1
|
Yao J, Wu S, Cao Y, Wei J, Tang X, Hu L, Wu J, Yang H, Yang J, Ji X. Dry deposition effect of urban green spaces on ambient particulate matter pollution in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165830. [PMID: 37506920 DOI: 10.1016/j.scitotenv.2023.165830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Particulate matter (PM) is a major source of urban air pollution that poses a serious threat to the environment and human health. This study quantified the dry deposition effect of PM2.5 and PM10 on vegetation using a mathematical model to overcome the limitations of traditional site-scale research. Additionally, multi-source satellite remote sensing products were combined to form a raster dataset to estimate the effect of dry deposition on PM2.5 and PM10 in China's urban green spaces from 2000 to 2020. The spatial and temporal changes in the long-term series were analyzed, and the influence of environmental factors on dry deposition was analyzed in combination with wavelet changes. The experimental results showed that: 1) from 2000 to 2020, the dry deposition effect of PM2.5 and PM10 on vegetation showed an initial increasing and then decreasing trend caused by the sudden drop in atmospheric pollutant particle concentration driven by local policies; 2) broad-leaved forests provided the main dry deposition effects in urban spaces, accounting for 89.22 %, indicating a need to increase the density of these forest types in urban development planning to improve air quality; and 3) PM2.5, PM10, and environmental impact factors have time-frequency scale coherences, and the coherence between PM2.5 reduction and these factors is more complex than that of PM10, with precipitation being the best variable to explain the change in PM2.5 and PM10. These findings are important for the prevention and control of urban air pollution, regional planning of green spaces, and sustainable development of cities.
Collapse
Affiliation(s)
- Jiaqi Yao
- Academy of Eco-civilization Development for JING-JIN-JI Megalopolis, Tianjin Normal University, Tianjin 300387, China
| | - Shuqi Wu
- School of Resource, Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Yongqiang Cao
- Academy of Eco-civilization Development for JING-JIN-JI Megalopolis, Tianjin Normal University, Tianjin 300387, China.
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Xinming Tang
- Land Satellite Remote Sensing Application Center (LASAC), Ministry of Natural Resources of P.R. China, Beijinge 100048, China
| | - Liuru Hu
- Dpto. de Ingeniería Civil, Escuela Politécnica Superior de Alicante, Universidad de Alicante, P.O. Box 99, E-03080 Alicante, Spain
| | - Jianjun Wu
- Academy of Eco-civilization Development for JING-JIN-JI Megalopolis, Tianjin Normal University, Tianjin 300387, China
| | - Huicai Yang
- Academy of Eco-civilization Development for JING-JIN-JI Megalopolis, Tianjin Normal University, Tianjin 300387, China
| | - Jianhua Yang
- Academy of Eco-civilization Development for JING-JIN-JI Megalopolis, Tianjin Normal University, Tianjin 300387, China
| | - Xinhui Ji
- Academy of Eco-civilization Development for JING-JIN-JI Megalopolis, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
2
|
Tan Q, Zhang G, Ding A, Bian Z, Wang X, Xing Y, Zheng L. Anthropogenic land-use activities within watersheds reduce comammox activity and diversity in rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117841. [PMID: 37003226 DOI: 10.1016/j.jenvman.2023.117841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Nitrogen cycling plays a key role in maintaining river ecological functions which are threatened by anthropogenic activities. The newly discovered complete ammonia oxidation, comammox, provides novel insights into the ecological effects of nitrogen on that it oxidizes ammonia directly to nitrate without releasing nitrite as canonical ammonia oxidization conducted by AOA or AOB which is believed to play an important role in greenhouse gas generation. Theoretically, contribution of commamox, AOA and AOB to ammonia oxidization in rivers might be impacted by anthropogenic land-use activities through alterations in flow regime and nutrient input. While how land use pattern affects comammox and other canonical ammonia oxidizers remains elusive. In this study, we examined the ecological effects of land use practices on the activity and contribution of three distinctive groups of ammonia oxidizers (AOA, AOB, comammox) as well as the composition of comammox bacterial communities from 15 subbasins covering an area of 6166 km2 in North China. The results showed that comammox dominated nitrification (55.71%-81.21%) in less disturbed basins characterized by extensive forests and grassland, while AOB became the major player (53.83%-76.43%) in highly developed basins with drastic urban and agricultural development. In addition, increasing anthropogenic land use activities within the watershed lowered the alpha diversity of comammox communities and simplified the comammox network. Additionally, the alterations of NH4+-N, pH and C/N induced by land use change were found to be crucial drivers in determining the distribution and activity of AOB and comammox. Together, our findings cast a new light on aquatic-terrestrial linkages from the view of microorganism-mediated nitrogen cycling and can further be applied to target watershed land use management.
Collapse
Affiliation(s)
- Qiuyang Tan
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Guoyu Zhang
- Department of Environmental Engineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Aizhong Ding
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Zhaoyong Bian
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Xue Wang
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Yuzi Xing
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Lei Zheng
- College of Water Science, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
3
|
Investigating the Effects of Air Pollution on Plant Species Resistance in Urban Areas. HEALTH SCOPE 2023. [DOI: 10.5812/jhealthscope-129786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Context: Air pollution is a serious concern for environmental and human health, especially due to increasing the risk of respiratory and cardiovascular diseases. The purpose of this study was to investigate the effects of air pollution on plant species resistance in urban areas. Evidence Acquisition: This narrative review was conducted by searching the databases of Web of Science, Science Direct, Scopus, PubMed, Google Scholar, and Springer. Sixty-five articles were screened by reading their abstracts and full texts. In the end, 12 relevant papers published from 1993 to 2021 were finally selected. Results: The literature review showed that the green spaces created by municipalities in different areas of the city included a set of trees and shrubs compatible by the climate, grass, soil, and water of the region, leading to a significant improvement in air quality. Based on the results, urban green space has the ability to reduce the amount of artificially produced pollutants, and the use of natural potential of trees can improve the quality of the environment depending on various factors such as the climatic condition of the region and the density and amount of vegetation cover. Conclusions: The most effective ways to reduce health and economic costs include reducing the emission of pollutants from cars and industries, extending urban green space, educating citizens, and organizational planning and cooperation. The findings of this study may have important implications for selecting plant species for vegetation traffic barriers.
Collapse
|
4
|
Pereira MAG, Domingos M, da Silva EA, Aragaki S, Ramon M, Barbosa de Camargo P, Ferreira ML. Isotopic composition (δ 13C and δ 15N) in the soil-plant system of subtropical urban forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158052. [PMID: 35988596 DOI: 10.1016/j.scitotenv.2022.158052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
This study brings information on the dynamics of C and N in urban forests in a subtropical region. We tested the hypothesis that C and N isotopic sign of leaves and soil and physiological traits of trees would vary from center to periphery in a megacity, considering land uses, intensity of automotive fleet and microclimatic conditions. 800 trees from four fragments were randomly chosen. Soil samples were collected at every 10 cm in trenches up to 1 m depth to analyze C and N contents. Both, plants and soil were assessed for δ13C, δ15N, %C and %N. Physiological traits [carbon assimilation (A)], CO2 internal and external pressure ratio (Pi/Pa) and intrinsic water use efficiency iWUE were estimated from δ13C and Δ δ13C in leaves and soil ranged from -27.42 ‰ to -35.39 ‰ and from -21.22 ‰ to -28.18 ‰, respectively, and did not vary along the areas. Center-periphery gradient was not evidenced by C. Emissions derived from fossil fuel and distinct land uses interfered at different levels in δ13C signature. δ15N in the canopy and soil varied clearly among urban forests, following center-periphery gradient. Leaf δ15N decreased from the nearest forest to the city center to the farthest, ranging from <3 ‰ to <-3 ‰. δ15N was a good indicator of atmospheric contamination by NOx emitted by vehicular fleet and a reliable predictor of land use change. %N followed the same trend of δ15N either for soils or leaves. Forest fragments located at the edges of the center-periphery gradient presented significantly lower A and Pi/Pa ratio and higher iWUE. These distinct physiological traits were attributed to successional stage and microclimatic conditions. Results suggest that ecosystem processes related to C and N and ecophysiological responses of urban forests vary according to land use and vehicular fleet.
Collapse
Affiliation(s)
| | - Marisa Domingos
- Instituto de Pesquisas Ambientais, Caixa Postal 68041, 04045-972 Sao Paulo, Brazil
| | | | - Sonia Aragaki
- Instituto de Pesquisas Ambientais, Caixa Postal 68041, 04045-972 Sao Paulo, Brazil
| | - Mauro Ramon
- Universidade Nove de Julho, Av. Dr. Adolpho Pinto, 109 - Barra Funda, Sao Paulo, SP 01156-050, Brazil
| | - Plinio Barbosa de Camargo
- Centro de Energia Nuclear na Agricultura da Universidade de Sao Paulo (CENA/USP), Av. Centenário, 303, 13400-970 Piracicaba, Brazil
| | - Maurício Lamano Ferreira
- Centro Universitário Adventista de Sao Paulo, Estrada de Itapecerica 5859, 05858-001, Sao Paulo, Brazil; Universidade de Guarulhos, R. Eng. Prestes Maia, 88-07023-070 Guarulhos, Brazil.
| |
Collapse
|
5
|
Wang M, Chen F, Zhang D, Rao Q, Li J, Tan SK. Supply-Demand Evaluation of Green Stormwater Infrastructure (GSI) Based on the Model of Coupling Coordination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14742. [PMID: 36429461 PMCID: PMC9690122 DOI: 10.3390/ijerph192214742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The rational spatial allocation of Green Stormwater Infrastructure (GSI), which is an alternative land development approach for managing stormwater close to the source, exerts a crucial effect on coordinating urban development and hydrological sustainability. The balance between the supply and demand of urban facilities has been an influential standard for determining the rationality of this allocation. However, at this stage, research on evaluating planning from the perspective of supply-demand in GSI is still limited. This study proposed an evaluation method for assessing supply-demand levels in GSIs in Guangzhou, China, using the coupling coordination model consisting of Coupling Degree (CD) and Coupling Coordination Degree (CCD). Furthermore, the spatial distributions of supply-demand balance and resource mismatch were identified. The results indicated that the supply and demand levels of GSI exhibited significant spatial differences in distribution, with most streets being in short supply. The GSI exhibited a high CD value of 0.575 and a poor CCD value of 0.328, implying a significant imbalance in facility allocation. A lot of newly planned facilities failed to effectively cover the streets in need of improvement, so it became essential to adjust the planning scheme. The findings of this study can facilitate the decision-makers in assessing the supply-demand levels in GSI and provide a reference of facility allocation for the sustainable construction of Sponge City.
Collapse
Affiliation(s)
- Mo Wang
- College of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, China
| | - Furong Chen
- College of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, China
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Qiuyi Rao
- College of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, China
- Architectural Design & Research Institute, Guangzhou University, Guangzhou 510499, China
| | - Jianjun Li
- College of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, China
- Architectural Design & Research Institute, Guangzhou University, Guangzhou 510499, China
| | - Soon Keat Tan
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
6
|
Assessment of NO2 Purification by Urban Forests Based on the i-Tree Eco Model: Case Study in Beijing, China. FORESTS 2022. [DOI: 10.3390/f13030369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Air quality issues caused by nitrogen dioxide (NO2) have become increasingly serious in Chinese cities in recent years. As important urban green infrastructure, urban forests can mitigate gaseous nitrogen pollution by absorbing NO2 through leaf gas exchange. This study investigated spatiotemporal variations in the NO2 removal capacity of urban forests in Beijing city from 2014–2019, based on the i-Tree Eco deposition model. The results show that the annual removal capacity of administrative districts within Beijing city ranged from 14,910 to 17,747 tons, and the largest capacity (2684 tons) was found in the Fangshan district. The annual removal rate of NO2 by urban forests in administrative districts within Beijing was estimated at between 0.50–1.60 g/m2, reaching the highest (1.47 g/m2) in the Mengtougou district. The annual average absorption of NO2 by urban forests can account for 0.14–2.60% of annual total atmospheric NO2 and potentially reduce the NO2 concentration by 0.10–0.34 µg/m3 on average. The results of a principal component analysis suggest that the distribution of urban forests in Beijing is not optimized to maximize their NO2 removal capacity, being higher in suburban areas and lower in urban areas. This study provides insights into botanical NO2 removal capacity in Beijing city to mitigate atmospheric N pollution, addressing the key role of urban forests in improving human wellbeing.
Collapse
|