medicina - Coordinación para la Inoovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - Sagrario Paola Mendoza-Rivera
- Facultad de Medicina - Coordinación para la Inoovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - Jesus García-Grajales
- Universidad del Mar Campus Puerto Escondido, Km. 2.5 Carretera Federal Puerto Escondido-Sola de Vega, 71980, San Pedro Mixtepec, Oaxaca, México
| | - Alejandra Buenrostro-Silva
- Universidad del Mar Campus Puerto Escondido, Km. 2.5 Carretera Federal Puerto Escondido-Sola de Vega, 71980, San Pedro Mixtepec, Oaxaca, México
| | - Eleno Uriel Sanjuan-Meza
- Facultad de Medicina - Coordinación para la Inoovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - Alejandra Abigail Berumen-Rodríguez
- Facultad de Medicina - Coordinación para la Inoovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - Guillermo Espinosa-Reyes
- Facultad de Medicina - Coordinación para la Inoovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México.
| |
Collapse
|
4
|
Wang N, Lai C, Xu F, Huang D, Zhang M, Zhou X, Xu M, Li Y, Li L, Liu S, Huang X, Nie J, Li H. A review of polybrominated diphenyl ethers and novel brominated flame retardants in Chinese aquatic environment: Source, occurrence, distribution, and ecological risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166180. [PMID: 37562617 DOI: 10.1016/j.scitotenv.2023.166180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Due to the widespread commercial production and use of brominated flame retardants (BFRs) in China, their potential impact on human health development should not be underestimated. This review searched the literature on Polybrominated diphenyl ethers and Novel brominated flame retardant (PBDEs and NBFRs) (broad BFRs) in the aquatic environment (including surface water and sediment) in China over the last decade. It was found that PBDEs and NBFRs entered the aquatic environment through four main pathways, atmospheric deposition, surface runoff, sewage effluent and microplastic decomposition. The distribution of PBDEs and NBFRs in the aquatic environment was highly correlated with the local economic structure and population density. In addition, a preliminary risk assessment of existing PBDEs and PBDEs in sediments showed that areas with high-risk quotient values were always located in coastal areas with e-waste dismantling sites, which was mainly attributed to the historical legacy of electronic waste. This research provides help for the human health development and regional risk planning management posed by PBDEs and NBFRs.
Collapse
Affiliation(s)
- Neng Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Mengyi Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yixia Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Xinyu Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR. China
| | - Jinxin Nie
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Hanxi Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| |
Collapse
|
5
|
Chen W, Xian W, He G, Xue Z, Li S, Li W, Li Y, Zhang Y, Yang X. Occurrence and spatiotemporal distribution of PAHs and OPAHs in urban agricultural soils from Guangzhou City, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114767. [PMID: 36917879 DOI: 10.1016/j.ecoenv.2023.114767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The occurrence of polycyclic aromatic hydrocarbon (PAH) derivatives in the environment is of growing concern because they exhibit higher toxicity than their parent PAHs. This study evaluated the large-scale occurrence and spatiotemporal distribution of 16 PAHs and 14 oxygenated PAHs (OPAHs) in urban agricultural soils from seven districts of Guangzhou City, China. Linear correlation analysis was conducted to explore the relationship between PAH and OPAH occurrence and a series of parameters. The compositional analysis, principal component analysis, diagnostic ratios, and principal component analysis coupled with a multiple linear regression model were used to identify the sources of PAHs and OPAHs in the soils. The average concentrations of ΣPAHs and ΣOPAHs (59.6 ± 31.1-213 ± 115.5 μg/kg) during the flood season were significantly higher than those during the dry season (42.1 ± 13.3-157.2 ± 98.2 μg/kg), which were due to relatively strong wet deposition during the flood season and weak secondary reactions during the dry season. Linear correlation analysis showed that soil properties, industrial activities, and agricultural activities (r = 0.27-0.96, p < 0.05) were responsible for the spatial distribution of PAHs during the dry season. The PAH distribution was mainly affected by precipitation during the flood season. The concentrations of ΣOPAHs were only related to the soil properties during the dry season because their occurrence was sensitive to secondary reactions, climate and meteorological conditions, and their water solubility. Our results further showed that coal combustion and traffic emissions were the dominant origins of PAHs and OPAHs during both the seasons. Wet deposition and runoff-induced transport also contributed to PAH and OPAH occurrence during the flood season. The results of this study can improve our understanding of the environmental risks posed by PAHs and OPAHs.
Collapse
Affiliation(s)
- Weisong Chen
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Weixuan Xian
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Guiying He
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhongye Xue
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Shaomin Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Wenyan Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yulong Zhang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
6
|
Lv X, Wu Y, Chen G, Yu L, Zhou Y, Yu Y, Lan S, Hu J. The strategy for estrogen receptor mediated-risk assessment in environmental water: A combination of species sensitivity distributions and in silico approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119763. [PMID: 35841995 DOI: 10.1016/j.envpol.2022.119763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Risk assessment for molecular toxicity endpoints of environmental matrices may be a pressing issue. Here, we combined chemical analysis with species sensitivity distributions (SSD) and in silico docking for multi-species estrogen receptor mediated-risk assessment in water from Dongjiang River, China. The water contains high levels of phenolic endocrine-disrupting chemicals (PEDCs) and phthalic acid esters (PAEs). The concentration of ∑4PEDCs and ∑6PAEs ranged from 2202 to 3404 ng/L and 834-4368 ng/L, with an average of 3241 and 2215 ng/L, respectively. The SSD approach showed that 4-NP, BPA, E2 of PEDCs, and DBP, DOP, and DEHP could severely threaten the aquatic ecosystems, while most other target compounds posed low-to-medium risks. Moreover, binding affinities from molecular docking among PEDCs, PAEs, and estrogen receptors (ERα, Erβ, and GPER) were applied as toxic equivalency factors. Estrogen receptor-mediated risk suggested that PEDCs were the main contributors, containing 53.37-69.79% of total risk. They potentially pose more severe estrogen-receptor toxicity to zebrafish, turtles, and frogs. ERβ was the major contributor, followed by ERα and GPER. This study is the first attempt to assess the estrogen receptor-mediated risk of river water in multiple aquatic organisms. The in silico simulation approach could complement toxic effect evaluations in molecular endpoints.
Collapse
Affiliation(s)
- Xiaomei Lv
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Yicong Wu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Guilian Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Lili Yu
- Shenzhen People's Hospital, The 2nd Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Yi Zhou
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Yingxin Yu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shanhong Lan
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
7
|
Tang L, Li S, Yu J, Zhang Y, Yang L, Tong D, Xu J. Nonylphenol induces anxiety-like behavior in rats by regulating BDNF/TrkB/CREB signal network. Food Chem Toxicol 2022; 166:113197. [PMID: 35662570 DOI: 10.1016/j.fct.2022.113197] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 12/28/2022]
Abstract
This study aimed to verify whether chronic exposure to nonylphenol (NP) induces anxiety behavior in rats and explored NP's regulatory effect on the BDNF/TrkB/CREB signal network in vitro. Anxiety-like behavior was assessed by elevated plus-maze and light-dark box tests. The residence time in the closed arm increased with NP dose (4, 40 mg/kg) and exposure time (3 and 6 months) (P < 0.05). The hippocampal neurons in the medium dose (M-NP, 4 mg/kg) and high dose (H-NP, 40 mg/kg) groups showed disorderly arrangement, cell swelling, and nuclear pyknosis/necrosis. The protein/mRNA expressions of BDNF/TrkB/CREB in the H-NP group decreased, and the decrease was more significant at 6 months (P < 0.05). Both, NP exposure and BDNF knockdown, increase the number of apoptotic cells (P <0.001). NP downregulated the proteins/mRNA expressions of BDNF/TrkB/CREB, and the trend was consistent with the BDNF silence group. Chronic exposure to NP could induce anxiety-like behavior in rats and reduce the expression of key proteins/genes in the BDNF/TrkB/CREB signaling network.
Collapse
Affiliation(s)
- Lan Tang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Shengnan Li
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Yujie Zhang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Lilin Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Dayan Tong
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
8
|
Lv X, Chen G, Wu Y, Yu L, Zhou Y, Yu Y, Lan S, Hu J. Ecological and AhR-mediated risk assessment of polycyclic aromatic hydrocarbons and polybrominated diphenyl ethers on multiple aquatic species in river water: A combined chemical analysis and in silico approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153287. [PMID: 35066031 DOI: 10.1016/j.scitotenv.2022.153287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Assessing the adverse health risks at molecular endpoints to various aquatic organisms could be an urgent issue. In this manuscript, the ecological and AhR-mediated risk of sixteen polycyclic aromatic hydrocarbons (PAHs) and six polybrominated diphenyl ethers (PBDEs) in surface water of Dongjiang River, Southern China was evaluated using chemical analysis and in silico approaches. Average concentrations of ∑16PAHs and ∑6PBDEs were 586.3 ng/L and 2.672 ng/L in the dry season (DS), and 366.8 ng/L and 2.554 ng/L in the wet season (WS). Concentrations of PAHs during the DS were significantly higher than that in the WS, while no obvious seasonal distribution was observed for PBDEs. Only Ant and BaP in all congers of PAHs posed low to medium ecological risks, and PBDEs posed a low ecological risk. Moreover, AhR-mediated risk from PAHs was two orders of magnitude higher that from PBDEs, and the AhR-mediated toxicity on frog and eel were higher than those on other aquatic organisms in Dongjiang River. Phe and BDE209 were the significant contributor to the AhR-mediated risk induced by PAHs and PBDEs, respectively. This study is the first attempt to assess AhR-mediated risk of river water in multiple aquatic organisms.
Collapse
Affiliation(s)
- Xiaomei Lv
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Guilian Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Yicong Wu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Lili Yu
- Shenzhen People's Hospital, The 2nd Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Yi Zhou
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Yingxin Yu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Shanhong Lan
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China.
| |
Collapse
|
9
|
Zhang Q, Wu S, Xiao Q, Kang C, Hu H, Hou X, Wei X, Hao W. Effects of 4-nonylphenol on adipogenesis in 3T3-L1 preadipocytes and C3H/10T1/2 mesenchymal stem cells. J Appl Toxicol 2021; 42:588-599. [PMID: 34553387 DOI: 10.1002/jat.4241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/06/2022]
Abstract
Obesogens are a subset of endocrine disruptor chemicals (EDCs) that cause obesity. The typical EDC 4-nonylphenol (4-NP) has been identified as an obesogen. However, the in vitro effects of 4-NP on adipogenesis remain unclear. In this study, 3T3-L1 preadipocytes and C3H/10T1/2 mesenchymal stem cells (MSCs) were used to investigate the influence of 4-NP on adipogenesis. The differentiation protocols for 3T3-L1 preadipocytes and C3H/10T1/2 MSCs took 8 and 12 days, respectively, beginning at Day 0. In differentiated 3T3-L1 preadipocytes, 20 μM 4-NP decreased cell viability on Days 4 and 8. Exposure to 4-NP inhibited triglyceride (TG) accumulation and adipogenic marker expression on Days 0-8, but the inhibitory effects were weaker on Days 2-8. The protein expression of pSTAT3 or STAT3 decreased on Days 0-8 and 2-8. Conversely, 4-NP promoted TG accumulation and the adipogenic marker expression in C3H/10T1/2 adipocytes. The opposing effects were attributed to physiological differences between the two cell lines. The 3T3-L1 preadipocytes are dependent on mitotic clonal expansion (MCE) to drive differentiation, while C3H/10T1/2MSCs and human preadipocytes are not. Additionally, 4-NP downregulated β-catenin expression in C3H/10T1/2 adipocytes. Accordingly, we hypothesized that 4-NP promotes adipogenesis. The role of the canonical Wnt pathway in the promotion of adipogenesis by 4-NP requires further validation. This study provides new insights into the mechanisms and appropriate risk management of 4-NP.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Toxicology, School of Public Health, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Shuang Wu
- Department of Toxicology, School of Public Health, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Hong Hu
- Department of Toxicology, School of Public Health, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Xiaohong Hou
- Department of Toxicology, School of Public Health, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| |
Collapse
|