1
|
Handschuh PA, Murgaš M, Winkler D, Winkler-Pjrek E, Hartmann AM, Domschke K, Baldinger-Melich P, Rujescu D, Lanzenberger R, Spies M. Summer and SERT: Effect of daily sunshine hours on SLC6A4 promoter methylation in seasonal affective disorder. World J Biol Psychiatry 2025; 26:159-169. [PMID: 40114401 DOI: 10.1080/15622975.2025.2477463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVES Knowledge on how sunlight impacts SERT activity via SLC6A4 promoter methylation in Seasonal Affective Disorder (SAD) remains limited. This study aimed to investigate the effect of daily sunshine duration on SLC6A4 promoter methylation in 28 patients with SAD and 40 healthy controls (HC). METHODS Daily sunlight data for Vienna, Austria (mean of 28 days before blood sampling), were obtained from ©GeoSphere Austria. A general linear model analysed SLC6A4 promoter methylation as the dependent variable, with sunlight hours as the independent variable, and group (SAD, HC), age, sex, and 5-HTTLPR/rs25531 as covariates. Exploratory analyses examined the effects of sunlight hours and methylation on Beck Depression Inventory (BDI) scores. RESULTS Sunlight had a significant effect on SLC6A4 promoter methylation (p = 0.03), with more sunlight hours resulting in lower methylation (r = -0.25). However, the interaction between sunlight and group was non-significant, suggesting a rather general effect across both groups. Sunlight also influenced BDI scores (p < 0.01), with fewer sunlight hours leading to higher scores (r = -0.25), which aligns with previous research. SLC6A4 promoter methylation had no significant effect on BDI scores. CONCLUSIONS Our findings suggest that sunlight influences SLC6A4 methylation without SAD specificity.
Collapse
Affiliation(s)
- Patricia A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Edda Winkler-Pjrek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Annette M Hartmann
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Germany
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Choi EY, Ailshire JA. Ambient outdoor heat and accelerated epigenetic aging among older adults in the US. SCIENCE ADVANCES 2025; 11:eadr0616. [PMID: 40009659 PMCID: PMC11864172 DOI: 10.1126/sciadv.adr0616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/15/2025] [Indexed: 02/28/2025]
Abstract
Extreme heat is well-documented to adversely affect health and mortality, but its link to biological aging-a precursor of the morbidity and mortality process-remains unclear. This study examines the association between ambient outdoor heat and epigenetic aging in a nationally representative sample of US adults aged 56+ (N = 3686). The number of heat days in neighborhoods is calculated using the heat index, covering time windows from the day of blood collection to 6 years prior. Multilevel regression models are used to predict PCPhenoAge acceleration, PCGrimAge acceleration, and DunedinPACE. More heat days over short- and mid-term windows are associated with increased PCPhenoAge acceleration (e.g., Bprior7-dayCaution+heat: 1.07 years). Longer-term heat is associated with all clocks (e.g., Bprior1-yearExtremecaution+heat: 2.48 years for PCPhenoAge, Bprior1-yearExtremecaution+heat: 1.09 year for PCGrimAge, and Bprior6-yearExtremecaution+heat: 0.05 years for DunedinPACE). Subgroup analyses show no strong evidence for increased vulnerability by sociodemographic factors. These findings provide insights into the biological underpinnings linking heat to aging-related morbidity and mortality risks.
Collapse
Affiliation(s)
- Eun Young Choi
- Leonard Davis School of Gerontology, University of Southern California, McClintock Avenue, CA90089, Los Angeles, CA 3715, USA
| | - Jennifer A. Ailshire
- Leonard Davis School of Gerontology, University of Southern California, McClintock Avenue, CA90089, Los Angeles, CA 3715, USA
| |
Collapse
|
3
|
Oomatia A, Chervova O, Al-Rashed AM, Smpokou ET, Ecker S, Pearce N, Heggeseth B, Nitsch D, Cardenas A, Beck S, Gonzalez-Quiroz M, Caplin B. Longitudinal leucocyte DNA methylation changes in Mesoamerican nephropathy. ENVIRONMENTAL EPIGENETICS 2025; 11:dvaf001. [PMID: 39917055 PMCID: PMC11801219 DOI: 10.1093/eep/dvaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025]
Abstract
Mesoamerican nephropathy (MeN) is a leading cause of morbidity and mortality in Central America, yet its aetiology remains unclear. Environmental exposures including heat stress, pesticides, and heavy metals have all been suggested as possible causes or exacerbating factors of the disease, but intermittent and cumulative exposures are difficult to capture using conventional biomonitoring. Locus-specific differential DNA-methylation (DNAm) which is known to occur in association with these environmental exposures can be readily measured in peripheral blood leucocytes, and therefore have the potential to be used as biomarkers of these exposures. In this study, we aimed first to perform a hypothesis-free epigenome-wide association study of MeN to identify disease-specific methylation signatures, and second to explore the association of DNAm changes associated with potentially relevant environmental exposures and MeN onset. Whole-blood epigenome-wide DNAm was analysed from a total of 312 blood samples: 53 incident cases (pre- and post-evidence of disease onset), 61 matched controls and 16 established cases, collected over a 5-year period. Mixed-effect models identified three unique differentially methylated regions that associated with incident kidney injury, two of which lie within the intron of genes (Amphiphysin on chromosome 7, and SLC29A3 chromosome 10), none of which have been previously reported with any other kidney disease. Next, we conducted a hypothesis-driven analysis examining the coefficients of CpG sites reported to be associated with ambient temperature, pesticides, arsenic, cadmium, and chromium. However, none showed an association with MeN disease onset. Therefore, we did not observe previously reported patterns of DNA methylation that might support a role of pesticides, temperature, or the examined metals in causing MeN.
Collapse
Affiliation(s)
- Amin Oomatia
- Centre for Kidney and Bladder Health, University College London, London NW3 2PF, United Kingdom
| | - Olga Chervova
- UCL Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Ali M Al-Rashed
- Centre for Kidney and Bladder Health, University College London, London NW3 2PF, United Kingdom
| | | | - Simone Ecker
- UCL Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Neil Pearce
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Brianna Heggeseth
- Department of Data Sciences, Macalester College, St. Paul, MN 55105-1899, United States
| | - Dorothea Nitsch
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford, CA 94305-5405, United States
| | - Stephan Beck
- UCL Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Marvin Gonzalez-Quiroz
- Centre for Kidney and Bladder Health, University College London, London NW3 2PF, United Kingdom
- Department of Environmental and Occupational Health, UT School of Public Health San Antonio, The University of Texas Health Science Centre at San Antonio, San Antonio, TX 78249, United States
| | - Ben Caplin
- Centre for Kidney and Bladder Health, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
4
|
Chiu KC, Hsieh MS, Huang YT, Liu CY. Exposure to ambient temperature and heat index in relation to DNA methylation age: A population-based study in Taiwan. ENVIRONMENT INTERNATIONAL 2024; 186:108581. [PMID: 38507934 DOI: 10.1016/j.envint.2024.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Climate change caused an increase in ambient temperature in the past decades. Exposure to high ambient temperature could result in biological aging, but relevant studies in a warm environment were lacking. We aimed to study the exposure effects of ambient temperature and heat index (HI) in relation to age acceleration in Taiwan, a subtropical island in Asia. METHODS The study included 2,084 participants from Taiwan Biobank. Daily temperature and relative humidity data were collected from weather monitoring stations. Individual residential exposure was estimated by ordinary kriging. Moving averages of ambient temperature and HI from 1 to 180 days prior to enrollment were calculated to estimate the exposure effects in multiple time periods. Age acceleration was defined as the difference between DNA methylation age and chronological age. DNA methylation age was calculated by the Horvath's, Hannum's, Weidner's, ELOVL2, FHL2, phenotypic (Pheno), Skin & blood, and GrimAge2 (Grim2) DNA methylation age algorithms. Multivariable linear regression models, generalized additive models (GAMs), and distributed lag non-linear models (DLNMs) were conducted to estimate the effects of ambient temperature and HI exposures in relation to age acceleration. RESULTS Exposure to high ambient temperature and HI were associated with increased age acceleration, and the associations were stronger in prolonged exposure. The heat stress days with maximum HI in caution (80-90°F), extreme caution (90-103°F), danger (103-124°F), and extreme danger (>124°F) were also associated with increased age acceleration, especially in the extreme danger days. Each extreme danger day was associated with 571.38 (95 % CI: 42.63-1100.13), 528.02 (95 % CI: 36.16-1019.87), 43.9 (95 % CI: 0.28-87.52), 16.82 (95 % CI: 2.36-31.28) and 15.52 (95 % CI: 2.17-28.88) days increase in the Horvath's, Hannum's, Weidner's, Pheno, and Skin & blood age acceleration, respectively. CONCLUSION High ambient temperature and HI may accelerate biological aging.
Collapse
Affiliation(s)
- Kuan-Chih Chiu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ming-Shun Hsieh
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan, Taiwan; Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Department of Mathematics, College of Science, National Taiwan University, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chen-Yu Liu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Population Health Research Center, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Liu J, Huang B, Ding F, Li Y. Environment factors, DNA methylation, and cancer. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7543-7568. [PMID: 37715840 DOI: 10.1007/s10653-023-01749-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
Today, the rapid development of science and technology and the rapid change in economy and society are changing the way of life of human beings and affecting the natural, living, working, and internal environment on which human beings depend. At the same time, the global incidence of cancer has increased significantly yearly, and cancer has become the number one killer that threatens human health. Studies have shown that diet, living habits, residential environment, mental and psychological factors, intestinal flora, genetics, social factors, and viral and non-viral infections are closely related to human cancer. However, the molecular mechanisms of the environment and cancer development remain to be further explored. In recent years, DNA methylation has become a key hub and bridge for environmental and cancer research. Some environmental factors can alter the hyper/hypomethylation of human cancer suppressor gene promoters, proto-oncogene promoters, and the whole genome, causing low/high expression or gene mutation of related genes, thereby exerting oncogenic or anticancer effects. It is expected to develop early warning markers of cancer environment based on DNA methylation, thereby providing new methods for early detection of cancers, diagnosis, and targeted therapy. This review systematically expounds on the internal mechanism of environmental factors affecting cancer by changing DNA methylation, aiming to help establish the concept of cancer prevention and improve people's health.
Collapse
Affiliation(s)
- Jie Liu
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Feifei Ding
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China.
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China.
| |
Collapse
|
6
|
Cappelli K, Mecocci S, Porceddu A, Albertini E, Giontella A, Miglio A, Silvestrelli M, Verini Supplizi A, Marconi G, Capomaccio S. Genome-wide epigenetic modifications in sports horses during training as an adaptation phenomenon. Sci Rep 2023; 13:18786. [PMID: 37914824 PMCID: PMC10620398 DOI: 10.1038/s41598-023-46043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
With his bicentennial breeding history based on athletic performance, the Thoroughbred horse can be considered the equine sport breed. Although genomic and transcriptomic tools and knowledge are at the state of the art in equine species, the epigenome and its modifications in response to environmental stimuli, such as training, are less studied. One of the major epigenetic modifications is cytosine methylation at 5' of DNA molecules. This crucial biochemical modification directly mediates biological processes and, to some extent, determines the organisms' phenotypic plasticity. Exercise indeed affects the epigenomic state, both in humans and in horses. In this study, we highlight, with a genome-wide analysis of methylation, how the adaptation to training in the Thoroughbred can modify the methylation pattern throughout the genome. Twenty untrained horses, kept under the same environmental conditions and sprint training regimen, were recruited, collecting peripheral blood at the start of the training and after 30 and 90 days. Extracted leukocyte DNA was analyzed with the methylation content sensitive enzyme ddRAD (MCSeEd) technique for the first time applied to animal cells. Approximately one thousand differently methylated genomic regions (DMRs) and nearby genes were called, revealing that methylation changes can be found in a large part of the genome and, therefore, referable to the physiological adaptation to training. Functional analysis via GO enrichment was also performed. We observed significant differences in methylation patterns throughout the training stages: we hypothesize that the methylation profile of some genes can be affected early by training, while others require a more persistent stimulus.
Collapse
Affiliation(s)
- Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 06123, Perugia, Italy
- Sports Horse Research Center (CRCS), University of Perugia, 06123, Perugia, Italy
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 06123, Perugia, Italy.
- Sports Horse Research Center (CRCS), University of Perugia, 06123, Perugia, Italy.
| | - Andrea Porceddu
- Department of Agraria, University of Sassari, 06123, Sassari, Italy
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Andrea Giontella
- Department of Veterinary Medicine, University of Perugia, 06123, Perugia, Italy
- Sports Horse Research Center (CRCS), University of Perugia, 06123, Perugia, Italy
| | - Arianna Miglio
- Department of Veterinary Medicine, University of Perugia, 06123, Perugia, Italy
- Sports Horse Research Center (CRCS), University of Perugia, 06123, Perugia, Italy
| | - Maurizio Silvestrelli
- Department of Veterinary Medicine, University of Perugia, 06123, Perugia, Italy
- Sports Horse Research Center (CRCS), University of Perugia, 06123, Perugia, Italy
| | - Andrea Verini Supplizi
- Department of Veterinary Medicine, University of Perugia, 06123, Perugia, Italy
- Sports Horse Research Center (CRCS), University of Perugia, 06123, Perugia, Italy
| | - Gianpiero Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, 06123, Perugia, Italy
- Sports Horse Research Center (CRCS), University of Perugia, 06123, Perugia, Italy
| |
Collapse
|
7
|
Wu Y, Xu R, Li S, Ming Wong E, Southey MC, Hopper JL, Abramson MJ, Li S, Guo Y. Epigenome-wide association study of short-term temperature fluctuations based on within-sibship analyses in Australian females. ENVIRONMENT INTERNATIONAL 2023; 171:107655. [PMID: 36476687 DOI: 10.1016/j.envint.2022.107655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/26/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Temperature fluctuations can affect human health independent of the effect of mean temperature. However, no study has evaluated whether short-term temperature fluctuations could affect DNA methylation. METHODS Peripheral blood DNA methylation for 479 female siblings of 130 families were analysed. Gridded daily temperatures data were obtained, linked to each participant's home address, and used to calculate nine different metrics of short-term temperature fluctuations: temperature variabilities (TVs) within the day of blood draw and preceding one to seven days (TV 0-1 to TV 0-7), diurnal temperature range (DTR), and temperature change between neighbouring days (TCN). Within-sibship design was used to perform epigenome-wide association analyses, adjusting for daily mean temperatures, and other important covariates (e.g., smoking, alcohol use, cell-type proportions). Differentially methylated regions (DMRs) were further identified. Multiple-testing comparisons with a significant threshold of 0.01 for cytosine-guanine dinucleotides (CpGs) and 0.05 for DMRs were applied. RESULTS Among 479 participants (mean age ± SD, 56.4 ± 7.9 years), we identified significant changes in methylation levels in 14 CpGs and 70 DMRs associated with temperature fluctuations. Almost all identified CpGs were associated with exposure to temperature fluctuations within three days. Differentially methylated signals were mapped to 68 genes that were linked to human diseases such as cancer (e.g., colorectal carcinoma, breast carcinoma, and metastatic neoplasms) and mental disorder (e.g., schizophrenia, mental depression, and bipolar disorder). The top three most significantly enriched gene ontology terms were Response to bacterium (TV 0-3), followed by Hydrolase activity, acting on ester bonds (TCN), and Oxidoreductase activity (TV 0-3). CONCLUSIONS Short-term temperature fluctuations were associated with differentially methylated signals across the human genome, which provides evidence on the potential biological mechanisms underlying the health impact of temperature fluctuations. Future studies are needed to further clarify the roles of DNA methylation in diseases associated with temperature fluctuations.
Collapse
Affiliation(s)
- Yao Wu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3010, Australia; Cancer Epidemiology Division, Cancer Council Victoria, VIC 3004, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shuai Li
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
8
|
Xu R, Li S, Wu Y, Yue X, Wong EM, Southey MC, Hopper JL, Abramson MJ, Li S, Guo Y. Wildfire-related PM 2.5 and DNA methylation: An Australian twin and family study. ENVIRONMENT INTERNATIONAL 2023; 171:107704. [PMID: 36542997 DOI: 10.1016/j.envint.2022.107704] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Wildfire-related fine particulate matter (PM2.5) has many adverse health impacts, but its impacts on human epigenome are unknown. We aimed to evaluate the associations between long-term exposure to wildfire-related PM2.5 and blood DNA methylation, and whether the associations differ from those with non-wildfire-related PM2.5. METHODS We studied 479 Australian women comprising 132 twin pairs and 215 of their sisters. Blood-derived DNA methylation was measured using the HumanMethylation450 BeadChip array. Data on 3-year (year of blood collection and previous two years) average wildfire-related and non-wildfire-related PM2.5 at 0.01°×0.01° spatial resolution were created by combining information from satellite observations, chemical transport models, and ground-based observations. Exposure data were linked to each participant's home address, assuming the address did not change during the exposure window. For DNA methylation of each cytosine-guanine dinucleotide (CpG), and for global DNA methylation represented by the average of all measured CpGs or CpGs in repetitive elements, we evaluated their associations with wildfire- or non-wildfire-related PM2.5 using a within-sibship analysis controlling for factors shared between siblings and other important covariates. Differentially methylated regions (DMRs) were defined by comb-p and DMRcate. RESULTS The 3-year average wildfire-related PM2.5 (range: 0.3 to 7.6 µg/m3, mean: 1.6 µg/m3) was negatively, but not significantly (p-values greater than 0.05) associated with all seven global DNA methylation measures. There were 26 CpGs and 33 DMRs associated with wildfire-related PM2.5 (Bonferroni adjusted p-value < 0.05) mapped to 47 genes enriched for pathways related to inflammatory regulation and platelet activation. These genes have been related to many human diseases or phenotypes e.g., cancer, mental disorders, diabetes, obesity, asthma, blood pressure. These CpGs, DMRs and enriched pathways did not overlap with the 1 CpG and 7 DMRs associated with non-wildfire-related PM2.5. CONCLUSIONS Long-term exposure to wildfire-related PM2.5 was associated with various blood DNA methylation signatures in Australian women, and these were distinct from those associated with non-wildfire-related PM2.5.
Collapse
Affiliation(s)
- Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yao Wu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Xu Yue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3010, Australia; Cancer Epidemiology Division, Cancer Council Victoria, VIC 3004, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shuai Li
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
9
|
Du X, Jiang Y, Li H, Zhang Q, Zhu X, Zhou L, Wang W, Zhang Y, Liu C, Niu Y, Chu C, Cai J, Chen R, Kan H. Traffic-related air pollution and genome-wide DNA methylation: A randomized, crossover trial. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157968. [PMID: 35963411 DOI: 10.1016/j.scitotenv.2022.157968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Traffic-related air pollution (TRAP) has been associated with changes in gene-specific DNA methylation. However, few studies have investigated impact of TRAP exposure on genome-wide DNA methylation in circulating blood of human. OBJECTIVE To explore the association between TRAP exposure and genome-wide DNA methylation. METHODS We conducted a randomized, crossover exposure trial among 35 healthy adults in Shanghai, China. All subjects were randomly allocated to a traffic-free park or a main road for consecutive 4 h, respectively. Blood genome-wide DNA methylation after each exposure session was measured by the Infinium Methylation EPIC BeadChip (850K). The differentially methylated CpGs loci associated with TRAP exposure were identified using linear mixed-effect model. RESULTS The average concentrations of traffic-related air pollutants including black carbon, ultrafine particles, carbon dioxide, and nitrogen dioxide were 2-3 times higher in the road compared to those in the park. Methylation levels of 68 CpG loci were significantly changed (false discovery rate < 0.05) following TRAP exposure, among which 49 were hypermethylated and 19 were hypomethylated. The annotated genes based on the differential CpGs loci were related to pathways in cardiovascular signaling, cytokine signaling, immune response, nervous system signaling, and metabolism. CONCLUSIONS We found that TRAP exposure was associated with DNA methylation in dozens of genes concerning cardiometabolic health. This trial for the first-time profiled genome-wide methylation changes induced by TRAP exposure using the 850K assay, providing epigenetic insights in understanding the cardiometabolic effects of TRAP exposure.
Collapse
Affiliation(s)
- Xihao Du
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Huichu Li
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xinlei Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Lu Zhou
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weidong Wang
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Yang Zhang
- Department of Systems Biology for Medicine and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Chen Chu
- Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China
| |
Collapse
|
10
|
Wu Y, Xu R, Yu W, Wen B, Li S, Guo Y. Economic burden of premature deaths attributable to non-optimum temperatures in Italy: A nationwide time-series analysis from 2015 to 2019. ENVIRONMENTAL RESEARCH 2022; 212:113313. [PMID: 35436452 DOI: 10.1016/j.envres.2022.113313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Human beings and society are experiencing substantial consequences caused by non-optimum temperatures. However, limited studies have assessed the economic burden of premature deaths attributable to non-optimum temperatures. OBJECTIVES To characterize the association between daily mean temperature and the economic burden of premature deaths. METHODS A total of 3 228 098 deaths were identified from a national mortality dataset in Italy during 2015 and 2019. We used the value of statistical life to quantify the economic losses of premature death. A two-stage time-series analysis was performed to evaluate the economic losses of premature deaths associated with non-optimum temperatures. Attributable burden for non-optimum temperatures compared with minimum risk temperature were estimated. Potential effect modifiers were further explored. RESULTS From 2015 to 2019, the economic loss of premature deaths due to non-optimum temperatures was $525.52 billion (95% CI: $461.84-$580.80 billion), with the attributable fraction of 5.74% (95% CI: 5.04%-6.34%). Attributable economic burden was largely due to moderate cold temperatures ($309.54 billion, 95% CI: $249.49-$357.34 billion). A higher economic burden was observed for people above the age of 65, accounting for 75.97% ($452.42, 95%CI: $406.97-$488.76 billion) of the total economic burden. In particular, higher fractions attributable to heat temperatures were observed for provinces with the lowest level of GDP per capita but the highest level of urbanization. DISCUSSION This study shows a considerable economic burden of premature deaths attributed to non-optimum temperatures. These figures can help inform tailored prevention to tackle the large economic burden imposed by non-optimum temperatures.
Collapse
Affiliation(s)
- Yao Wu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Rongbin Xu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Wenhua Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bo Wen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
11
|
Tynior W, Ilczuk-Rypuła D, Hudy D, Strzelczyk JK. Is Aberrant DNA Methylation a Key Factor in Molar Incisor Hypomineralization? Curr Issues Mol Biol 2022; 44:2868-2878. [PMID: 35877421 PMCID: PMC9319474 DOI: 10.3390/cimb44070197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Molar incisor hypomineralization (MIH) is a qualitative disturbance of the enamel of the permanent molars and/or incisors. Its etiology is not clearly defined but is connected with different factors occurring before and after birth. It remains difficult to identify a single factor or group of factors, and the problem is further complicated by various overlapping mechanisms. In this study, we attempted to determine whether DNA methylation-an epigenetic mechanism-plays a key role in the etiology of MIH. We collected the epithelium of the oral mucosa from children with MIH and healthy individuals and analyzed its global DNA methylation level in each child using a 5-mC DNA ELISA kit after DNA isolation. There was no statistically significant difference between the global DNA methylation levels in the study and control groups. Then, we also analyzed the associations of the DNA methylation levels with different prenatal, perinatal, and postnatal factors, using appropriate statistical methods. Factors such as number of pregnancies, number of births, type of delivery, varicella infection (under 3 years old), and high fever (under 3 years old) were significantly important. This work can be seen as the first step towards further studies of the epigenetic background of the MIH etiology.
Collapse
Affiliation(s)
- Wojciech Tynior
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (D.H.); (J.K.S.)
- Correspondence: ; Tel.: +48-32-272-21-71
| | - Danuta Ilczuk-Rypuła
- Department of Pediatric Dentistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (D.H.); (J.K.S.)
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (D.H.); (J.K.S.)
| |
Collapse
|