1
|
Zhao X, Guo F, Ma Y, Wang Z, Wu H, Zhang H, Gao L, Wen T. Enzymatic Characterization of a Rumen Microorganism-Derived Multifunctional Glycoside Hydrolase and Its GH26 Domain with Mannanase Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40421474 DOI: 10.1021/acs.jafc.5c04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
In this study, a novel multifunctional glycoside hydrolase (GH) with two distinct domains homologous to the GH family 5 (GH5) and family 26 (GH26) was isolated from the rumen microorganism Segatella bryantii. The heterologous expression product of this enzyme exhibited both endo-β-1,4-glucanase and endo-β-1,4-mannanase activities. Intriguingly, segmental expression studies indicated that the GH26 domain alone contributed to the β-mannanase activity, and its specific activity reached 2060 U/mg under optimal conditions (30 °C, pH 5.5). Furthermore, site-directed mutagenesis confirmed that the glutamic acid residues at positions 165 and 276 were indispensable for the catalytic activity of the GH26 domain. Collectively, a novel multifunctional GH from a symbiotic microorganism of ruminants was identified. Preliminary enzymatic characterizations of its GH26 family domain, which has independent β-mannanase activities, were determined.
Collapse
Affiliation(s)
- Xin Zhao
- Faculty of Ecology and Environment, Baotou Teacher's College, Baotou 014030, China
| | - Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yong Ma
- Faculty of Ecology and Environment, Baotou Teacher's College, Baotou 014030, China
| | - Zhihong Wang
- Faculty of Ecology and Environment, Baotou Teacher's College, Baotou 014030, China
| | - Hao Wu
- Faculty of Ecology and Environment, Baotou Teacher's College, Baotou 014030, China
| | - Hong Zhang
- Faculty of Ecology and Environment, Baotou Teacher's College, Baotou 014030, China
| | - Li Gao
- Faculty of Ecology and Environment, Baotou Teacher's College, Baotou 014030, China
| | - Tong Wen
- Faculty of Ecology and Environment, Baotou Teacher's College, Baotou 014030, China
| |
Collapse
|
2
|
Pullen R, Decker SR, Subramanian V, Adler MJ, Tobias AV, Perisin M, Sund CJ, Servinsky MD, Kozlowski MT. Considerations for Domestication of Novel Strains of Filamentous Fungi. ACS Synth Biol 2025; 14:343-362. [PMID: 39883596 PMCID: PMC11852223 DOI: 10.1021/acssynbio.4c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Fungi, especially filamentous fungi, are a relatively understudied, biotechnologically useful resource with incredible potential for commercial applications. These multicellular eukaryotic organisms have long been exploited for their natural production of useful commodity chemicals and proteins such as enzymes used in starch processing, detergents, food and feed production, pulping and paper making and biofuels production. The ability of filamentous fungi to use a wide range of feedstocks is another key advantage. As chassis organisms, filamentous fungi can express cellular machinery, and metabolic and signal transduction pathways from both prokaryotic and eukaryotic origins. Their genomes abound with novel genetic elements and metabolic processes that can be harnessed for biotechnology applications. Synthetic biology tools are becoming inexpensive, modular, and expansive while systems biology is beginning to provide the level of understanding required to design increasingly complex synthetic systems. This review covers the challenges of working in filamentous fungi and offers a perspective on the approaches needed to exploit fungi as microbial cell factories.
Collapse
Affiliation(s)
- Randi
M. Pullen
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Stephen R. Decker
- National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | | | - Meaghan J. Adler
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Alexander V. Tobias
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Matthew Perisin
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Christian J. Sund
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Matthew D. Servinsky
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Mark T. Kozlowski
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| |
Collapse
|
3
|
Zhang Z, Xing J, Li X, Lu X, Liu G, Qu Y, Zhao J. Review of research progress on the production of cellulase from filamentous fungi. Int J Biol Macromol 2024; 277:134539. [PMID: 39122065 DOI: 10.1016/j.ijbiomac.2024.134539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Cellulases have been widely used in many fields such as animal feed, textile, food, lignocellulose bioconversion, etc. Efficient and low-cost production of cellulases is very important for its industrial application, especially in bioconversion of lignocellulosic biomass. Filamentous fungi are currently widely used in industrial cellulase production due to their ability to secrete large amounts of active free cellulases extracellularly. This review comprehensively summarized the research progress on cellulases from filamentous fungi in recent years, including filamentous fungi used for cellulase production and its modification strategies, enzyme compositions, characterization methods and application of fungal cellulase systems, and the production of fungal cellulase includes production processes, factors affecting cellulase production such as inducers, fermentation medium, process parameters and their control strategies. Also, the future perspectives and research topics in fungal cellulase production are presented in the end of the review. The review helps to deepen the understanding of the current status of fungal cellulases, thereby promoting the production technology progress and industrial application of filamentous fungal cellulase.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jing Xing
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xianqin Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
4
|
Jiang J, Gong X, Li T, Huang J, Zhou N, Jia X. Immobilized Cellulase on NH 2-MIL-88(Fe) and Its Performance as a Biocatalyst. Appl Biochem Biotechnol 2024; 196:4745-4758. [PMID: 37950795 DOI: 10.1007/s12010-023-04759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/13/2023]
Abstract
To broaden pH range and improve thermal stability, reusability, storage stability, and organic solvent tolerance of natural enzymes, a magnetic material (NH2-MIL-88(Fe)) was synthesized as a new material to immobilize cellulase. The results showed that the optimal temperature and pH of cellulase immobilized on NH2-MIL-88(Fe) showed a wider range compared to free cellulase, and 74% and 83% of the initial activity could be retained after 10 cycles and storage for 49 days, respectively. Moreover, the tolerance for organic solvents was improved compared with free enzyme. The reducing sugar yields from sodium carboxymethylcellulose (CMC) and corn cob hydrolyzed with cellulase immobilized on NH2-MIL-88(Fe) were higher than observed with the free enzyme, which demonstrated the better biocatalytic performance of cellulase immobilized on NH2-MIL-88(Fe).
Collapse
Affiliation(s)
- Jing Jiang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Xiaowu Gong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Tiantian Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Jin Huang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Functional Manufacturing, and ''the Belt and Road (B&R)'' International Joint Research Laboratory of Sustainable Materials, Southwest University, Chongqing, China
| | - Na Zhou
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Xin Jia
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
5
|
Askari H, Soleimanian-Zad S, Kadivar M, Shahbazi S. Creating a novel genetic diversity of Trichoderma afroharzianum by γ-radiation for xylanase-cellulase production. Heliyon 2024; 10:e28349. [PMID: 38590889 PMCID: PMC10999882 DOI: 10.1016/j.heliyon.2024.e28349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/19/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024] Open
Abstract
Creating novel sources of a microbial strain using induced mutation can increase enzyme production for industrial use. According to this, we have developed a mutant strain of Trichoderma afroharzianum by Co60 gamma irradiation. Trichoderma mutants were isolated from an optimum dose of 250 Gy. The qualitative and quantitative screening were used for evaluating their enzyme production and the DNA barcoding method was used to identify the best Trichoderma mutant isolates. The highest cellulase (exo-glucanase, endoglucanase, β-glucosidase, and total cellulase) and xylanase activities were observed in superior mutant isolates of Trichoderma afroharzianum NAS107-M44 and Trichoderma afroharzianum NAS107-M82, which is approximately 1.6-2.5 times higher than its parent strain, respectively. The electrophoretic pattern of proteins showed that the exo-glucanase I, endo-glucanase III, and the xylanase I enzymes hydrolyzed the corn bran, synergistically. Overall, gamma irradiation-induced mutation could be an expedient technique to access such superior mutants for the bioconversion of corn bran wastes.
Collapse
Affiliation(s)
- Hamed Askari
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Sabihe Soleimanian-Zad
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mahdi Kadivar
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Samira Shahbazi
- Nuclear Agriculture School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), Karaj, Iran
| |
Collapse
|
6
|
Andrade VB, Tomazetto G, Almeida DV, Tramontina R, Squina FM, Garcia W. Enzymatic and biophysical characterization of a novel modular cellulosomal GH5 endoglucanase multifunctional from the anaerobic gut fungus Piromyces finnis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140963. [PMID: 37690538 DOI: 10.1016/j.bbapap.2023.140963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/14/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Cellulases from anaerobic fungi are enzymes less-studied biochemically and structurally than cellulases from bacteria and aerobic fungi. Currently, only thirteen GH5 cellulases from anaerobic fungi were biochemically characterized and two crystal structures were reported. In this context, here, we report the functional and biophysical characterization of a novel multi-modular cellulosomal GH5 endoglucanase from the anaerobic gut fungus Piromyces finnis (named here PfGH5). Multiple sequences alignments indicate that PfGH5 is composed of a GH5 catalytic domain and a CBM1 carbohydrate-binding module connected through a CBM10 dockerin module. Our results showed that PfGH5 is an endoglucanase from anaerobic fungus with a large spectrum of activity. PfGH5 exhibited preference for hydrolysis of oat β-glucan, followed by galactomannan, carboxymethyl cellulose, mannan, lichenan and barley β-glucan, therefore displaying multi-functionality. For oat β-glucan, PfGH5 reaches its optimum enzymatic activity at 40 °C and pH 5.5, with Km of 7.1 μM. Ion exchange chromatography analyzes revealed the production of oligosaccharides with a wide degree of polymerization indicated that PfGH5 has endoglucanase activity. The ability to bind and cleave different types of carbohydrates evidence the potential of PfGH5 for use in biotechnology and provide a useful basis for future investigation and application of new anaerobic fungi enzymes.
Collapse
Affiliation(s)
- Viviane Brito Andrade
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Geizecler Tomazetto
- Department of Biological and Chemical Engineering (BCE), Aarhus University, 8200 Aarhus, Denmark
| | - Dnane Vieira Almeida
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Robson Tramontina
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - Fabio Marcio Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
7
|
Atsakou AE, Remonatto D, Júnior RHM, Paz-Cedeno FR, Masarin F, Andrade GSS, de Lucca Gattas EA, de Paula AV. Synthesis of dietary lipids from pumpkin ( Cucurbita pepo. L) oil obtained by enzymatic extraction: a sustainable approach. 3 Biotech 2023; 13:358. [PMID: 37822549 PMCID: PMC10562325 DOI: 10.1007/s13205-023-03781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
This study aimed to assess the nutritional properties of dietary lipids obtained through the modification of aqueous enzymatically extracted pumpkin seed (Cucurbita pepo. L) oil. The optimal growth conditions for producing pectinase using strain Aspergillus sp. 391 were determined, and partial characterization of pectinase and commercial cellulase was conducted. The enzymatic extraction was performed at pH 4.0, 50 °C, for 24 h, using a combination of pectinase and cellulase for optimum effectiveness. The crude oil obtained was analyzed for acid, peroxide, and fatty acid composition. The study found a high amount of unsaturated fatty acids, mainly linoleic acid (C18:2), and a 59% oil recovery rate. Subsequently, this oil was subjected to enzymatic acidolysis with capric acid in solvent-free media, catalyzed by lipase Lipozyme RM IM®, resulting in a product with a higher incorporation degree (48.39 ± 0.5 mol%), observed after 24 h at 60 °C using molar ratio oil:acid capric of 1:9 (run 4). The nutritional properties of this oil were improved.
Collapse
Affiliation(s)
- Abra Eli Atsakou
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| | - Daniela Remonatto
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| | - Rodney Helder Miotti Júnior
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| | - Fernando Roberto Paz-Cedeno
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| | - Fernando Masarin
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| | | | | | - Ariela Veloso de Paula
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| |
Collapse
|
8
|
Yousef NMH, Mawad AMM. Characterization of thermo/halo stable cellulase produced from halophilic Virgibacillus salarius BM-02 using non-pretreated biomass. World J Microbiol Biotechnol 2023; 39:22. [PMID: 36422734 PMCID: PMC9691493 DOI: 10.1007/s11274-022-03446-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
Abstract
The production of extremozymes from halophilic bacteria has increased significantly due to their stability and efficiency in catalyzing a reaction, as well as their capacity to display optimum activity at various salt concentrations. In the current study, the halophilic bacterium Virgibacillus salarius strain BM-02 could utilize many non-pretreated substrates including cellulose, corn stover, sugarcane bagasse and wheat bran as a sole carbon source. However, wheat bran was the best substrate for achieving optimum saccharification yield (90.1%). The partially purified cellulase was active and stable at a wide range of pH (5-8) with residual activities > 58%. Moreover, it was stable at 5-12% of NaCl. Metal ions have a variable impact on the activity of partially purified cellulase however, Fe+3 exhibited the highest increase in the cellulase activity. The enzyme exhibited a thermal stability at 40, 50 and 60 °C with half-lives of 1049.50, 168.14 and 163.5 min, respectively. The value of Vmax was 22.27 U/mL while Km was 2.1 mM. The activation energy of denaturation Ed 69.81 kJ/mol, the enthalpy values (ΔHd) were positive, and the entropy values (ΔS) were negative. Therefore, V. Salarius is recommended as a novel promising halophilic extremozyme producer and agricultural waste remover in the bio-industrial applications.
Collapse
Affiliation(s)
- Naeima M. H. Yousef
- grid.252487.e0000 0000 8632 679XBotany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| | - Asmaa M. M. Mawad
- grid.252487.e0000 0000 8632 679XBotany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| |
Collapse
|
9
|
Guo H, Zhao Y, Chang JS, Lee DJ. Enzymes and enzymatic mechanisms in enzymatic degradation of lignocellulosic biomass: A mini-review. BIORESOURCE TECHNOLOGY 2023; 367:128252. [PMID: 36334864 DOI: 10.1016/j.biortech.2022.128252] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Enzymatic hydrolysis is the key step limiting the efficiency of the biorefinery of lignocellulosic biomass. Enzymes involved in enzymatic hydrolysis and their interactions with biomass should be comprehended to form the basis for looking for strategies to improve process efficiency. This article updates the contemporary research on the properties of key enzymes in the lignocellulose biorefinery and their interactions with biomass, adsorption, and hydrolysis. The advanced analytical techniques to track the interactions for exploiting mechanisms are discussed. The challenges and prospects for future research are outlined.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhao
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
10
|
Kainat S, Arshad MS, Khalid W, Zubair Khalid M, Koraqi H, Afzal MF, Noreen S, Aziz Z, Al-Farga A. Sustainable novel extraction of bioactive compounds from fruits and vegetables waste for functional foods: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022; 25:2457-2476. [DOI: 10.1080/10942912.2022.2144884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Sumaya Kainat
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan
| | | | - Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Hyrije Koraqi
- Faculty of Food Science and Biotechnology, UBT-Higher Education Institution, Pristina, Kosovo
| | | | - Sana Noreen
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Zaira Aziz
- General Medicine, Pakistan institute of Medical Sciences, Islamabad, Pakistan
| | - Ammar Al-Farga
- Department of Food Science, Faculty of Agriculture, Ibb University, Ibb Yemen
| |
Collapse
|
11
|
The Disposition of Bioactive Compounds from Fruit Waste, Their Extraction, and Analysis Using Novel Technologies: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fruit waste contains several bioactive components such as polyphenols, polysaccharides, and numerous other phytochemicals, including pigments. Furthermore, new financial opportunities are created by using fruit ‘leftovers’ as a basis for bioactivities that may serve as new foods or food ingredients, strengthening the circular economy’s properties. From a technical standpoint, organic phenolic substances have become more appealing to industry, in addition to their application as nutritional supplements or functional meals. Several extraction methods for recovering phenolic compounds from fruit waste have already been published, most of which involve using different organic solvents. However, there is a growing demand for eco-friendly and sustainable techniques that result in phenolic-rich extracts with little ecological impact. Utilizing these new and advanced green extraction techniques will reduce the global crisis caused by fruit waste management. Using modern techniques, fruit residue is degraded to sub-zero scales, yielding bio-based commodities such as bioactive elements. This review highlights the most favorable and creative methods of separating bioactive materials from fruit residue. Extraction techniques based on environmentally friendly technologies such as bioreactors, enzyme-assisted extraction, ultrasound-assisted extraction, and their combination are specifically covered.
Collapse
|
12
|
Kaur B, Panesar PS, Anal AK, Ky SC. Recent Trends in the Management of Mango By-products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2021935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Brahmeet Kaur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Parmjit S. Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Anil K. Anal
- Department of Food, Agriculture, and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Son C. Ky
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
13
|
Karuppiah V, Zhixiang L, Liu H, Murugappan V, Kumaran S, Perianaika Anahas AM, Chen J. Co-cultivation of T. asperellum GDFS1009 and B. amyloliquefaciens 1841: Strategy to regulate the production of ligno-cellulolytic enzymes for the lignocellulose biomass degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113833. [PMID: 34592667 DOI: 10.1016/j.jenvman.2021.113833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/21/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The influence of fossil fuels on the environment focused on the development of new technology on biofuels. In this situation, lignocellulolytic hydrolysis enzymes such as Cellobiohydrolase, β-Glucosidase, Endoglucanase, cellulase and xylanase have broad applications in the biofuel production. The Trichoderma have used for the production of cellulase and xylanase to hydrolyze the lignocellulose. Hence, in the present study, co-culture has been employed to induce the production of polysaccharide hydrolyzing enzymes under both induction and repression conditions. The enzyme activity and its gene expression were induced by the co-culture of T. asperellum and B. amyloliquefaciens compared to the monoculture. Further, the co-culture upregulated the transcription regulatory genes and downregulated the repressor genes under both repressor and inducer conditions, respectively. The crude enzyme produced by the co-culture and monocultures using the optimized medium containing molasses, cornmeal and rice bran were further used to hydrolyze the pretreated corn Stover, rice straw, and wheat straw. These results indicate that the co-culture of T. asperellum and B. amyloliquefaciens is a promising and inexpensive method to advance the innovation on the continuous production of cellulase and xylanase under different circumstances for the bioconversion of lignocellulosic biomass into glucose for the bio-fuels.
Collapse
Affiliation(s)
- Valliappan Karuppiah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Lu Zhixiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Hongyi Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Vallikkannu Murugappan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Subramanian Kumaran
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | | | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
14
|
Lucarini M, Durazzo A, Bernini R, Campo M, Vita C, Souto EB, Lombardi-Boccia G, Ramadan MF, Santini A, Romani A. Fruit Wastes as a Valuable Source of Value-Added Compounds: A Collaborative Perspective. Molecules 2021; 26:6338. [PMID: 34770747 PMCID: PMC8586962 DOI: 10.3390/molecules26216338] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 01/06/2023] Open
Abstract
The by-products/wastes from agro-food and in particular the fruit industry represents from one side an issue since they cannot be disposed as such for their impact on the environment but they need to be treated as a waste. However, on the other side, they are a source of bioactive healthy useful compounds which can be recovered and be the starting material for other products in the view of sustainability and a circular economy addressing the global goal of "zero waste" in the environment. An updated view of the state of art of the research on fruit wastes is here given under this perspective. The topic is defined as follows: (i) literature quantitative analysis of fruit waste/by-products, with particular regards to linkage with health; (ii) an updated view of conventional and innovative extraction procedures; (iii) high-value added compounds obtained from fruit waste and associated biological properties; (iv) fruit wastes presence and relevance in updated databases. Nowadays, the investigation of the main components and related bioactivities of fruit wastes is being continuously explored throughout integrated and multidisciplinary approaches towards the exploitation of emerging fields of application which may allow to create economic, environmental, and social value in the design of an eco-friendly approach of the fruit wastes.
Collapse
Affiliation(s)
- Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy;
| | - Margherita Campo
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement Technology and Analysis)-DiSIA, Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Via U. Schiff, 6-50019 Sesto Fiorentino, 50121 Florence, Italy; (M.C.); (A.R.)
| | - Chiara Vita
- QuMAP-PIN S.c.r.l.-Polo Universitario “Città di Prato” Servizi didattici e scientifici per l’Università di Firenze, Piazza Giovanni Ciardi, 25-59100 Prato, Italy;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Mohamed Fawzy Ramadan
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 24231, Saudi Arabia
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement Technology and Analysis)-DiSIA, Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Via U. Schiff, 6-50019 Sesto Fiorentino, 50121 Florence, Italy; (M.C.); (A.R.)
| |
Collapse
|