1
|
Jiang SY, Shen KW, Brandón MG, Lu SB, Tomberlin JK, Tang XT, Wang H, Xiang FM, Chen XX, Zhang ZJ. Using black soldier fly larval frass to restore soil health. BIORESOURCE TECHNOLOGY 2025; 432:132701. [PMID: 40398567 DOI: 10.1016/j.biortech.2025.132701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/02/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
The importance of sustainable solutions for restoring soil health amidst increasing soil degradation and organic waste accumulation has gained significant attention. Black soldier fly larval (BSFL) bioconversion offers a promising solution by converting organic wastes into value-added products, such as larval biomass and frass. BSFL frass, the main output of the bioconversion, is increasingly recognized for its potential to restore soil health. Here, this paper provides a comprehensive synthesis of BSFL frass production and properties, and explores its role in mitigating multiple problems related to soil degradation. Finally, this paper further discusses the challenges and future directions for the effective, safe, and sustainable use of BSFL frass. In summary, this paper revealed that BSFL frass, with its unique physicochemical properties and a variety of beneficial bioactive compounds and microorganisms, holds the potential to address problems such as soil acidification, fertility degradation, microbial dysbiosis, and soil-borne diseases, thereby restoring soil health.
Collapse
Affiliation(s)
- Shuo-Yun Jiang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Ave 688, Hangzhou, Zhejiang Province 310058, China
| | - Ke-Wei Shen
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Ave 688, Hangzhou, Zhejiang Province 310058, China
| | | | - Sheng-Biao Lu
- Yangtze River Delta Health Agriculture Research Institute, Tongxiang Economic HiTech Zone, Tongxiang 314500, China
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| | - Xiao-Tian Tang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology Zhejiang University, Hangzhou, China
| | - Hang Wang
- Yunnan Key Laboratory of Plateau Wetland Conversion, Restoration and Ecological Services, National Plateau Wetland Research Center, Southwest Forestry University, Kunming 650224, China
| | - Fang-Ming Xiang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Ave 688, Hangzhou, Zhejiang Province 310058, China
| | - Xue-Xin Chen
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| | - Zhi-Jian Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Ave 688, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
2
|
Pei Y, Sun M, Wang M, Lei A, Liu X, Chen H, Yang S. Characteristics of intestinal microbial communities and occurrence of antibiotic resistance genes during degradation of antibiotic mycelial residues by black soldier fly (Hermetia illucens L.) larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125940. [PMID: 40023244 DOI: 10.1016/j.envpol.2025.125940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/26/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The disposal of antibiotic mycelial residues (AMR) presents a distinctive challenge as hazardous organic waste, posing a persistent dilemma for pharmaceutical enterprises in the search for safe and effective solutions. Research has focused on treating chlortetracycline mycelial residue (CMR) using black soldier fly larvae (BSFL) with wheat straw. Different CMR/wheat ratios (0:1 CK, 1:20 L, 1:4 M, and 1:2 H) were used as larval biotransformation substrates. Comprehensive investigations were conducted on BSFL biophysiological parameters, CMR conversion, chlortetracycline (CTC) degradation, the microbial community, the prevalence of antibiotic resistance genes (ARGs), and functional microbes in the BSFL gut. The substrate consumption rates ranged from 28.9% to 34.9%, with the harvested BSFL biomass reaching 0.50-1.04 g/10 larvae. Effective degradation of CTC was observed, with a degradation rate ranging from 32.0% to 61.1%. Tetracycline resistance genes (TRGs) predominated among the ARGs. Three TRG classes (tet_rpp, tet_efflux, and tet_mod) were confirmed in the BSFL intestinal microbiota. A total of 341 out of 368 ARG classes presented significant positive correlations with each other, facilitated by plasmids and integrons. Notably, Clostridium, Enterococcus, Leucobacter, and Morganella were identified as hosts of TRGs, whereas Dysgonomonas, Bacteroides, and Massilibacteroides were the key contributors to BSFL biomass. These findings underscore the ability of the BSFL intestinal microbiota to digest and convert CMR, supporting the simultaneous AFR transformation by BSFL with wheat straw addition.
Collapse
Affiliation(s)
- Yaxin Pei
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China.
| | - Mengxiao Sun
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Minghui Wang
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Aojie Lei
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Xinyu Liu
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Hongge Chen
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Sen Yang
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China.
| |
Collapse
|
3
|
Bruno D, Casartelli M, De Smet J, Gold M, Tettamanti G. Review: A journey into the black soldier fly digestive system: From current knowledge to applied perspectives. Animal 2025:101483. [PMID: 40222868 DOI: 10.1016/j.animal.2025.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/15/2025] Open
Abstract
Recent literature on the black soldier fly (BSF) confirms the deep interest in this species for the bioconversion of organic waste, including challenging substrates that contain recalcitrant macromolecules, and highlights the growing trend in new applications for this insect. While protein meal remains the most prominent use of BSF larvae, emerging research is increasingly exploring alternative applications of biomolecules derived from these larvae, including proteins, lipids, chitin, and antimicrobial peptides. Moreover, the high feeding versatility of this insect is being recognised in fields beyond animal feed, such as bioremediation, where its potential ability to degrade contaminants can present significant ecological benefits. Although there is now widespread agreement that a thorough understanding of BSF biology is essential to enlarge the range of applications in which this insect may offer new sustainable solutions, studies on the digestive system are still limited and we are far from having a whole comprehension of the functional features of this complex structure. In fact, the gut is not only the core of the bioconversion process but also represents the first defence barrier against ingested pathogens, and due to the presence of a highly versatile gut microbiota, it may be a potential source of novel microbes and enzymes that could find application in various biotechnological sectors. This review aims to provide a comprehensive overview of the current knowledge on the BSF midgut -the central region of the gut responsible for nutrient digestion and absorption- in both larvae and adults, together with information about mouthparts and the organisation of the alimentary canal. Moreover, starting from the most recent studies on the midgut and its microbiota, we discuss implications for improving larval production, exploiting challenging substrates, and mitigating pollutants in contaminated biomasses.
Collapse
Affiliation(s)
- D Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant, 3, 21100 Varese, Italy
| | - M Casartelli
- Department of Biosciences, University of Milano, via Celoria, 26, 20133 Milano, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Piazza Carlo di Borbone, 1, 80055 Portici, Italy
| | - J De Smet
- Department of Microbial and Molecular Systems, KU Leuven Campus Geel, Kleinhoefstraat, 4, 2440 Geel, Belgium
| | - M Gold
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse, 9, 8092 Zürich, Switzerland
| | - G Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant, 3, 21100 Varese, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Piazza Carlo di Borbone, 1, 80055 Portici, Italy.
| |
Collapse
|
4
|
Xu X, Huang Y, Luo X. Black soldier fly: a new model for bioremediation of antibiotic pollutants. Natl Sci Rev 2025; 12:nwaf043. [PMID: 40070806 PMCID: PMC11895505 DOI: 10.1093/nsr/nwaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 03/14/2025] Open
Affiliation(s)
- Xia Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, China
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, China
| | - Yongping Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Xingyu Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, China
| |
Collapse
|
5
|
Zhang B, Yang R, He S, Dai S, Hu Q, Li X, Su H, Shi J, Zhao Z, Wu D. Swill and Pig Manure Substrates Differentially Affected Transcriptome and Metabolome of the Black Soldier Fly Larvae. Int J Mol Sci 2024; 25:12147. [PMID: 39596214 PMCID: PMC11594880 DOI: 10.3390/ijms252212147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Black soldier fly larvae (Hermetia illucens) (BSFL) are insect larvae with significant ecological and economic value. This study aims to investigate whether swill and manure had any effects on the transcriptome and metabolome of BSFL. Through high-throughput transcriptome sequencing, we found that larvae fed with swill exhibited higher levels of gene expression, especially with the upregulation of genes related to energy metabolism, amino acid metabolism, and redox reactions. Metabolomics analysis showed a significant increase in energy metabolism-related metabolites, such as organic acids and amino acids, in the swill-fed larvae. In contrast, gene expression and metabolic characteristics in the pig manure-fed group indicated a higher stress response, with relevant genes and metabolites (such as short-chain fatty acids and antioxidants) showing significant upregulation. GO and KEGG enrichment analyses further supported these results, suggesting that swill promotes larval growth and metabolism, whereas pig manure induces the activation of stress response mechanisms. These findings offer clear molecular and physiological insights into the optimization of substrate selection for enhancing the performance of BSFL in waste management.
Collapse
Affiliation(s)
- Bin Zhang
- Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224, China; (B.Z.); (R.Y.); (Q.H.); (X.L.)
| | - Rencan Yang
- Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224, China; (B.Z.); (R.Y.); (Q.H.); (X.L.)
| | - Shichun He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (H.S.); (J.S.)
| | - Sifan Dai
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (H.S.); (J.S.)
| | - Qingquan Hu
- Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224, China; (B.Z.); (R.Y.); (Q.H.); (X.L.)
| | - Xinrong Li
- Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224, China; (B.Z.); (R.Y.); (Q.H.); (X.L.)
| | - Hongren Su
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (H.S.); (J.S.)
| | - Jingyi Shi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (H.S.); (J.S.)
| | - Zhiyong Zhao
- Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224, China; (B.Z.); (R.Y.); (Q.H.); (X.L.)
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (H.S.); (J.S.)
| |
Collapse
|
6
|
Lin SW, Shelomi M. Black Soldier Fly ( Hermetia illucens) Microbiome and Microbe Interactions: A Scoping Review. Animals (Basel) 2024; 14:3183. [PMID: 39595236 PMCID: PMC11590926 DOI: 10.3390/ani14223183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Black soldier fly (Hermetia illucens, BSF) is farmed worldwide to convert organic waste into usable biomaterials. Studies on the larval microbiome have been carried out to check for symbiotic or pathogenic microbes and their respective functions and fates. Some studies tested these microbes for industrial applications, while others tested the effects of exogenous microbes as probiotics or for substrate pre-processing to improve larval fitness, bioconversion rates, or nutritional qualities. This review examined all peer-reviewed literature on these topics to consolidate many disparate findings together. It followed the PRISMA guidelines for scoping reviews. The results found no evidence of globally conserved core microbes, as diet strongly correlated with gut microbiome, but some genera appeared most frequently in BSF larval guts worldwide regardless of diet. The gut microbes undoubtably assist in digestion, including pathogen suppression, and so microbial probiotics show promise for future investigations. However, the common gut microbes have not been explored as probiotics themselves, which would be a promising direction for future work. The impacts of BSF bioconversion on pathogens varied, so each rearing facility should investigate and manage their pathogen risks independently. The data summarized in this study provide useful reference points for future investigations into BSF-microbe interactions.
Collapse
Affiliation(s)
| | - Matan Shelomi
- Department of Entomology, National Taiwan University, No 1 Sec 4 Roosevelt Rd, Taipei 106319, Taiwan
| |
Collapse
|
7
|
Awasthi MK, Dregulo AM, Yadav A, Kumar V, Solanki MK, Garg VK, Sindhu R. Hormesis of black soldier fly larva: Influence and interactions in livestock manure recycling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122352. [PMID: 39232324 DOI: 10.1016/j.jenvman.2024.122352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Black soldier fly larvae (BSFL) are considered important organisms, utilized as tools to transform waste including manure into valuable products. The growth and cultivation of BSFL are influenced by various factors, such as the presence of toxic substances in the feed and parasites. These factors play a crucial role in hormesis, and contributing to regulate these contaminants hermetic doses to get sustainable byproducts. This review aims to understand the effects on BSFL growth and activities in the presence of compounds like organic and inorganic pollutants. It also assesses the impact of microbes on BSFL growth and explores the bioaccumulation of pharmaceutical compounds, specifically focusing on heavy metals, pesticides, pharmaceuticals, indigenous bacteria, insects, and nematodes. The review concludes by addressing knowledge gaps, proposing future biorefineries, and offering recommendations for further research.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| | - Andrei Mikhailovich Dregulo
- National Research University Higher School of Economics, 17 Promyshlennaya str, 198095, Saint-Petersburg, Russia
| | - Anoop Yadav
- Department of Environmental Studies, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Vinay Kumar
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam-602105, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India; Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Vinod Kumar Garg
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, 151001, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, 691505, Kerala, India
| |
Collapse
|
8
|
Deng WK, He JL, Deng YH, Chen JY, Wu YB, Liao XD, Xing SC. Biosafety assessment of laying hens fed different treatments of black soldier flies (Hermetia illucens) under doxycycline stress. Poult Sci 2024; 103:103965. [PMID: 38941787 PMCID: PMC11261150 DOI: 10.1016/j.psj.2024.103965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/30/2024] Open
Abstract
The black soldier fly (BSF, Hermetia illucens) is a resource insect that can utilize livestock and poultry feces. However, BSFs may also increase the risk of transmission of antibiotic resistance genes (AGRs) that are widespread in livestock and poultry farm environments. Therefore, we aimed to evaluate the biosecurity risks of different BSF treatments in the laying chicken food chain using the "chicken manure-BSF-laying hens" model. Our results indicated that different BSF treatments significantly affected antibiotic residue, ARGs, MGEs, bacterial antibiotic resistance, and bacterial microbial community composition in the food chain of laying hens fed BSFs. These risks can be effectively reduced through starvation treatment and high-temperature grinding treatment. Comprehensive risk assessment analysis revealed that starvation combined with high-temperature milling (Group H) had the greatest effect.
Collapse
Affiliation(s)
- Wei-Kang Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jun-Liang He
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yi-Heng Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yin-Bao Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, Guangdong, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
9
|
Carpentier J, Abenaim L, Luttenschlager H, Dessauvages K, Liu Y, Samoah P, Francis F, Caparros Megido R. Microorganism Contribution to Mass-Reared Edible Insects: Opportunities and Challenges. INSECTS 2024; 15:611. [PMID: 39194816 DOI: 10.3390/insects15080611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
The interest in edible insects' mass rearing has grown considerably in recent years, thereby highlighting the challenges of domesticating new animal species. Insects are being considered for use in the management of organic by-products from the agro-industry, synthetic by-products from the plastics industry including particular detoxification processes. The processes depend on the insect's digestive system which is based on two components: an enzymatic intrinsic cargo to the insect species and another extrinsic cargo provided by the microbial community colonizing-associated with the insect host. Advances have been made in the identification of the origin of the digestive functions observed in the midgut. It is now evident that the community of microorganisms can adapt, improve, and extend the insect's ability to digest and detoxify its food. Nevertheless, edible insect species such as Hermetia illucens and Tenebrio molitor are surprisingly autonomous, and no obligatory symbiosis with a microorganism has yet been uncovered for digestion. Conversely, the intestinal microbiota of a given species can take on different forms, which are largely influenced by the host's environment and diet. This flexibility offers the potential for the development of novel associations between insects and microorganisms, which could result in the creation of synergies that would optimize or expand value chains for agro-industrial by-products, as well as for contaminants.
Collapse
Affiliation(s)
- Joachim Carpentier
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Linda Abenaim
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Hugo Luttenschlager
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Kenza Dessauvages
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Yangyang Liu
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
- Institute of Feed Research, Chinese Academy of Agricultural Sciences (CAAS), Haidian District, Beijing 100193, China
| | - Prince Samoah
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Rudy Caparros Megido
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
10
|
Li C, Rusch TW, Dickerson AJ, Tarone AM, Tomberlin JK. Larval diet impacts black soldier fly (Diptera: Stratiomyidae) thermal tolerance and preference. INSECT SCIENCE 2024. [PMID: 39099549 DOI: 10.1111/1744-7917.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024]
Abstract
Thermal tolerance and preference are key parameters impacting agricultural production systems. In this study, the impact of larval diet on black soldier fly thermal tolerance and preference across life-stages and sexes was examined. Larvae were fed either a low-protein high-carbohydrate synthetic diet (i.e., P7C35), a high-protein low-carbohydrate synthetic diet (i.e., P35C7), or the Gainesville diet (i.e., C) as a control and reference. Our results demonstrate that the impacts of larval diet on black soldier fly thermal tolerance and preference could be stage and sex specific. The mean heat knockdown temperatures (HKT) ranged between 46.6 and 47.9 °C. Synthetic diets resulted in greater HKT and the difference decreased form larvae (e.g., ∼1 °C) to adults (e.g., ∼0.2 °C). The mean chill-coma recovery time (CCRT) ranged between 8.3 and 21.6 min. Not much differences were detected between diets, but CCRT became longer from larvae to adults. The mean thermal preference ranged between 13.6 and 29.5 °C. Larvae fed synthetic diets preferred much lower temperatures than the control diet. A bimodal distribution was observed for adults regardless of sex. Differences on body mass, lipid, and protein contents were detected among diets; however, more research should be done before any conclusions can be linked to their thermal traits. These findings highlight the importance of considering the ingredients and nutritional makeup of larval diets when optimizing temperature management protocols for mass production of black soldier flies. Conversely, specific diets can be developed to promote survival under extreme rearing temperatures.
Collapse
Affiliation(s)
- Chujun Li
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
- Department of Entomology, Texas A&M University, College Station, Texas, United States
| | - Travis W Rusch
- Department of Entomology, Texas A&M University, College Station, Texas, United States
- USDA-ARS, Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas, United States
| | - Amy J Dickerson
- Department of Entomology, Texas A&M University, College Station, Texas, United States
| | - Aaron M Tarone
- Department of Entomology, Texas A&M University, College Station, Texas, United States
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, College Station, Texas, United States
| |
Collapse
|
11
|
Cao Q, Liu C, Chen L, Qin Y, Wang T, Wang C. Synergistic impacts of antibiotics and heavy metals on Hermetia illucens: Unveiling dynamics in larval gut bacterial communities and microbial metabolites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121632. [PMID: 38950506 DOI: 10.1016/j.jenvman.2024.121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Hermetia illucens larvae showcases remarkable bioremediation capabilities for both antibiotics and heavy metal contaminants. However, the distinctions in larval intestinal microbiota arising from the single and combined effects of antibiotics and heavy metals remain poorly elucidated. In this study, we delved into the details of larval intestinal bacterial communities and microbial metabolites when exposed to single and combined contaminants of oxytetracycline (OTC) and hexavalent chromium (Cr(VI)). After conversion, single contaminant-spiked substrate showed 75.5% of OTC degradation and 95.2% of Cr(VI) reductiuon, while combined contaminant-spiked substrate exhibited 71.3% of OTC degradation and 93.4% of Cr(VI) reductiuon. Single and combined effects led to differences in intestinal bacterial communities, mainly reflected in the genera of Enterococcus, Pseudogracilibacillus, Gracilibacillus, Wohlfahrtiimonas, Sporosarcina, Lysinibacillus, and Myroide. Moreover, these effects also induced differences across various categories of microbial metabolites, which categorized into amino acid and its metabolites, benzene and substituted derivatives, carbohydrates and its metabolites, heterocyclic compounds, hormones and hormone-related compounds, nucleotide and its metabolites, and organic acid and its derivatives. In particular, the differences induced OTC was greater than that of Cr(VI), and combined effects increased the complexity of microbial metabolism compared to that of single contaminant. Correlation analysis indicated that the bacterial genera, Preudogracilibacillus, Enterococcus, Sporosarcina, Lysinibacillus, Wohlfahrtiimonas, Ignatzschineria, and Fusobacterium exhibited significant correlation with significant differential metabolites, these might be used as indicators for the resistance and bioremediation of OTC and Cr(VI) contaminants. These findings are conducive to further understanding that the metabolism of intestinal microbiota determines the resistance of Hermetia illucens to antibiotics and heavy metals.
Collapse
Affiliation(s)
- Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Li Chen
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuanhang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
12
|
van Dongen KCW, de Lange E, van Asseldonk LLM, Zoet L, van der Fels-Klerx HJ. Safety and transfer of veterinary drugs from substrate to black soldier fly larvae. Animal 2024; 18:101214. [PMID: 38970990 DOI: 10.1016/j.animal.2024.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/08/2024] Open
Abstract
There is an increasing interest in edible insects in Europe for feed and food purposes. Quantitative information on the transfer of chemical hazards from substrates to larvae is needed to evaluate food and feed safety aspects. This evaluation is especially needed when organic substrates or residual streams such as manure will be applied as substrate, contributing to a circular food system. This study investigated the transfer of veterinary drugs from spiked substrate to black soldier fly larvae (Hermetia illucens). Veterinary drugs that are commonly administered to chicken, fattening pigs, and cattle and regularly detected in manure were included: three different antibiotics (enrofloxacin, oxytetracycline, sulfamethoxazole), three coccidiostats (narasin, salinomycin, toltrazuril) and one antiparasitic drug (eprinomectin). The chemicals were spiked to insect substrate to reach final concentrations of 0.5 and 5 mg/kg for the antibiotics and the antiparasitic drug, and 5 and 50 mg/kg for the coccidiostats. Black soldier fly larvae were reared for 1 week on the spiked substrates, and the transfer of the veterinary drugs to the larvae and frass was quantified using liquid chromatography coupled with tandem mass spectrometry. Only oxytetracycline and eprinomectin reduced the average weight and/or survival of the black soldier fly larvae. The transfer of the veterinary drugs to the larvae was on average 19.2% for oxytetracycline, 12% for enrofloxacin, 9.5% for narasin, 8.1% for eprinomectin, 3.9% for salinomycin, 4.2% for toltrazuril, and 0.2% for sulfamethoxazole, relative to concentrations in the substrate. Mass-balance calculations revealed that the larvae seem to metabolise veterinary drugs, and indeed, metabolites of enrofloxacin, sulfamethoxazole, and toltrazuril were detected in the larvae and frass. In conclusion, insect-rearing substrates should be evaluated for the presence of veterinary drug residues to ensure feed (and food) safety, as well as because of possible effects on insect growth.
Collapse
Affiliation(s)
- K C W van Dongen
- Wageningen Food Safety Research, Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands.
| | - E de Lange
- Wageningen Food Safety Research, Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - L L M van Asseldonk
- Wageningen Food Safety Research, Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - L Zoet
- Bestico B.V, Veilingweg 6, 2651 BE Berkel en Rodenrijs, the Netherlands
| | - H J van der Fels-Klerx
- Wageningen Food Safety Research, Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| |
Collapse
|
13
|
Gwenzi W, Gufe C, Alufasi R, Makuvara Z, Marumure J, Shanmugam SR, Selvasembian R, Halabowski D. Insects to the rescue? Insights into applications, mechanisms, and prospects of insect-driven remediation of organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171116. [PMID: 38382596 DOI: 10.1016/j.scitotenv.2024.171116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Traditional and emerging contaminants pose significant human and environmental health risks. Conventional physical, chemical, and bioremediation techniques have been extensively studied for contaminant remediation. However, entomo- or insect-driven remediation has received limited research and public attention. Entomo-remediation refers to the use of insects, their associated gut microbiota, and enzymes to remove or mitigate organic contaminants. This novel approach shows potential as an eco-friendly method for mitigating contaminated media. However, a comprehensive review of the status, applications, and challenges of entomo-remediation is lacking. This paper addresses this research gap by examining and discussing the evidence on entomo-remediation of various legacy and emerging organic contaminants. The results demonstrate the successful application of entomo-remediation to remove legacy organic contaminants such as persistent organic pollutants. Moreover, entomo-remediation shows promise in removing various groups of emerging contaminants, including microplastics, persistent and emerging organic micropollutants (e.g., antibiotics, pesticides), and nanomaterials. Entomo-remediation involves several insect-mediated processes, including bio-uptake, biotransfer, bioaccumulation, and biotransformation of contaminants. The mechanisms underlying the biotransformation of contaminants are complex and rely on the insect gut microbiota and associated enzymes. Notably, while insects facilitate the remediation of contaminants, they may also be exposed to the ecotoxicological effects of these substances, which is often overlooked in research. As an emerging field of research, entomo-remediation has several knowledge gaps. Therefore, this review proposes ten key research questions to guide future perspectives and advance the field. These questions address areas such as process optimization, assessment of ecotoxicological effects on insects, and evaluation of potential human exposure and health risks.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, 18A Bevan Building, Borrowdale Road, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | | | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| |
Collapse
|
14
|
Xia J, Ge C, Yao H. Identification of functional microflora underlying the biodegradation of sulfadiazine-contaminated substrates by Hermetia illucens. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132892. [PMID: 37922583 DOI: 10.1016/j.jhazmat.2023.132892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/14/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The increasing discharge of antibiotic residues into the natural environment, stemming from both human activities and animal farming, has detrimental effects on natural ecosystems and serves as a significant driving force for the spread of antibiotic resistance. Biodegradation is an important method for the elimination of antibiotics from contaminated substrates, but the identifying in situ microbial populations involved in antibiotic degradation is challenging. Here, DNA stable isotope probing (DNA-SIP) was employed to identify active sulfadiazine (SDZ) degrading microbes in the gut of black soldier fly larvae (BSFLs). At an initial SDZ concentration of 100 mg kg-1, the highest degradation efficiency reached 73.99% after 6 days at 28 °C. DNA-SIP revealed the incorporation of 13C6 from labeled SDZ in 9 genera, namely, Clostridum sensu stricto 1, Nesterenkonia, Bacillus, Halomonas, Dysgonomonas, Caldalkalibacillus, Enterococcus, g_unclassified_f_Xanthomonadaceae and g_unclassified_f_Micrococcaceae. Co-occurrence network analysis revealed that a significant positive correlation existed among SDZ degrading microbes in the gut microbiota, e.g., between Clostridium sensu stricto 1 and Nesterenkonia. Significant increases in carbohydrate metabolism, membrane transport and translation were crucial in the biodegradation of SDZ in the BSFL gut. These results elucidate the structure of SDZ-degrading microbial communities in the BSFL gut and in situ degradation mechanisms.
Collapse
Affiliation(s)
- Jing Xia
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China.
| |
Collapse
|
15
|
Pei Y, Sun M, Zhang J, Lei A, Chen H, Kang X, Ni H, Yang S. Comparative Metagenomic and Metatranscriptomic Analyses Reveal the Response of Black Soldier Fly ( Hermetia illucens) Larvae Intestinal Microbes and Reduction Mechanisms to High Concentrations of Tetracycline. TOXICS 2023; 11:611. [PMID: 37505576 PMCID: PMC10386730 DOI: 10.3390/toxics11070611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Black soldier fly (Hermetia illucens L) larvae (BSFL) possess remarkable antibiotic degradation abilities due to their robust intestinal microbiota. However, the response mechanism of BSFL intestinal microbes to the high concentration of antibiotic stress remains unclear. In this study, we investigated the shift in BSFL gut microbiome and the functional genes that respond to 1250 mg/kg of tetracycline via metagenomic and metatranscriptomic analysis, respectively. The bio-physiological phenotypes showed that the survival rate of BSFL was not affected by tetracycline, while the biomass and substrate consumption of BSFL was slightly reduced. Natural BSFL achieved a 20% higher tetracycline degradation rate than the germ-free BSFL after 8 days of rearing. Metagenomic and metatranscriptomic sequencing results revealed the differences between the entire and active microbiome. Metatranscriptomic analysis indicated that Enterococcus, Vagococcus, Providencia, and Paenalcaligenes were the active genera that responded to tetracycline. Furthermore, based on the active functional genes that responded to tetracycline pressure, the response mechanisms of BSFL intestinal microbes were speculated as follows: the Tet family that mediates the expression of efflux pumps expel tetracycline out of the microbes, while tetM and tetW release it from the ribosome. Eventually, tetracycline was degraded by deacetylases and novel enzymes. Overall, this study provides novel insights about the active intestinal microbes and their functional genes in insects responding to the high concentration of antibiotics.
Collapse
Affiliation(s)
- Yaxin Pei
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengxiao Sun
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiran Zhang
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Aojie Lei
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongge Chen
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangtao Kang
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongyuhang Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sen Yang
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
16
|
Xu Z, Wu X, Zhang J, Cheng P, Xu Z, Sun W, Zhong Y, Wang Y, Yu G, Liu H. Microplastics existence intensified bloom of antibiotic resistance in livestock feces transformed by black soldier fly. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120845. [PMID: 36496063 DOI: 10.1016/j.envpol.2022.120845] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Efficient degradation of residual antibiotics in livestock and poultry feces by black soldier flies (BSFs) has been widely reported. Nevertheless, the effects of widely detected microplastics in feces on the dynamic reduction of antibiotics and the transfer of gut bacterial resistome remain unclear. In this study, red fluorescence-labeled microplastics are observed to be abundantly distributed in BSFs gut, which caused epithelial cell damage along with gut peristalsis and friction, thereby releasing reactive oxygen species and activating the antioxidant enzyme system. In addition, they result in not only in inflammatory cytokine release to induce gut inflammation, but fecal hardening because of mucus released from the BSFs, thereby hindering organic mineralization and antibiotic degradation. Besides, the gut pathogenic bacteria easily obtain growth energy and crowded out ecological niches by reducing nitrate produced by inflammatory host cells to nitrite with nitrate reductase. Consequently, linear discriminant analysis effect size and detrended correspondence analysis found that microplastic intake significantly reshape the microbial community structure and cause the significant reduction of several important organic-decomposing bacteria and probiotics (e.g., Pseudomonadales, Coriobacteriales, Lachnospirales, and Ruminococcaceae). In addition, a large number of pathogenic bacteria (e.g., Enterococcaceae, Hungateiclostridiaceae, and Clostridia) are enriched in feces and BSFs gut. Weighted correlation network analysis and bubble diagram analysis indicate that microplastic intake intensified gut colonization of pathogenic bacteria carrying antibiotic-resistant genes/mobile genetic elements, driving the bloom of antibiotic resistance in transformed fecal piles. Therefore, microplastics in feces should be isolated as much as possible before insect transformation.
Collapse
Affiliation(s)
- Zhimin Xu
- College of Resources and Environment, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xinyue Wu
- College of Resources and Environment, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiexiang Zhang
- Guangzhou Radio & TV Measurement & Testing Co., Ltd., Guangzhou, 510656, China
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zhihao Xu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinggangshan University, Jian, 343009, China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management Institute of Environmental and Soil Sciences, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yuming Zhong
- College of Resources and Environment, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Hui Liu
- College of Resources and Environment, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| |
Collapse
|
17
|
Pei Y, Zhao S, Chen X, Zhang J, Ni H, Sun M, Lin H, Liu X, Chen H, Yang S. Bacillus velezensis EEAM 10B Strengthens Nutrient Metabolic Process in Black Soldier Fly Larvae (Hermetia illucens) via Changing Gut Microbiome and Metabolic Pathways. Front Nutr 2022; 9:880488. [PMID: 35662952 PMCID: PMC9161358 DOI: 10.3389/fnut.2022.880488] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Insects are a potential alternative protein source to solve the food shortage crisis. Previous studies have illustrated that probiotics can improve the substrate conversion efficiency of insects and increase insect protein content. However, the effects of probiotics on insect physiology and nutrient metabolism are still not well understood. Here, the black soldier fly larvae (BSFL), Hermetia illucens (Diptera: Stratiomyidae), was used as a study subject to deeply investigate the specific interaction among a novel probiotic, Bacillus velezensis EEAM 10B (10B), intestinal microbiota, and the host. In this study, the effects of 10B on the survival and physiology of BSFL were first analyzed. It shows that 10B significantly elevated the substrate conversion rate, average dry weight, and protein content of BSFL by 5%, 0.13 g/pc, and 8%, respectively. Then, we assessed the effect of 10B on the microbial community composition in the gut and frass of BSFL using Illumina Miseq sequencing. It shows that 10B significantly altered the microbial composition of the gut, but not that of the frass. Pearson’s correlation analysis further showed that the Bacillus, unclassified_of_Caloramatoraceae, and Gracilibacillus were positively correlated with the survival rate, crude protein content, and substrate conversion rate of BSFL. To further investigate the effect of 10B on host metabolism, metabolic analyses on germ-free BSFL, monobacterial intestinal BSFL, and natural BSFL were also performed. The results proved that 10B (i) played a vital role in the survival of BSFL; and (ii) regulated the amino acid synthetic and metabolic process of BSFL, thus leading to the rise of the protein content of BSFL. In addition, vitamin backfill assays verified that the BSFL survival rate was significantly improved by supplying the germ-free BSFL with riboflavin, which further suggests that 10B determines the survival of BSFL via delivering riboflavin. Overall, this study provides a reference for understanding the comprehensive contribution of a specific probiotic to its host.
Collapse
Affiliation(s)
- Yaxin Pei
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
| | - Sijie Zhao
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
| | - Xiang Chen
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
| | - Jiran Zhang
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
| | - Hongyuhang Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Mengxiao Sun
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
| | - Hui Lin
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
| | - Xinyu Liu
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
| | - Hongge Chen
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
| | - Sen Yang
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
- *Correspondence: Sen Yang,
| |
Collapse
|