1
|
Wen J, Li T, Pu Q, Li Y, Ding X, Wang L, Li X. Co-exposure of TMPs and antibiotics in zebrafish: The influence of additives on the risk of hepatotoxicity. ENVIRONMENTAL RESEARCH 2025; 275:121430. [PMID: 40120740 DOI: 10.1016/j.envres.2025.121430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Co-exposure of tire microplastics (TMPs) and antibiotics has been confirmed to pose toxic risks to aquatic organisms. However, the contributions of TMP additives to these risks and the underlying mechanisms remain underreported. In this study, factor analysis and molecular docking and molecular dynamics simulations were employed to investigate the differential additive-related hepatotoxicity risks associated with TMP-antibiotic exposure in zebrafish. The differential hepatotoxicity risks of five types of TMPs and six antibiotics were simulated in the presence of additives. Zebrafish exposed to different TMPs showed significant differences in hepatotoxicity risks, with styrene-butadiene rubber (SBR) exhibiting the most pronounced toxic effects. The additive contribution analysis revealed that in the presence of SBR additives, TMPs-antibiotics posed higher toxicity risks to the cytochrome P 17A2 (CYP17A2) isoenzymes CYP2K19, CYP1A, CYP3A65, and CYP2K22 in zebrafish, showing synergistic effects primarily driven by plasticizers. Furthermore, the hepatotoxicity risks of TMPs-antibiotics in zebrafish in the presence of additives were significantly mitigated by the selection of alternative plasticizers. The micromechanisms by which additives affected the TMP-antibiotic hepatotoxicity risks in zebrafish were elucidated through mechanistic analysis. This study aimed to characterize the additive-influenced hepatotoxicity risks of TMPs-antibiotics, providing micro-level insights and theoretical support for ecological risk assessments in aquatic environments.
Collapse
Affiliation(s)
- Jingya Wen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Tong Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Xiaowen Ding
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Lu Wang
- Jilin Province Ecological Environmental Monitoring Centre, 130011, China.
| | - Xixi Li
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, A1B 3X5, Canada.
| |
Collapse
|
2
|
Zhang Y, Xiang Y, Cao Z, Dai K, Gui S, Liu Y, Liu Z, Shi Y, Cao H, Xiao J. Oxidative stress biomarkers for assessing the synergistic toxicity of emamectin benzoate and cyantraniliprole on liver function. Sci Rep 2025; 15:17051. [PMID: 40379747 PMCID: PMC12084635 DOI: 10.1038/s41598-025-02429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025] Open
Abstract
Multiple pesticide residues in agricultural products and environments, especially those with synergistic toxicity, pose a potential risk to human health. We observed a remarkable increase in serum biochemical parameters related to rat liver function when rat liver was exposed to the binary mixture of emamectin benzoate and cyantraniliprole. The present study aimed to investigate the toxicity interactions and underlying mechanisms of the binary mixture by using an L-02 cell model and metabolomics analysis. Cytotoxicity tests have shown that binary mixtures of emamectin benzoate and cyantraniliprole produced either additive or synergistic toxic effect on the cell viability of the human hepatic epithelial cell line L-02. The interaction within the binary mixtures resulted in the production of excessive reactive oxygen species (ROS) and malondialdehyde, as well as overexpression of antioxidant enzyme activities. The synergism was driven by aggravated production of ROS, leading to an imbalance in mitochondrial oxidation and energy metabolism, suggesting the possible use of ROS as an effective toxicity endpoint. Based on the benchmark dose calculated to determine the combined toxicity threshold, the model-averaged estimates of the benchmark dose lower confidence limits (4.74-9.58 mmol/L) of the binary mixtures at concentration ratios of 3:15, 3:45, 4:15, and 4:45 were 20% more toxic than their individual active ingredients. These findings have important implications for risk assessments of pesticide residue in food and highlight the need to consider concentration ratios and oxidative stress endpoints in such assessments.
Collapse
Affiliation(s)
- Yaxuan Zhang
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yuxin Xiang
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Agri-Products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, Anhui, China
| | - Zhiyong Cao
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Agri-Products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, Anhui, China
| | - Kaijie Dai
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Agri-Products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, Anhui, China
| | - Shuyan Gui
- Key Laboratory of Agri-Products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, Anhui, China
| | - Yuying Liu
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Agri-Products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, Anhui, China
| | - Ziqi Liu
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Agri-Products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, Anhui, China
| | - Yanhong Shi
- College of Resource & Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
- Key Laboratory of Agri-Products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, Anhui, China
| | - Haiqun Cao
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Agri-Products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, Anhui, China
| | - Jinjing Xiao
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China.
- Key Laboratory of Agri-Products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, Anhui, China.
- School of Resource & Environment, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, People's Republic of China.
| |
Collapse
|
3
|
Li J, Wang J, Shu F, Huang N, Jia R, Wang Y. Combined exposure to atrazine and phoxim exacerbated the alterations of enzyme activity and abnormal gene expression in earthworms (Eisenia fetida). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104713. [PMID: 40345462 DOI: 10.1016/j.etap.2025.104713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/22/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Multiple pesticides often coexist in soil, potentially leading to interactions among their components, these may detrimentally impact soil organisms. This study assessed the potential risks posed by simultaneous exposure to atrazine (ATR) and phoxim (PHO) on enzyme and transcription levels in earthworms (Eisenia fetida). The results revealed that ATR exhibited higher acute toxicity towards E. fetida compared to PHO, and their combined exposure resulted in a synergistic acute effect. Furthermore, low concentration combined exposure significantly stimulated catalase (CAT), malondialdehyde (MDA), and total superoxide dismutase (T-SOD) activities, which lead to more severe oxidative damage. Elevated expression levels of translationally controlled tumor protein (tctp) and calreticulin (crt) genes were observed in most exposed groups compared to the control. The synergistic effects of ATR and PHO on earthworms observed in this study may pose ecological risks to the soil ecosystem; thus, more attention should be paid to the joint effects of different pesticides.
Collapse
Affiliation(s)
- Jinzhan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Jingwen Wang
- Hangzhou Agricultural Technology Extension Service Center, Hangzhou 310020, Zhejiang, China
| | - Fang Shu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Nan Huang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ru Jia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
4
|
Esimbekova EN, Satir DV, Kratasyuk VA. Types of Pesticides Interaction in Mixtures: Results of Inhibitory Assay. DOKL BIOCHEM BIOPHYS 2025; 521:267-271. [PMID: 40216723 DOI: 10.1134/s1607672924601422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 05/16/2025]
Abstract
Enzymatic inhibitory assay based on the coupled enzyme system NAD(P)·H:FMN oxidoreductase and luciferase (Red + Luc), originally developed for environmental monitoring of soils, water, and air, is proposed as a method for evaluating changes in the properties of active ingredients of pesticide preparations depending on the additional components (formulants), as well as when pesticides are combined in mixtures. Using the commercial pesticide preparations containing glyphosate, it was shown that the degree of inhibition of the coupled enzyme system Red + Luc largely depends on the formulants rather than on the active ingredient in their composition. Moreover, the combined inhibitory effect of the pesticides mixture on the coupled enzyme system Red + Luc was not additive. According to the results of the inhibitory assay, the type of interaction of pesticide preparations in mixtures depends on both the formulants used and the ratio of pesticides in the mixture.
Collapse
Affiliation(s)
- E N Esimbekova
- Siberian Federal University, Krasnoyarsk, Russia.
- Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia.
| | - D V Satir
- Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - V A Kratasyuk
- Siberian Federal University, Krasnoyarsk, Russia
- Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| |
Collapse
|
5
|
Guille AG, Purnell S, Lohery S, Ciocan C. CLAMity: Mixtures of agricultural pesticides as multiple stressors in a bivalve species. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136692. [PMID: 39616845 DOI: 10.1016/j.jhazmat.2024.136692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/11/2024] [Accepted: 11/25/2024] [Indexed: 01/28/2025]
Abstract
Pesticides play a vital role in ensuring global food security amid a growing global population; however, their movement away from application sites can pose significant risks to the health of non-target species. Pollution of freshwater is a key contributor to the high extinction rates of freshwater species, which often face exposure to a complex "cocktail" of pollutants simultaneously. A better understanding of pesticide interactions will enable more targeted policies and land management practices to mitigate environmental damage while ensuring food security. In this study, Corbicula fluminea (Asian clam) were exposed to binary pesticide mixtures commonly found in two rivers in the South of England. The exposures involved individual pesticides and mixtures at a concentration of 0.1μg/L per pesticide. Selected molecular markers were targeted and proved to be impacted by the timing and the pesticide mixture; an Integrated Biomarker Response (V2) value was also calculated. Our results show that both seasonality and the chemicals characteristics of the pesticides may significantly modulate their toxicity, both individually and in a mixture. When put into the context of catchment management this data combined with pesticide monitoring could improve estimating ecological risk. To the authors' knowledge, this is the first study to assess the molecular responses of these mixtures in bivalve molluscs using the IBRv2 value following exposure to combined pesticides.
Collapse
Affiliation(s)
- Alice Graihagh Guille
- Environment and Public Health Research and Enterprise Group, School of Applied Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4GJ, United Kingdom.
| | - Sarah Purnell
- Environment and Public Health Research and Enterprise Group, School of Applied Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| | - Simon Lohery
- South East Water Ltd., Rocfort Road, Snodland, Kent ME6 5AH, United Kingdom
| | - Corina Ciocan
- Environment and Public Health Research and Enterprise Group, School of Applied Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| |
Collapse
|
6
|
Mei L, Xia X, Cao J, Zhao Y, Huang H, Li Y, Zhang Z. Degradation of Three Herbicides and Effect on Bacterial Communities under Combined Pollution. TOXICS 2024; 12:562. [PMID: 39195664 PMCID: PMC11360099 DOI: 10.3390/toxics12080562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Pesticide residues in soil, especially multiple herbicide residues, cause a series of adverse effects on soil properties and microorganisms. In this work, the degradation of three herbicides and the effect on bacterial communities under combined pollution was investigated. The experimental results showed that the half-lives of acetochlor and prometryn significantly altered under combined exposure (5.02-11.17 d) as compared with those of individual exposure (4.70-6.87 d) in soil, suggesting that there was an antagonistic effect between the degradation of acetochlor and prometryn in soil. No remarkable variation in the degradation rate of atrazine with half-lives of 6.21-6.85 d was observed in different treatments, indicating that the degradation of atrazine was stable. 16S rRNA high-throughput sequencing results showed that the antagonistic effect of acetochlor and prometryn on the degradation rate under combined pollution was related to variation of the Sphingomonas and Nocardioide. Furthermore, the potential metabolic pathways of the three herbicides in soil were proposed and a new metabolite of acetochlor was preliminarily identified. The results of this work provide a guideline for the risk evaluation of combined pollution of the three herbicides with respect to their ecological effects in soil.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhaoxian Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China (X.X.); (Y.L.)
| |
Collapse
|
7
|
Huang J, Xu J, Zhang H, Liu J, He C. Combined Effects of Tetracycline and Copper Ion on Microorganisms During the Biological Phosphorus Removal. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:13. [PMID: 39012472 DOI: 10.1007/s00128-024-03920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/17/2024] [Indexed: 07/17/2024]
Abstract
Tetracycline and copper ion are common pollutants in wastewater, and the effects of mixed pollutants on microorganisms in wastewater biological treatment have been less studied. In order to reveal the effects of mixed pollutants of tetracycline and copper ion on the microorganisms during the biological phosphorus removal, three ratios of tetracycline and copper ions were designed by the direct equipartition ray method. The relative abundance and diversity of microbial community were investigated, and the microbial interactions were revealed through microbiological methods. The results demonstrated that, for three different ratios, the inhibitory effect of specific phosphorus uptake rate became more significant with the increase of the tetracycline-copper ions concentration and the reaction time. The microbial community decreased with the increase of the proportion of tetracycline in different ratios. The relative abundance of Acinetobacter decreased with the increase of the proportion of tetracycline, while the relative abundance of Ca.Competibacter was higher under the conditions of low mixtures concentrations. Positive interactions and symbiotic relationships among microorganisms were predominant for three different ratios. However, as the proportion of tetracycline increased, the community structure of microorganisms shifted from phosphate-accumulating organisms to glycogen accumulating organisms and denitrifying bacteria. This study can provide a reference for the effect of mixed pollutants on microorganisms and the mechanism of wastewater treatment.
Collapse
Affiliation(s)
- Jian Huang
- College of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilisation, Hefei, 230601, PR China
- Anhui Institute of Ecological Civilisation, Hefei, 230601, PR China
| | - Junshuai Xu
- College of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilisation, Hefei, 230601, PR China
| | - Hua Zhang
- College of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China.
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilisation, Hefei, 230601, PR China.
- Anhui Institute of Ecological Civilisation, Hefei, 230601, PR China.
| | - Jun Liu
- Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory, Hefei, Anhui, 230601, PR China
| | - Chunhua He
- College of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilisation, Hefei, 230601, PR China
- Anhui Institute of Ecological Civilisation, Hefei, 230601, PR China
| |
Collapse
|
8
|
Tao MT, Sun X, Ding TT, Xu YQ, Liu SS. Screening for frequently detected quaternary ammonium mixture systems in waters based on frequent itemset mining and prediction of their toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116581. [PMID: 38875820 DOI: 10.1016/j.ecoenv.2024.116581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Screening and prioritizing research on frequently detected mixture systems in the environment is of great significance, as conducting toxicity testing on all mixtures is impractical. Therefore, the frequent itemset mining (FIM) was introduced and applied in this paper to identify variables that commonly co-occur in a dataset. Based on the dataset of the quaternary ammonium compounds (QACs) in the water environment, the four frequent QAC mixture systems with detection rate ≥ 35 % were found, including [BDMM]+Cl--[BTMM]+Cl- (M1), [BDMM]+Cl--[BHMM]+Cl- (M2), [BTMM]+Cl- -[BHMM]+Cl- (M3), and [BDMM]+Cl--[BTMM]+Cl--[BHMM]+Cl- (M4). [BDMM]+Cl-, [BTMM]+Cl-, and [BHMM]+Cl- are benzyl dodecyl dimethyl ammonium chloride, benzyl tetradecyl dimethyl ammonium chloride, and benzyl hexadecyl dimethyl ammonium chloride, respectively. Then, the toxicity of the representative mixture rays and components for the four frequently detected mixture systems was tested using Vibrio qinghaiensis sp.-Q67 (Q67) as a luminescent indicator organism at 0.25 and 12 h. The toxicity of the mixtures was predicted using concentration addition (CA) and independent action (IA) models. It was shown that both the components and the representative mixture rays for the four frequently detected mixture systems exhibited obvious acute and chronic toxicity to Q67, and their median effective concentrations (EC50) were below 7 mg/L. Both CA and IA models predicted the toxicity of the four mixture systems well. However, the CA model had a better predictive ability for the toxicity of the M3 and M4 mixtures than IA at 12 h.
Collapse
Affiliation(s)
- Meng-Ting Tao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiao Sun
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ya-Qian Xu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
9
|
Zeng JP, Zhang J, Hong JH, Zhao YF, Zhang J, Zhang Y, Huang XH, Xie FZ. Predicting the occurrence of antagonism within ternary guanidine mixture pollutants based on the concentration ratio of components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169380. [PMID: 38123081 DOI: 10.1016/j.scitotenv.2023.169380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
The widespread prevalence and coexistence of diverse guanidine compounds pose substantial risks of potential toxicity interactions, synergism or antagonism, to environmental organisms. This complexity presents a formidable challenge in assessing the risks associated with various pollutants. Hence, a method that is both accurate and universally applicable for predicting toxicity interactions within mixtures is crucial, given the unimaginable diversity of potential combinations. A toxicity interaction prediction method (TIPM) developed in our past research was employed to predict the toxicity interaction, within guanidine compound mixtures. Here, antagonism were found in the mixtures of three guanidine compounds including chlorhexidine (CHL), metformin (MET), and chlorhexidine digluconate (CDE) by selecting Escherichia coli (E. coli) as the test organism. The antagonism in the mixture was probably due to the competitive binding of all three guanidine compounds to the anionic phosphates of E. coli cell membranes, which eventually lead to cell membrane rupture. Then, a good correlation between toxicity interactions (antagonisms) and components' concentration ratios (pis) within binary mixtures (CHL-MET, CHL-CDE, MET-CDE) was established. Based on the correlation, the TIPM was constructed and accurately predicted the antagonism in the CHL-MET-CDE ternary mixture, which once again proved the accuracy and applicability of the TIPM method. Therefore, TIPM can be suggested to identify or screen rapidly the toxicity interaction within ternary mixtures exerting potentially adverse effects on the environment.
Collapse
Affiliation(s)
- Jian-Ping Zeng
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Jin Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Jun-Hua Hong
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Yuan-Fan Zhao
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Jing Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Ying Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Xian-Huai Huang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China
| | - Fa-Zhi Xie
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| |
Collapse
|
10
|
Shan L, Heusinkveld HJ, Paul KC, Hughes S, Darweesh SKL, Bloem BR, Homberg JR. Towards improved screening of toxins for Parkinson's risk. NPJ Parkinsons Dis 2023; 9:169. [PMID: 38114496 PMCID: PMC10730534 DOI: 10.1038/s41531-023-00615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Parkinson's disease (PD) is a chronic, progressive and disabling neurodegenerative disorder. The prevalence of PD has risen considerably over the past decades. A growing body of evidence suggest that exposure to environmental toxins, including pesticides, solvents and heavy metals (collectively called toxins), is at least in part responsible for this rapid growth. It is worrying that the current screening procedures being applied internationally to test for possible neurotoxicity of specific compounds offer inadequate insights into the risk of developing PD in humans. Improved screening procedures are therefore urgently needed. Our review first substantiates current evidence on the relation between exposure to environmental toxins and the risk of developing PD. We subsequently propose to replace the current standard toxin screening by a well-controlled multi-tier toxin screening involving the following steps: in silico studies (tier 1) followed by in vitro tests (tier 2), aiming to prioritize agents with human relevant routes of exposure. More in depth studies can be undertaken in tier 3, with whole-organism (in)vertebrate models. Tier 4 has a dedicated focus on cell loss in the substantia nigra and on the presumed mechanisms of neurotoxicity in rodent models, which are required to confirm or refute the possible neurotoxicity of any individual compound. This improved screening procedure should not only evaluate new pesticides that seek access to the market, but also critically assess all pesticides that are being used today, acknowledging that none of these has ever been proven to be safe from a perspective of PD. Importantly, the improved screening procedures should not just assess the neurotoxic risk of isolated compounds, but should also specifically look at the cumulative risk conveyed by exposure to commonly used combinations of pesticides (cocktails). The worldwide implementation of such an improved screening procedure, would be an essential step for policy makers and governments to recognize PD-related environmental risk factors.
Collapse
Affiliation(s)
- Ling Shan
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
| | - Harm J Heusinkveld
- Centre for Health Protection, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Samantha Hughes
- A-LIFE Amsterdam Institute for Life and Environment, Section Environmental Health and Toxicology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Sirwan K L Darweesh
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Ding TT, Liu SS, Wang ZJ, Huang P, Gu ZW, Tao MT. A novel equal frequency sampling of factor levels (EFSFL) method is applied to identify the dominant factor inducing the combined toxicities of 13 factors. ENVIRONMENT INTERNATIONAL 2023; 175:107940. [PMID: 37119652 DOI: 10.1016/j.envint.2023.107940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 05/22/2023]
Abstract
The research framework combining global sensitivity analysis (GSA) with quantitative high-throughput screening (qHTS), called GSA-qHTS, provides a potentially feasible way to screen for important factors that induce toxicities of complex mixtures. Despite its value, the mixture samples designed using the GSA-qHTS technique still have a shortage of unequal factor levels, which leads to an asymmetry in the importance of elementary effects (EEs). In this study, we developed a novel method for mixture design that enables equal frequency sampling of factor levels (called EFSFL) by optimizing both the trajectory number and the design and expansion of the starting points for the trajectory. The EFSFL has been successfully employed to design 168 mixtures of 13 factors (12 chemicals and time) that each have three levels. By means of high-throughput microplate toxicity analysis, the toxicity change rules of the mixtures are revealed. Based on EE analysis, the important factors affecting the toxicities of the mixtures are screened. It was found that erythromycin is the dominant factor and time is an important non-chemical factor in mixture toxicities. The mixtures can be classified into types A, B, and C mixtures according to their toxicities at 12 h, and all the types B and C mixtures contain erythromycin at the maximum concentration. The toxicities of the type B mixtures increase firstly over time (0.25 ∼ 9 h) and then decrease (12 h), while those of the type C mixtures consistently increase over time. Some type A mixtures produce stimulation that increases with time. With the present new approach to mixture design, the frequency of factor levels in mixture samples is equal. Consequently, the accuracy of screening important factors is improved based on the EE method, providing a new method for the study of mixture toxicity.
Collapse
Affiliation(s)
- Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Ze-Jun Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Peng Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhong-Wei Gu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Meng-Ting Tao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
12
|
Zhao Y, Huang Y, Hu S, Xu T, Fang Y, Liu H, Xi Y, Qu R. Combined effects of fluoroquinolone antibiotics and organophosphate flame retardants on Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53050-53062. [PMID: 36853534 DOI: 10.1007/s11356-023-25974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
As freshwater harmful algal blooms continue to rise in frequency and severity, increasing focus is made on the effects of mixed pollutants and the dominant cyanobacterial species Microcystis aeruginosa (M. aeruginosa). However, few studies have investigated whether M. aeruginosa has a synergistic relationship with two common pollutants, namely, organophosphate flame retardants (OPFRs) and fluoroquinolone antibiotics (FQs). In this paper, three FQs and three OPFRs commonly detected in freshwaters were selected to construct a ternary mixture of FQs, a ternary mixture of OPFRs, and a six-component mixture of OPFRs and FQs. The effects of single substance and mixture on the growth of M. aeruginosa were determined at 24, 48, 72, and 96 h, and the toxicities of the mixture were evaluated by concentration addition model and independent action model. The results showed that the mixture of FQs and the mixture of OPFRs do not show toxicological interaction. However, partial mixtures of OPFRs and FQs showed antagonism or synergism at different concentrations and times. This indicated that combined toxicities of OPFRs and FQs on M. aeruginosa were mixture ratio dependent, concentration dependent and time dependent. This study improves our understanding of the role of OPFRs and FQs in cyanobacterial outbreaks of Microcystis.
Collapse
Affiliation(s)
- Yang Zhao
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
| | - Yingping Huang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
| | - Shuang Hu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- College of Biology & Pharmacy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Tao Xu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- College of Biology & Pharmacy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Yanfen Fang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- College of Biology & Pharmacy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Huigang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
| | - Ying Xi
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
| | - Rui Qu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China.
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China.
| |
Collapse
|
13
|
Boelter JF, Garcia SC, Göethel G, Charão MF, de Melo LM, Brandelli A. Acute Toxicity Evaluation of Phosphatidylcholine Nanoliposomes Containing Nisin in Caenorhabditis elegans. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020563. [PMID: 36677622 PMCID: PMC9862913 DOI: 10.3390/molecules28020563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023]
Abstract
Liposomes are among the most studied nanostructures. They are effective carriers of active substances both in the clinical field, such as delivering genes and drugs, and in the food industry, such as promoting the controlled release of bioactive substances, including food preservatives. However, toxicological screenings must be performed to ensure the safety of nanoformulations. In this study, the nematode Caenorhabditis elegans was used as an alternative model to investigate the potential in vivo toxicity of nanoliposomes encapsulating the antimicrobial peptide nisin. The effects of liposomes containing nisin, control liposomes, and free nisin were evaluated through the survival rate, lethal dose (LD50), nematode development rate, and oxidative stress status by performing mutant strain, TBARS, and ROS analyses. Due to its low toxicity, it was not possible to experimentally determine the LD50 of liposomes. The survival rates of control liposomes and nisin-loaded liposomes were 94.3 and 73.6%, respectively. The LD50 of free nisin was calculated as 0.239 mg mL-1. Free nisin at a concentration of 0.2 mg mL-1 significantly affected the development of C. elegans, which was 25% smaller than the control and liposome-treated samples. A significant increase in ROS levels was observed after exposure to the highest concentrations of liposomes and free nisin, coinciding with a significant increase in catalase levels. The treatments induced lipid peroxidation as evaluated by TBARS assay. Liposome encapsulation reduces the deleterious effect on C. elegans and can be considered a nontoxic delivery system for nisin.
Collapse
Affiliation(s)
- Juliana Ferreira Boelter
- Laboratory of Biochemistry and Applied Microbiology, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Correspondence: (S.C.G.); (A.B.)
| | - Gabriela Göethel
- Laboratory of Toxicology, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Mariele Feiffer Charão
- Laboratory of Toxicological Analyses, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, Brazil
| | - Livia Marchi de Melo
- Laboratory of Biochemistry and Applied Microbiology, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Adriano Brandelli
- Laboratory of Biochemistry and Applied Microbiology, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Correspondence: (S.C.G.); (A.B.)
| |
Collapse
|
14
|
Huang P, Wang Y, Liu SS, Wang ZJ, Xu YQ. SAHmap: Synergistic-antagonistic heatmap to evaluate the combined synergistic effect of mixtures of three pesticides on multiple endpoints of Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120378. [PMID: 36220575 DOI: 10.1016/j.envpol.2022.120378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The environmental pollution caused by toxic chemicals such as pesticides has become a global problem. The mixture of dichlorvos (DIC), dimethoate (DIM), aldicarb (ALD) poses potential risks to the environment and human health. To fully explore the interaction of complex mixtures on Caenorhabditis elegans behavioral toxicity endpoint. This study created a synergistic-antagonistic heatmap (SAHmap) based on the combination index to systematically describe the toxicological interaction prospect of the mixture system. It was shown that the three pesticides and their binary as well as ternary mixture rays have significant concentration-response relationship on three behavioral endpoints of nematodes, From the perspective of synergistic-antagonistic heatmaps, all the mixture rays in the DIC-DIM mixture system showed strong synergism on the three behavioral and lethal endpoints. In the ternary mixture system, the five mixture rays showed different interaction between the behavioral endpoint and the lethal endpoint, and showed slight synergism to two behavioral endpoints as a whole. The emergence of synergism should arouse our attention to these hazardous chemicals. In addition, the use of SAHmap and the significant linear correlation among three behavioral endpoints further improved the efficiency of the study on the behavioral toxicity of pesticide mixtures to Caenorhabditis elegans.
Collapse
Affiliation(s)
- Peng Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yu Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Ze-Jun Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
15
|
Scharpf I, Cichocka S, Le DT, von Mikecz A. Peripheral neuropathy, protein aggregation and serotonergic neurotransmission: Distinctive bio-interactions of thiacloprid and thiamethoxam in the nematode Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120253. [PMID: 36155223 DOI: 10.1016/j.envpol.2022.120253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Due to worldwide production, sales and application, neonicotinoids dominate the global use of insecticides. While, neonicotinoids are considered as pinpoint neurotoxicants that impair cholinergic neurotransmission in pest insects, the sublethal effects on nontarget organisms and other neurotransmitters remain poorly understood. Thus, we investigated long-term neurological outcomes in the decomposer nematode Caenorhabditis elegans. In the adult roundworm the neonicotinoid thiacloprid impaired serotonergic and dopaminergic neuromuscular behaviors, while respective exposures to thiamethoxam showed no effects. Thiacloprid caused a concentration-dependent delay of the transition between swimming and crawling locomotion that is controlled by dopaminergic and serotonergic neurotransmission. Age-resolved analyses revealed that impairment of locomotion occurred in young as well as middle-aged worms. Treatment with exogenous serotonin rescued thiacloprid-induced swimming deficits in young worms, whereas additional exposure with silica nanoparticles enhanced the reduction of swimming behavior. Delay of forward locomotion was partly caused by a new paralysis pattern that identified thiacloprid as an agent promoting a specific rigidity of posterior body wall muscle cells and peripheral neuropathy in the nematode (lowest-observed-effect-level 10 ng/ml). On the molecular level exposure with thiacloprid accelerated protein aggregation in body wall muscle cells of polyglutamine disease reporter worms indicating proteotoxic stress. The results from the soil nematode Caenorhabditis elegans show that assessment of neurotoxicity by neonicotinoids requires acknowledgment and deeper research into dopaminergic and serotonergic neurochemistry of nontarget organisms. Likewise, it has to be considered more that different neonicotinoids may promote diverse neural end points.
Collapse
Affiliation(s)
- Inge Scharpf
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Sylwia Cichocka
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Dang Tri Le
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Anna von Mikecz
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany.
| |
Collapse
|
16
|
Fang K, Fang J, Han L, Yin J, Liu T, Wang X. Systematic evaluation of chiral fungicide penflufen for the bioactivity improvement and input reduction using alphafold2 models and transcriptome sequencing. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129729. [PMID: 35963089 DOI: 10.1016/j.jhazmat.2022.129729] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Traditional risk assessment of pesticide concludes at the racemic level, which is often incomprehensive. In this study, systematic studies on environmental stability, bioactivity, and ecotoxicological effects of fungicide penflufen were carried out at the enantiomeric level. The single-enantiomer of penflufen was successfully separated and prepared, and their stability was verified in different environmental matrices. Meanwhile, bioactivity test indicated that S-(+)-penflufen had increased bioactivity with its bioactivities against Rhizoctonia solani, Fusarium oxysporum, and Fusarium moniliforme being factors of 7.8, 1.8, and 4.7, respectively greater than those of R-(-)-penflufen. Molecular docking results showed the strong hydrogen bond interactions with Leu300, enantiomer-specific hydrophobic interactions with Cys299, Arg91, and His93, and the greater binding energy between S-(+)-penflufen and succinate dehydrogenase of Rhizoctonia solani caused the selective bioactivity. Additionally, two enantiomers showed low acute toxicity whereas selective sub-chronic toxicity to earthworms. In sub-chronic toxicity test, the accumulated enantiomers caused abnormalities in intestinal tract structure, enzyme activities, and gene expression of earthworms, especially in the S-(+)-penflufen treatment. The selective interactions between penflufen enantiomers and key proteins were elucidated using molecular docking, which may be the main reason of stereoselective subchronic toxicity. S-(+)-penflufen has high bioactivity and low acute risk, it has great potential for development.
Collapse
Affiliation(s)
- Kuan Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jianwei Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jijie Yin
- College of Land Science and Technology, China Agricultural University, Beijing 100091, PR China
| | - Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| |
Collapse
|
17
|
Lu S, Liu SS, Huang P, Wang ZJ. Introduction of Flavor Chemical Eugenol Attenuating the Synergistic Toxicological Interactions of Flavor Mixtures. ACS OMEGA 2022; 7:32238-32249. [PMID: 36120007 PMCID: PMC9475627 DOI: 10.1021/acsomega.2c03577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The flavor chemicals benzyl alcohol (BEA), phenylethanol (PHA), and cinnamaldehyde (CID) and their binary mixtures have high toxicity sensitivity to the lethal endpoint of Caenorhabditis elegans. Some binary flavor mixtures even have synergistic toxicological interactions. Eugenol (EUG) is closely related to human life and has many special nonlethal effects on organisms. The effect of its introduction on the combined toxicities of flavor mixtures is worth studying. We introduced EUG into three binary (BEA-PHA, BEA-CID, and PHA-CID) and one ternary (BEA-PHA-CID) flavor mixture systems. Five representative mixture rays were selected from each of the four mixture systems using the uniform design ray (UD-Ray) method. The lethal toxicity of each mixture ray to C. elegans was measured at three different exposure volumes (100, 200, and 400 μL), and a dose-effect model was established. The new parameter iSPAN was used to quantitatively characterize the toxicity sensitivity of each chemical and mixture ray. The toxicological interaction of each mixture was evaluated by the toxicological interaction heatmap based on the combination index (CI). It can be seen that all flavor chemicals and their ternary and quaternary mixture rays have high iSPANs, and the highest value is 16.160 (BEA-PHA-CID-EUG-R1 at 400 μL). According to the heatmap and CI, the introduction of EUG attenuates the synergistic toxicological interactions of flavor mixtures, leading to the transformation ofsynergistic interactions in flavor mixtures into additive action and even antagonistic interaction, and the CI value of the antagonistic interaction is up to 1.8494 (BEA-CID-EUG-R4 at 400 μL).
Collapse
Affiliation(s)
- Sheng Lu
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
- CSCEC
AECOM Consultants Co. Ltd., Lanzhou, Gansu 730000, P. R. China
| | - Shu-Shen Liu
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- State
Key Laboratory of Pollution Control and Resource Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, P. R. China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Peng Huang
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- State
Key Laboratory of Pollution Control and Resource Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, P. R. China
| | - Ze-Jun Wang
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
18
|
Wang N, Zhang H, Ma X, Zhang J, Sun J, Wang X, Zhou J, Wang J, Ge C. Joint action of binary mixtures based on parameter k·EC x from concentration-response curves in long-term toxicity assay. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103917. [PMID: 35779704 DOI: 10.1016/j.etap.2022.103917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
A previous acute toxicity study of binary mixtures showed that the combined toxicity can be predicted with the parameter k∙ECx. To systematically investigate the ability of k∙ECx to predict the chronic combined toxicity of binary mixtures, the toxicity of six contaminants and five binary mixtures was determined by long-term microplate toxicity analysis (L-MTA) using Aliivibrio fischeri as the test organism. The independent action model (IA) and the relative model deviation ratio (rMDR) were employed to determine the relationship between the Δ(k∙ECx)% and rMDRx. The results showed that these two factors conformed to the exponential function in long-term toxicity. Owing to the time-dependence of toxicity, the mixture type of chronic toxicity changes to the relative type of acute toxicity. If the acute toxicity of binary mixtures changes their mode of joint action throughout the concentration range, the chronic toxicity will also change their mode of joint action, and vice versa. This study clarified the change rules of the joint action of binary mixtures in acute and chronic toxicity which can promote research on chronic toxicity of binary mixtures.
Collapse
Affiliation(s)
- Na Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China.
| | - Huanle Zhang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Xiaoyan Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environment Engineering, Shaanxi, Province, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
| | - Jingkun Zhang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Jiajing Sun
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environment Engineering, Shaanxi, Province, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
| | - Jinhong Zhou
- College of Geography and Environment, Baoji University of arts and sciences, Baoji, Shaanxi 721013, China
| | - Jiaxuan Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Chengmin Ge
- Shandong Dongyuan New Material Technology Co., Ltd, Dongying 257300, Shandong, China
| |
Collapse
|
19
|
Lu S, Liu SS, Huang P, Wang ZJ, Wang Y. Study on the Combined Toxicities and Quantitative Characterization of Toxicity Sensitivities of Three Flavor Chemicals and Their Mixtures to Caenorhabditis elegans. ACS OMEGA 2021; 6:35745-35756. [PMID: 34984305 PMCID: PMC8717562 DOI: 10.1021/acsomega.1c05688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/03/2021] [Indexed: 05/09/2023]
Abstract
It was shown that flavor chemicals with high toxicity sensitivities mean that small changes in their effective concentrations can lead to significant changes in toxicity. Flavors are widely used in personal care products. However, our study demonstrated that some flavor chemicals and their mixture rays have high toxicity sensitivities to Caenorhabditis elegans (C. elegans), which may have an impact on human health. In this paper, three flavor chemicals (benzyl alcohol, phenethyl alcohol, and cinnamaldehyde) were used as components of the mixture, and three binary mixture systems were constructed, respectively. Five mixture rays were designed for each mixture system by a direct equipartition ray design method. The lethal toxicities of the three flavor chemicals and mixture rays to C. elegans at three exposure volumes were determined. A new concept (inverse of the negative logarithmic concentration span (iSPAN)) was introduced to quantitatively evaluate the toxicity sensitivity of chemicals or mixture rays, and the combination index (CI) was employed to identify the toxicological interactions in the mixtures. It was shown that the three flavor chemicals as well as the binary mixture rays have a significant concentration-response relationship on the lethality of C. elegans. The iSPAN values of the three flavor chemicals and their mixture rays were larger than 3.000, showing very strong toxicity sensitivity to C. elegans. In mixture systems, the toxicity sensitivities of mixture rays with different mixture ratios were also different at different exposure volumes. In addition, it can be seen from the CI heat map that the toxicological interaction not only shows the mixture ratio dependence but also changes with the different exposure volumes, which implies that the mixtures consisting of flavor chemicals with high toxicity sensitivity have complex toxicological interactions. Therefore, in environmental risk assessment, special attention should be paid to chemicals with high toxicity sensitivities.
Collapse
Affiliation(s)
- Sheng Lu
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Shu-Shen Liu
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- State
Key Laboratory of Pollution Control and Resource Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, P. R. China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Peng Huang
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Ze-Jun Wang
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Yu Wang
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|