1
|
Zhao H, Ma Q, Lu S, Liu S, Feng Y, Liu Y, Zhang B. Pyraclostrobin-induced toxic effects in the gills of common carp (Cyprinus carpio L.): Mechanisms unveiled through biochemical, molecular, and metabolomic analyses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101443. [PMID: 39952084 DOI: 10.1016/j.cbd.2025.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Pyraclostrobin (PYR) is widely used in agriculture to control fungal infestations. However, the toxic effects of PYR on aquatic organisms remain poorly understood. In this study, common carp were exposed to 0.5, and 5.0 μg/L PYR for 30 days to evaluate the chronic effects on gill health via histopathological, biochemical, molecular, and metabolomic analyses. The findings revealed that exposure to PYR resulted in significant histopathological alterations, suppression of mitochondrial complex III activity, and excessive production of reactive oxygen species (ROS), including O2•- and H2O2. Additionally, PYR exposure altered the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) while increasing the malondialdehyde (MDA) content in the gills of common carp. The protein expression levels of lysozyme (LZM), tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and transforming growth factor beta (TGF-β) were significantly elevated following exposure to PYR, whereas the levels of complement 3 (C3) and immunoglobulin M (IgM) were decreased. Furthermore, the amount of IL-6 decreased on day 15 before increasing on day 30. Further analysis revealed a notable increase in acid phosphatase (ACP) activity and a decrease in alkaline phosphatase (AKP) activity after 30 days of PYR exposure. Moreover, PYR exposure significantly altered the mRNA expression levels of immune-related genes (lzm, c3, and igm) and apoptosis-related genes (p53, bcl-2, bax, caspase-3, and caspase-9). Several inflammatory markers, such as NF-κB p65 protein and the mRNA levels of tlr2, tlr4, myd88, tnf-α, il-1β, il-6, and tgf-β, were also markedly changed. Metabolomic studies demonstrated that PYR influences pathways related to amino acid, nucleotide, arachidonic acid, and linoleic acid metabolism. These results indicate that PYR adversely affects gill health by inducing oxidative stress, disrupting immune and inflammatory responses, affecting apoptosis-related pathways, and altering metabolic homeostasis. This study provides new insights into the toxic mechanisms of PYR and contributes to the assessment of the ecological risks associated with its presence in aquatic ecosystems.
Collapse
Affiliation(s)
- Haoyang Zhao
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qingping Ma
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shuhan Lu
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shangwu Liu
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yang Liu
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China; Journal of Henan Normal University, Xinxiang 453007, China
| | - Bangjun Zhang
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
2
|
Li H, Wang X, Li B, Lin J, Liu F, Mu W. Rational application of QoIs fungicides to achieve a rice-fungi-fish interaction balance within paddy ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126169. [PMID: 40158679 DOI: 10.1016/j.envpol.2025.126169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
In the realm of agricultural chemical research, elucidating the mechanisms underlying the selectivity of quinone outside inhibitors (QoIs) is crucial for guiding the development of novel pesticides. In this study, differences in the selectivity and toxicity of 12 QoIs were evaluated using three organisms (Magnaporthe oryzae, zebrafish, and rice) present in paddy fields. The interplay between the specific mechanisms of QoIs selectivity among different organisms and the variations in individual toxicity remains unclear. Therefore, the distinct levels of enrichment behavior, cell toxicity, and target enzyme toxicity of 12 QoIs across three organisms were investigated in this research. Additionally, an attempt was made to analyze the correlation between structural parameters and the degree of toxicity at the tissue, cellular, and target levels to establish the regulatory direction of QoIs activity and toxicity. The results revealed that cytotoxicity and target enzyme toxicity played significant roles in the toxicity observed in individuals, specifically in fish and fungus, respectively. The results of this study revealed a significant negative correlation between the bioconcentration factor (BCF) in biological tissues and fish toxicity (LC50) (P < 0.05), but no significant correlation between BCF of fungus and fungitoxicity (EC50) was detected (P > 0.05). Reducing the Log P (octanol-water partition coefficient) and further changing tissue enrichment could balance the toxicity and activity of QoIs in organisms. On the basis of the aforementioned findings, introducing hydrophilic groups into the structure of pyraclostrobin with lower Log P values was an effective strategy for designing new QoI structures. These modified structures demonstrated reduced toxicity to fish and promising fungitoxicity against rice blast fungus compared with pyraclostrobin. This study provides valuable insights for regulatory measures in the design and development of effective and safe new QoIs in paddy fields, further reducing adverse impacts on paddy fields and aquatic ecosystems.
Collapse
Affiliation(s)
- Hong Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xueqing Wang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Beixing Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jin Lin
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
3
|
Wu Y, Wang Y, Tong Z, Xie W, Wang A, Song C, Yao W, Wang J. Pyraclostrobin induces developmental toxicity and cardiotoxicity through oxidative stress and inflammation in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124490. [PMID: 38960114 DOI: 10.1016/j.envpol.2024.124490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Pyraclostrobin, a typical representative of strobilurin fungicides, is extensively used in agriculture to control fungi and is often detected in water bodies and food. However, the comprehensive toxicological molecular mechanism of pyraclostrobin requires further study. To assess the toxic effects and underlying mechanisms of pyraclostrobin on aquatic organisms, zebrafish embryos were exposed to pyraclostrobin (20, 40, and 60 μg/L) until 96 h post fertilization (hpf). These results indicated that exposure to pyraclostrobin induces morphological alterations, including spinal curvature, shortened body length, and smaller eyes. Furthermore, heart developmental malformations, such as pericardial edema and bradycardia, were observed. This indicated severe cardiotoxicity induced by pyraclostrobin in zebrafish embryos, which was confirmed by the dysregulation of genes related to heart development. Besides, our findings also demonstrated that pyraclostrobin enhanced the contents of reactive oxygen species (ROS) and malondialdehyde (MDA), up-regulated catalase (CAT) activity, but inhibited superoxide dismutase (SOD) activity. Subsequently, the NF-κb signaling pathway was further studied, and the results indicated that the up-regulation of tnf-α, tlr-4, and myd88 activated the NF-κb signaling pathway and up-regulated the relative expression level of pro-inflammatory cytokines, such as cc-chemokine, ifn-γ, and cxcl-clc. Collectively, this study revealed that pyraclostrobin exposure induces developmental toxicity and cardiotoxicity, which may result from a combination of oxidative stress and inflammatory responses. These findings provide a basis for continued evaluation of the effects and ecological risks of pyraclostrobin on the early development of aquatic organisms.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Yijing Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Zan Tong
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Weihong Xie
- Hangzhou Criminal Science and Technology Institute, Hangzhou, 310051, Zhejiang, China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Chian Song
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
4
|
Liu Y, Xu Y, Yuan B, Zhu B, Zhang X, Chen J, Li B, Mu W. Bioaccumulation mediated by water solubility leads to differences in the acute toxicity of organophosphorus insecticides to zebrafish (Danio rerio). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:750-761. [PMID: 39026048 DOI: 10.1007/s10646-024-02775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/20/2024]
Abstract
The use of some organophosphate insecticides is restricted or even banned in paddy fields due to their high toxicity to aquatic organisms. The aim of this study is to elucidate the main pathways and target organs of organophosphate insecticide toxicity to fish exposed via different routes by integrating histopathological and biochemical techniques. Using malathion as the model drug, when the dosage is 20-60 mg/L, the toxicity of whole body and head immersion drugs to zebrafish is much higher than that of trunk immersion drugs. A dose of 21.06-190.44 mg/kg of malathion feed was fed to adult zebrafish. Although the dosage was already high, no obvious toxicity was observed. Therefore, we believe that the drug mainly enters the fish body through the gills. When exposed to a drug solution of 20 mg/L and 60 mg/L, the fish showed significant neurological behavioral abnormalities, and the pathological damage to key organs and brain tissue was the most severe, showing obvious vacuolization and the highest residual amount (8.72-47.78 mg/L). The activity of acetylcholinesterase was the most inhibited (54.69-74.68%). Therefore, brain tissue is the key toxic target organ of malathion in fish. In addition, we compared the bioaccumulation effects of different water-soluble organophosphorus insecticides in fish and their toxic effects. We found that the higher the water solubility of organophosphorus insecticides, the lower their toxicity to fish.
Collapse
Affiliation(s)
- Yujuan Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Yue Xu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Bingjie Yuan
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Bingyu Zhu
- Rongcheng Agricultural and Rural Affairs Service Center, Weihai, Shandong, PR China
| | - Xiaobing Zhang
- Shandong Weifang Rainbow Chemical Co., Ltd, Weifang, Shandong, PR China
| | - Jinyin Chen
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Beixing Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, PR China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, PR China.
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, PR China.
| |
Collapse
|
5
|
Kim Y, Bereketoglu C, Sercinoglu O, Pradhan A. In Vitro, In Vivo, and In Silico Analysis of Pyraclostrobin and Cyprodinil and Their Mixture Reveal New Targets and Signaling Mechanisms. Chem Res Toxicol 2024; 37:497-512. [PMID: 38419406 DOI: 10.1021/acs.chemrestox.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Pyraclostrobin and cyprodinil are broad-spectrum fungicides that are used in crops to control diseases. However, they are excessively used and, as a result, end up in the environment and threaten human health and ecosystems. Hence, knowledge of their mechanisms of action is critical to revealing their environmental fate and negative effects and regulating their use. In the present study, we conducted a comprehensive study to show the adverse effects of pyraclostrobin, cyprodinil, and their mixture using zebrafish larvae and different cell lines. Several end points were investigated, including mortality, development, gene expression, reporter assays, and molecular docking simulations. We found that both compounds and their mixture caused developmental delays and mortality in zebrafish, with a higher effect displayed by pyraclostrobin. Both compounds altered the expression of genes involved in several signaling pathways, including oxidative stress and mitochondrial function, lipid and drug metabolisms, the cell cycle, DNA damage, apoptosis, and inflammation. A noteworthy result of this study is that cyprodinil and the mixture group acted as NFκB activators, while pyraclostrobin demonstrated antagonist activity. The AHR activity was also upregulated by cyprodinil and the mixture group; however, pyraclostrobin did not show any effect. For the first time, we also demonstrated that pyraclostrobin had androgen receptor antagonist activity.
Collapse
Affiliation(s)
- Yeju Kim
- Biology, the Life Science Center, School of Science and Technology, Örebro University, Örebro SE-70182, Sweden
| | - Ceyhun Bereketoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul 34722, Turkey
| | - Onur Sercinoglu
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Ajay Pradhan
- Biology, the Life Science Center, School of Science and Technology, Örebro University, Örebro SE-70182, Sweden
| |
Collapse
|
6
|
Zhang B, Hao B, Han M, Wang X. Impacts of pyraclostrobin on intestinal health and the intestinal microbiota in common carp (Cyprinus carpio L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105762. [PMID: 38458673 DOI: 10.1016/j.pestbp.2023.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 03/10/2024]
Abstract
Pyraclostrobin (PYR) is a strobilurin fungicide that is commonly used in agriculture, and its use in agriculture may lead to an increase in its residue in the aquatic environment and may have a deleterious influence on the intestinal health of aquatic creatures. Here, common carp were chronically exposed to PYR (0, 0.5, or 5.0 μg/L) for 30 d to determine its effect on the physical and immunological barrier and intestinal microbiota in the intestine. PYR exposure caused significant histological changes; altered the mRNA expression levels of occludin, claudin-2, and zonula occludens-1 (ZO-1); induced oxidative stress in the common carp intestine; and increased the serum D-lactate and diamine oxidase (DAO) levels. Moreover, PYR significantly increased the protein expression levels of tumour necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and IL-6 while decreasing the level of transforming growth factor beta (TGF-β). Further studies revealed that PYR significantly reduced lysozyme (LZM) and acid phosphatase (ACP) activities as well as complement 3 (C3) and immunoglobulin M (IgM) levels. Furthermore, PYR decreased gut microbial diversity while increasing the abundance of pathogenic bacteria such as Aeromonas and Shewanella, causing an intestinal microbial disturbances in common carp. These results imply that PYR has a negative impact on fish intestinal health and may pose serious health risks to fish by disrupting the intestinal microbiota, physical barrier, and immunological barrier in common carp.
Collapse
Affiliation(s)
- Bangjun Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China; Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Baozhen Hao
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Maolin Han
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Xiaojie Wang
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| |
Collapse
|
7
|
Alokail MS, Abd-Alrahman SH, Alnaami AM, Hussain SD, Amer OE, Elhalwagy MEA, Al-Daghri NM. Regional Variations in Pesticide Residue Detection Rates and Concentrations in Saudi Arabian Crops. TOXICS 2023; 11:798. [PMID: 37755808 PMCID: PMC10537341 DOI: 10.3390/toxics11090798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
There is a scarcity of evidence on the levels of pesticide residues among common crops grown in the different regions of the Kingdom of Saudi Arabia (KSA). The present study aims to fill this gap. We collected samples across four regions of KSA (N = 41 from the west, N = 146 from the central, N = 131 from the north and N = 74 samples from the east). Food samples were extracted and cleaned using the modified quick, easy, cheap, effective, rugged and safe (QuEChERS) methodology. Tandem mass (LC-MS/MS and GC-MS/MS) was used to detect pesticide residues. The highest pesticide residue detection rate was 89.7% in the central region, followed by 88.5% in the north, 83.8% in the east and 70.7% in the western region (p = 0.01). Pesticide residue detection rates were significantly higher in fruits than vegetables (p = 0.02). Cypermethrin detection was most common overall, particularly in the Western region (p = 0.002), and pyraclostrobin concentration was the highest among all residues investigated. In conclusion, high detection rates of moderately hazardous pesticide residues were found in various crops across regions in KSA. Routine biomonitoring programs across KSA regions should be implemented, as well as public health campaigns to decrease pesticide residue consumption and exposure.
Collapse
Affiliation(s)
- Majed S. Alokail
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sherif H. Abd-Alrahman
- Central Agricultural Pesticide Laboratory, Department of Pesticides Residues and Environmental Pollution, Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Abdullah M. Alnaami
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed D. Hussain
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Osama E. Amer
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manal E. A. Elhalwagy
- Central Agricultural Pesticide Laboratory, Department of Mammalian Toxicology, Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Nasser M. Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Ahmed AIM, Macirella R, Talarico F, Curcio V, Trotta G, Aiello D, Gharbi N, Mezzasalma M, Brunelli E. Short-term effects of the strobilurin fungicide dimoxystrobin on zebrafish gills: A morpho-functional study. CHEMOSPHERE 2023; 333:138914. [PMID: 37187376 DOI: 10.1016/j.chemosphere.2023.138914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Strobilurins represent the most widely used class of fungicides nowadays andare considered relatively non-toxic to mammals and birds but highly toxic to aquatic biota. Dimoxystrobin is one of the novel strobilurins, recently included in the 3rd Watch List of the European Commission as available data indicate that it could pose a significant risk to aquatic species. As yet, the number of studies explicitly assessing the impact of this fungicide on terrestrial and aquatic species is extremely low, and the toxic effects of dimoxystrobin on fish have not been reported. Here we investigate for the first time the alterations induced by two environmentally relevant and very low concentrations of dimoxystrobin (6.56 and 13.13 μg/L) in the fish gills. morphological, morphometric, ultrastructural, and functional alterations have been evaluated using zebrafish as a model species. We demonstrated that even short-term exposure (96 h) to dimoxystrobin alters fish gills reducing the surface available for gas exchange and inducing severe alterations encompassing three reaction patterns: circulatory disturbance and both regressive and progressive changes. Furthermore, we revealed that this fungicide impairs the expression of key enzymes involved in osmotic and acid-base regulation (Na+/K+-ATPase and AQP3) and the defensive response against oxidative stress (SOD and CAT). The information presented here highlights the importance of combining data from different analytical methods for evaluating the toxic potential of currently used and new agrochemical compounds. Our results will also contribute to the discussion on the suitability of mandatory ecotoxicological tests on vertebrates before the introduction on the market of new compounds.
Collapse
Affiliation(s)
- Abdalmoiz I M Ahmed
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Federica Talarico
- Natural History Museum and Botanical Garden, University of Calabria, 87036 Rende, Italy
| | - Vittoria Curcio
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Giuseppe Trotta
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Naouel Gharbi
- Fish Biology and Aquaculture Group, Ocean and Environment Department, NORCE Norwegian Research Center, 5006 Bergen, Norway
| | - Marcello Mezzasalma
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy.
| |
Collapse
|
9
|
Lajmanovich RC, Repetti MR, Cuzziol Boccioni AP, Michlig MP, Demonte L, Attademo AM, Peltzer PM. Cocktails of pesticide residues in Prochilodus lineatus fish of the Salado River (South America): First record of high concentrations of polar herbicides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:162019. [PMID: 36740068 DOI: 10.1016/j.scitotenv.2023.162019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Muscle and viscera (gills-liver) of the fish Prochilodus lineatus were obtained from four sites of lower course of Salado river and one site at Santa Fe river near to its confluence with Salado river from Santa Fe (Argentina) between December 2021 and February 2022. Sediment samples were also obtained from the same sites. All samples were analyzed for pesticide residues following the QuEChERS method to quantify 136 compounds by UHPLC-ESI-MS/MS and GC-EI-MS/MS. Overall, muscle fish tissue showed very high concentrations (maximum concentrations detected) of the insecticide cypermethrin (204 μg/kg), polar herbicides (glyphosate; 187 μg/kg and its degradation product (aminomethylphosphonic acid) AMPA; 3116 μg/kg, and glufosinate-ammonium; 677 μg/kg), and the fungicide pyraclostrobin (50 μg/kg). In viscera samples, high values of cypermethrin (506 μg/kg), chlorpyrifos (78 μg/kg), and lambdacyhalothrin (73 μg/kg) were the main pesticides found. Mean residues concentrations detected among sites were not significantly different neither in muscle nor viscera of P. lineatus in most of the cases. Exceptionally, the southernmost studied site of the Lower Salado river showed significant differences in concentration of residues found in muscle, due to high concentrations of glyphosate and glufosinate-amonium (KW = 11.879 and KW = 13.013, respectively, P < 0.05). Other norther Lower Salado river site showed significant higher AMPA concentration in fish viscera than in the rest of the studied sites (KW = 12.86 P < 0.05). Some sediment samples showed low levels of herbicides such as glyphosate (24 μg/kg) and fungicides. However, the world highest levels of polar herbicides were recorded in fish muscle. The results of this study highlight the need for periodic monitoring due to the high concentration of pesticides and its potential risk in a very important commercial freshwater fish from Argentina, which is consumed locally and exported to other countries for human consumption.
Collapse
Affiliation(s)
- Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Melina P Michlig
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luisina Demonte
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina; Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Feng M, Gui Y, An J, Cao X, Lu W, Yang G, Jian S, Hu B, Wen C. The thioredoxin expression of Cristaria plicata is regulated by Nrf2/ARE pathway under microcystin stimulation. Int J Biol Macromol 2023; 242:124509. [PMID: 37085063 DOI: 10.1016/j.ijbiomac.2023.124509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Thioredoxin plays an important role in inhibiting apoptosis and protecting cells from oxidative stress. This study was aimed to clarify how the expression of Trx from Cristaria plicata is regulated by Nrf2/ARE pathway. The expression of CpTrx mRNA was significantly up-regulated in gill and kidney tissues under microcystin stress. The Nrf2 gene of Cristaria plicata was identified to possess an auto active domain bit. While CpNrf2 was knocked down by specific small RNA, CpTrx mRNA expression was significantly down-regulated. The promoter of CpTrx gene had high transcriptional activity, and this basic transcriptional activity persisted after ARE element mutation. The region of promoter -206 to +217 bp was a core promoter region and had forward regulatory elements. Gel shift Assay exhibited that the CpTrx promoter could bind to the purified proteins CpNrf2 and CpMafK in vitro. The binding phenomenon disappeared after the ARE element mutation in promoter region. Subcellular localization experiments displayed that fluorescence overlap between CpNrf2 and Trx promoter increased under microcystin toxin stress. These results suggested that Trx expression was regulated by Nrf2/ARE pathway under oxidative stress.
Collapse
Affiliation(s)
- Maolin Feng
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Yingping Gui
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Jinhua An
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - XinYing Cao
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Wuting Lu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Gang Yang
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Shaoqing Jian
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Baoqing Hu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Chungen Wen
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
11
|
Zemheri-Navruz F, Ince S, Arslan-Acaroz D, Acaroz U, Demirel HH, Demirkapi EN. Resveratrol alleviates pyraclostrobin-induced lipid peroxidation, oxidative stress, and DNA damage in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6414-6423. [PMID: 35996050 DOI: 10.1007/s11356-022-22613-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Pyraclostrobin (Pyra) is a fungicide in the strobilurin class and has proven to be very toxic to organisms primarily aquatic species. Resveratrol (Res) is a phytoalexin that exhibits multiple bioactivities as anti-oxidative, anti-inflammatory, cardiovascular protective, and anti-aging and is found in plant species such as mulberry, peanut, and grape. This study aimed to determine the protective effect of Res against Pyra-induced lipid peroxidation, oxidative stress, and DNA damage in rats. For this purpose, a total of 48 male rats divided into 6 groups - 8 in each group - were exposed to 30 mg/kg Pyra by oral gavage once a day for 30 days and to three different concentrations of Res (5, 10, and 20 mg/kg) together with Pyra. Pyra administration increased liver enzyme parameters and malondialdehyde (MDA) levels whereas decreased glutathione (GSH) levels and activities of superoxide dismutase (SOD) and catalase (CAT). Also, Pyra treatment increased pro-apoptotic (Bax), apoptotic (Caspase-3, Caspase-8, and Caspase-9), pro-inflammatory (NFκB), cancer (CYP2E1), and cell regulatory (p53) gene expressions and decreased anti-apoptotic (Bcl-2) gene expression in the liver. Furthermore, DNA damage in blood and histopathological changes in the liver and kidney were observed with Pyra administration. In contrast, Res administrations in a dose-dependent manner improved Pyra-induced lipid peroxidation, oxidative and DNA damages, expression levels of these genes in the liver, and histopathological changes in the liver and kidney. Consequently, the treatment of Res, known for its anti-oxidant and protective properties, exhibited a protective effect on Pyra-induced lipid peroxidation, oxidant/anti-oxidant status, gene expressions, and DNA damage in rats.
Collapse
Affiliation(s)
- Fahriye Zemheri-Navruz
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, 07400, Bartın, Turkey.
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Damla Arslan-Acaroz
- Bayat Vocational School, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Ulas Acaroz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Hasan Huseyin Demirel
- Department of Laboratory and Veterinary Health, Bayat Vocational School, Afyon Kocatepe University, 03780, Afyonkarahisar, Turkey
| | - Ezgi Nur Demirkapi
- Department of Physiology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| |
Collapse
|
12
|
Li H, Hu S, Sun F, Sun Q, Wang N, Li B, Zou N, Lin J, Mu W, Pang X. Residual analysis of QoI fungicides in multiple (six) types of aquatic organisms by UPLC-MS/MS under acutely toxic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12075-12084. [PMID: 36104645 DOI: 10.1007/s11356-022-22972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
In view of the significance of food safety and the possible relationship between residual enrichment and acute toxicity for pesticides in different aquatic organisms, it is essential to establish a sensitive and reliable determination method for pesticides in different aquatic organisms to analyze the enrichment levels. Quinone outside inhibitor fungicides (QoIs) are lipophilic fungicides that pose environmental threats to aquatic organisms. Previous research has mainly focused on QoI residues in aquatic organisms under chronic toxicity, whereas less is known about how pesticide residues differ among aquatic organism under acutely toxic conditions. In the present study, the residues of QoIs in aquatic organisms (Danio rerio, Rana pipiens, Cherax quadricarinatus, Misgurnus anguillicaudatus, Corbicula fluminea, and Ampullaria gigas) were analyzed by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) coupled with a proposed QuEChERS method. The proposed method was validated in terms of linearity (coefficients of determination of 0.9980-0.9999), the limits of quantification (0.01 μg·kg-1), the relative standard deviation (0.6-4.4%), and recovery (70.12-118.15%). The results demonstrated that the proposed method fulfilled the requirements for pesticide analysis in all tested aquatic organisms. The residues of QoIs in the same aquatic organism exposed to QoI concentrations of 5 and 500 μg L-1 decreased in the order pyraoxystrobin > pyraclostrobin > triclopyricarb > picoxystrobin > azoxystrobin > fluoxastrobin. Furthermore, the acute toxicity was strongly correlated with the enrichment level of the QoIs in aquatic organisms. This study provides the first documentation of a correlation between the enrichment level of QoIs and acute toxicity in aquatic organisms, which provides a basis for the management of agrochemicals considering aquatic ecological risks.
Collapse
Affiliation(s)
- Hong Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Shuai Hu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Fengshou Sun
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Qi Sun
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, People's Republic of China
| | - Beixing Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Nan Zou
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Jin Lin
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Xiuyu Pang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, People's Republic of China.
| |
Collapse
|
13
|
Zhao H, Zhang J, Rajeshkumar S, Feng Y, Liu Y, Li X, Zhang B. Hepatopancreas toxicity and immunotoxicity of a fungicide, pyraclostrobin, on common carp. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109445. [PMID: 36030005 DOI: 10.1016/j.cbpc.2022.109445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/31/2022] [Accepted: 08/21/2022] [Indexed: 11/23/2022]
Abstract
Pyraclostrobin (PYR), a strobilurin fungicide, has been widely used to control fungal diseases, posing potential risk to aquatic organisms. However, the toxic effects of PYR to fish remained largely unknown. In this study, common carp (Cyprinus carpio L.) was exposed to environmentally relevant levels of PYR (0, 0.5 and 5.0 μg/L) for 30 days to assess its chronic toxicity and potential toxicity mechanism. The results showed that long-term exposure to PYR induced hepatopancreas damage as evident by increased in serum transaminase activities (AST and ALT). Moreover, PYR exposure remarkably enhanced the expressions of hsp70 and hsp90, decreased the levels of antioxidant enzymes and biomarkers and promoted the reactive oxygen species (H2O2 and O2-) and MDA contents in carp hepatopancreas. PYR exposure also upregulated apoptosis-related genes (bax, apaf-1, caspase-3 and caspase-9) and reduced anti-apoptosis gene bcl-2 in fish hepatopancreas. Moreover, PYR exposure altered the expressions of inflammatory cytokines (IL-1β, IL-6, TNF-α and TGF-β) in the serum and hepatopancreas and the level of NF-κB p65 in the hepatopancreas. Further research indicated that PYR exposure markedly changed the levels of immune parameters (LYZ, C3, IgM, ACP and AKP) in the serum and/or hepatopancreas, indicating that chronic PYR exposure also has immunotoxicity on fish. Additionally, we found that PYR exposure upregulated p38 and jnk MAPK transcription levels, suggesting that MAPK may be play important role in PYR-induced apoptosis and inflammatory response in the hepatopancreas of common carp. In summary, PYR exposure induced oxidative stress, triggered apoptosis, inflammatory and immune response in common carp, which can help to elucidate the possible toxicity mechanism of PYR in fish.
Collapse
Affiliation(s)
- Haoyang Zhao
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Jiale Zhang
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | | | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yang Liu
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Journal of Henan Normal University, Xinxiang 453007, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Bangjun Zhang
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
14
|
Kovačević M, Stjepanović N, Hackenberger DK, Lončarić Ž, Hackenberger BK. Comprehensive study of the effects of strobilurin-based fungicide formulations on Enchytraeus albidus. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1554-1564. [PMID: 36462129 DOI: 10.1007/s10646-022-02609-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Excessive application of fungicides in crop fields can cause adverse effects on soil organisms and consequently affect soil properties. Existing knowledge on the effects of strobilurin fungicides has been primarily based on toxicity tests with active ingredients, while the effects of fungicide formulations remain unclear. Therefore, this work aims to provide new data on the effects of three commercial formulations of strobilurin fungicides on the soil organism Enchytraeus albidus. The tested fungicide formulations were Retengo® (pyraclostrobin-PYR), Zato WG 50® (trifloxystrobin-TRI) and Stroby WG® (kresoxim-methyl-KM). In laboratory experiments, multiple endpoints were considered at different time points. The results showed that PYR had the greatest impact on survival and reproduction (LC50 = 7.57 mga.i.kgsoil-1, EC50 = 0.98 mga.i.kgsoil-1), followed by TRI (LC50 = 72.98 mga.i.kgsoil-1, EC50 = 16.93 mga.i.kgsoil-1) and KM (LC50 = 73.12 mga.i.kgsoil-1, EC50 ≥ 30 mga.i.kgsoil-1). After 7 days of exposure, MXR activity was inhibited at the highest concentration of all fungicides tested (6 mgPYRkgsoil-1, 15 mgTRIkgsoil-1 and 30 mgKMkgsoil-1). Furthermore, oxidative stress (induction of SOD, CAT and GST) and lipid peroxidation (increase in MDA) were also observed. In addition, there was a decrease in total available energy after exposure to PYR and KM. Exposure to fungicides resulted in a shift in the proportions of carbohydrates, lipids, and proteins affecting the amount of available energy. In addition to the initial findings on the effects of strobilurin formulations on enchytraeids, the observed results suggest that multiple and long-term exposure to strobilurin formulations in the field could have negative consequences on enchytraeid populations.
Collapse
Affiliation(s)
- Marija Kovačević
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | - Nikolina Stjepanović
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | - Davorka K Hackenberger
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia.
| | - Željka Lončarić
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | | |
Collapse
|
15
|
Wang Q, Luo N, Lei M, Zhong L, Li C, Hao P. Facial Irritant Contact Dermatitis Caused by Pyraclostrobin. Clin Cosmet Investig Dermatol 2022; 15:1643-1647. [PMID: 35996399 PMCID: PMC9392485 DOI: 10.2147/ccid.s373075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023]
Abstract
Contact dermatitis and facial contact dermatitis caused by pesticides are not uncommon in China. However, clinically, due to the wide variety of pesticides, they mainly appear in the form of case reports. We reported a 70-year-old male patient developed facial irritant contact dermatitis (ICD) due to pyraclostrobin which was sprayed on his face. Initially, he felt facial burning and tingling, and localized erythematous-edematous and scaly rash appeared on his face as well as front hairline scalp. During the outpatient visit, the main symptoms were a facial burning sensation, itching, and tingling. The patient’s facial lesions improved after treatment. To better protect the skin of agricultural workers, preventive measures should be undertaken, such as personal protective equipment, gas masks, protective clothing and goggles, which are indispensable for manual pesticide spraying. Pyraclostrobin diluted according to the instructions is a potential source of ICD. Agricultural workers should undertake preventive measures during manual pesticide spraying. Safety education and publicity are particularly important. We need dermatologists to spread knowledge and agricultural workers to develop the right protective habits.
Collapse
Affiliation(s)
- Qiuyue Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Nana Luo
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Min Lei
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lingyuan Zhong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Chunxiao Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Pingsheng Hao
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
16
|
Marie B, Gallet A. Fish metabolome from sub-urban lakes of the Paris area (France) and potential influence of noxious metabolites produced by cyanobacteria. CHEMOSPHERE 2022; 296:134035. [PMID: 35183584 DOI: 10.1016/j.chemosphere.2022.134035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The recent democratization of high-throughput molecular phenotyping allows the rapid expansion of promising untargeted multi-dimensional approaches (e.g. epigenomics, transcriptomics, proteomics, and/or metabolomics). Indeed, these emerging omics tools, processed for ecologically relevant species, may present innovative perspectives for environmental assessments, that could provide early warning of eco(toxico)logical impairments. In a previous pilot study (Sotton et al., Chemosphere 2019), we explore by 1H NMR the bio-indicative potential of metabolomics analyses on the liver of 2 sentinel fish species (Perca fluviatilis and Lepomis gibbosus) collected in 8 water bodies of the peri-urban Paris' area (France). In the present study, we further investigate on the same samples the high potential of high-throughput UHPLC-HRMS/MS analyses. We show that the LC-MS metabolome investigation allows a clear separation of individuals according to the species, but also according to their respective sampling lakes. Interestingly, similar variations of Perca and Lepomis metabolomes occur locally indicating that site-specific environmental constraints drive the metabolome variations which seem to be influenced by the production of noxious molecules by cyanobacterial blooms in certain lakes. Thus, the development of such reliable environmental metabolomics approaches appears to constitute an innovative bio-indicative tool for the assessment of ecological stress, such as toxigenic cyanobacterial blooms, and aim at being further follow up.
Collapse
Affiliation(s)
- Benjamin Marie
- UMR 7245, CNRS/MNHN, Molécules de Communication et Adaptation des Micro-organismes (MCAM), équipe "Cyanobactéries, Cyanotoxines et Environnement", 12 rue Buffon - CP 39, 75231, Paris Cedex 05, France.
| | - Alison Gallet
- UMR 7245, CNRS/MNHN, Molécules de Communication et Adaptation des Micro-organismes (MCAM), équipe "Cyanobactéries, Cyanotoxines et Environnement", 12 rue Buffon - CP 39, 75231, Paris Cedex 05, France
| |
Collapse
|
17
|
An C, Sun C, Li N, Huang B, Jiang J, Shen Y, Wang C, Zhao X, Cui B, Wang C, Li X, Zhan S, Gao F, Zeng Z, Cui H, Wang Y. Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. J Nanobiotechnology 2022; 20:11. [PMID: 34983545 PMCID: PMC8725417 DOI: 10.1186/s12951-021-01214-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/16/2021] [Indexed: 12/27/2022] Open
Abstract
Nanomaterials (NMs) have received considerable attention in the field of agrochemicals due to their special properties, such as small particle size, surface structure, solubility and chemical composition. The application of NMs and nanotechnology in agrochemicals dramatically overcomes the defects of conventional agrochemicals, including low bioavailability, easy photolysis, and organic solvent pollution, etc. In this review, we describe advances in the application of NMs in chemical pesticides and fertilizers, which are the two earliest and most researched areas of NMs in agrochemicals. Besides, this article concerns with the new applications of NMs in other agrochemicals, such as bio-pesticides, nucleic acid pesticides, plant growth regulators (PGRs), and pheromone. We also discuss challenges and the industrialization trend of NMs in the field of agrochemicals. Constructing nano-agrochemical delivery system via NMs and nanotechnology facilitates the improvement of the stability and dispersion of active ingredients, promotes the precise delivery of agrochemicals, reduces residual pollution and decreases labor cost in different application scenarios, which is potential to maintain the sustainability of agricultural systems and improve food security by increasing the efficacy of agricultural inputs. ![]()
Collapse
Affiliation(s)
- Changcheng An
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ningjun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bingna Huang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiajun Jiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yue Shen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingye Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shenshan Zhan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|