1
|
Huang Q, Dai Y, Yang G, Zhuang L, Luo C, Li J, Zhang G. New insights into autochthonous fungal bioaugmentation mechanisms for recalcitrant petroleum hydrocarbon components using stable isotope probing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178082. [PMID: 39700984 DOI: 10.1016/j.scitotenv.2024.178082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Autochthonous fungal bioaugmentation (AFB) is a promising strategy for the microbial remediation of petroleum hydrocarbon (PH)-contaminated soils. However, the mechanisms underlying AFB, particularly for degrading recalcitrant PH components, are not fully understood. This study employed stable isotope probing (SIP) and high-throughput sequencing to investigate the AFB mechanisms of two hydrocarbon-degrading fungi, Fusarium solani LJD-11 and Aspergillus fumigatus LJD-29, focusing on three challenging PH components: n-Hexadecane (n-Hex), Benzo[a]pyrene (BaP), and Dibenzothiophene (DBT). Our findings indicate that both fungal strains significantly enhanced pollutant removal rates, with combined application yielding optimal results. AFB treatment reduced the microbial diversity index and altered the soil microbial community, especially affecting fungal populations. A significant correlation between the microbial diversity index and degradation efficiency suggests that greater diversity enhances pollutant removal. SIP analysis showed that LJD-11 and LJD-29 could directly assimilate n-Hex and DBT, but not BaP. Correlation analyses between functional microorganisms and other biological indicators suggest that the removal of pollutants is also attributable to indigenous functional bacteria. Additionally, non-inoculated functional fungi present in the soil play a crucial role in BaP degradation. These findings reveal distinct degradation pathways for the three pollutants. The addition of carrier substrate reduced the complexity of the network, while AFB treatment restored it. In addition, the combined fungal treatment resulted in higher network parameters, leading to a more complex and stable network structure. These results provide insights into the mechanisms of AFB for degrading recalcitrant PH components, underscoring its potential for in situ bioremediation of petroleum-contaminated soils.
Collapse
Affiliation(s)
- Qihui Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo 315000, China
| | - Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
2
|
Zhang Y, Wang B, Hassan M, Zhang X. Biochar coupled with multiple technologies for the removal of nitrogen and phosphorus from water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122407. [PMID: 39265490 DOI: 10.1016/j.jenvman.2024.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
Water eutrophication caused by nitrogen (N) and phosphorus (P) has become a global environmental issue. Biochar is a competent adsorbent for removing N and P from wastewater. However, compared with commercial activated carbon, biochar has relatively limited adsorption capacity. To broaden the field scale application of biochar, biochar coupled with multiple technologies (BC-MTs) (such as microorganisms, electrochemistry, biofilm, phytoremediation, etc.) have been extensively developed for environmental remediation. Nevertheless, due to the fluctuations and differences in biochar types, coupling methods, and wastewater types, various techniques show different removal mechanisms and performance, hindering the promotion and application of BC-MTs. A systematic review of the research progress of BC-MTs is highly necessary to gain a better understanding of the current research status and progress, as well as to promote the application of these techniques. In this paper, the application of pristine and modified biochar in adsorbing N and P in wastewater is critically reviewed. Then the removal performance, influencing factors, mechanisms, and the environmental applications of BC-MTs in wastewater are systematically summarized. In addition, the cost analysis and risk assessment of BC-MTs in environmental applications are conducted. Finally, suggestions and prospects for future research and practical application are put forward.
Collapse
Affiliation(s)
- Yaping Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Masud Hassan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| |
Collapse
|
3
|
Liu C, Deng J. High-throughput sequencing-based analysis of the composition and diversity of the endophytic bacterial community in the roots of Dipsacus asperoides. 3 Biotech 2024; 14:149. [PMID: 38725865 PMCID: PMC11076436 DOI: 10.1007/s13205-024-03986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
This study employed Illumina high-throughput sequencing technology to investigate diversity and community structure of endophytic bacteria in wild D. asperoides growing in three distinct regions. The study analyzed the impact of region on endophytic bacteria, uncovered the core bacterial community, and furnished valuable insights for the screening of endophytic bacteria. This study identified 6,540 amplicon sequence variants (ASVs) coexisting with D. asperoides roots. These ASVs belong to 35 phyla, 84 classes, 204 orders, 365 families, and 708 genera. At the phylum level, the dominant phyla were Proteobacteria and Actinobacteria, while at the genus level, Acidothermus, Acidibacter, Bradyrhizobium, Frankia, and Pseudomonas emerged as the dominant genera. Furthermore, noticeable differences in endophytic bacterial communities were observed between the Yunnan and Guizhou regions. These findings can serve as a reference for the authentication of medicinal materials from various origins and the selection of active strains.
Collapse
Affiliation(s)
- Chao Liu
- Orthopedics Department of Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, 430034 China
| | - Jun Deng
- Health Management (Physical Examination) Department of Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, 430034 China
| |
Collapse
|
4
|
Ma S, Gu C, Yang D, Xu K, Ren H. Chemical characteristics of dissolved organic matter in effluent from sludge alkaline fermentation liquid-fed sequencing batch reactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120444. [PMID: 38422849 DOI: 10.1016/j.jenvman.2024.120444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Sludge alkaline fermentation liquid (SAFL) is a promising alternative to acetate for improving biological nitrogen removal (BNR) from wastewater. SAFL inevitably contains some refractory compounds, while the characteristics of dissolved organic matter (DOM) in effluent from SAFL-fed BNR process remain unclear. In this study, the molecular weight distribution, fluorescent composition and molecular profiles of DOM in effluent from SAFL and acetate-fed sequencing batch reactors (S-SBRs and A-SBRs, respectively) at different hydraulic retention time (12 h and 24 h) was comparatively investigated. Two carbon sources resulted in similar effluent TN, but a larger amount of DOM, which was bio-refractory or microorganisms-derived, was found in effluent of S-SBRs. Compared to acetate, SAFL increased the proportion of large molecular weight organics and humic-like substances in effluent DOM by 74.87%-101.3% and 37.52%-48.35%, respectively, suggesting their bio-refractory nature. Molecular profiles analysis revealed that effluent DOM of S-SBRs exhibited a more diverse composition and a higher proportion of lignin-like molecules. Microorganisms-derived molecules were found to be the dominant fraction (71.51%-72.70%) in effluent DOM (<800 Da) of S-SBRs. Additionally, a prolonged hydraulic retention time enriched Bacteroidota, Haliangium and unclassified_f_Comamonadaceae, which benefited the degradation of DOM in S-SBRs. The results help to develop strategies on reducing effluent DOM in SAFL-fed BNR process.
Collapse
Affiliation(s)
- Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chengyu Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Dongli Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
5
|
Egbadon EO, Wigley K, Nwoba ST, Carere CR, Weaver L, Baronian K, Burbery L, Gostomski PA. Microaerobic methane-driven denitrification in a biotrickle bed - Investigating the active microbial biofilm community composition using RNA-stable isotope probing. CHEMOSPHERE 2024; 346:140528. [PMID: 37907168 DOI: 10.1016/j.chemosphere.2023.140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/01/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
A microaerobic (2% O2 v/v) biotrickle bed reactor supplied continuously with 2% methane to drive nitrate removal (MAME-D) was investigated using 16S rDNA and rRNA amplicon sequencing in combination with RNA-stable isotope probing (RNA-SIP) to identify the active microorganisms. Methane removal rates varied from 500 to 1000 mmol m-3h-1 and nitrate removal rates from 25 to 58 mmol m-3h-1 over 55 days of operation. Biofilm samples from the column were incubated in serum bottles supplemented with 13CH4. 16S rDNA analysis indicated a simple community structure in which four taxa accounted for 45% of the total relative abundance (RA). Dominant genera included the methanotroph Methylosinus and known denitrifiers Nubsella and Pseudoxanthomonas; along with a probable denitrifier assigned to the order Obscuribacterales. The 16S rRNA results revealed the methanotrophs Methylocystis (15% RA) and Methylosinus (10% RA) and the denitrifiers Arenimonas (10% RA) and Pseudoxanthomonas (7% RA) were the most active genera. Obscuribacterales was the most active taxa in the community at 22% RA. Activity was confirmed by the Δ buoyant density changes with time for the taxa, indicating most of the community activity was associated with methane oxidation and subsequent consumption of methanotrophic metabolic intermediates by the denitrifiers. This is the first report of RNA stable isotope probing within a microaerobic methane driven denitrification system and the active community was markedly different from the full community identified via 16S-rDNA analysis.
Collapse
Affiliation(s)
- Emmanuel O Egbadon
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Kathryn Wigley
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Sunday T Nwoba
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Carlo R Carere
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Kim Baronian
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Lee Burbery
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Peter A Gostomski
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
6
|
Pelagalli V, Matassa S, Race M, Langone M, Papirio S, Lens PNL, Lazzazzara M, Frugis A, Petta L, Esposito G. Syngas-driven sewage sludge conversion to microbial protein through H 2S- and CO-tolerant hydrogen-oxidizing bacteria. WATER RESEARCH 2024; 248:120698. [PMID: 38016256 DOI: 10.1016/j.watres.2023.120698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 11/30/2023]
Abstract
Treating excess municipal sewage sludge (MSS) by means of thermochemical processes could enable its conversion into high-value microbial protein (MP) through syngas. Nevertheless, the variable composition and content of inhibitory compounds of the latter hinders the application potential of such a biorefinery scheme. Through a series of short- (48 to 96 h) and long-term (30 days) batch aerobic bioconversion tests, the present study aimed at investigating the potential of a mixed culture of hydrogen-oxidizing bacteria (HOB) to produce MP from a simulated syngas mixture characterized by variable H2 and CO2 concentrations, and different levels of CO and H2S as potential inhibitors of the HOB-driven process. Syngas was converted into MP with a protein content as high as 74 %, reaching biomass yields of 0.25 g VSS/g H2-COD, close to the maximum reported HOB yield of 0.28 g VSS/g H2-COD, and volumetric productivities of 16 mg VSS/L/h. The potential of the process to provide between 50 and 100 % of the total nitrogen requirement of HOB solely by means of the gaseous ammonia nitrogen recovered through syngas was also preliminarily calculated. The presence of H2S and CO concentrations up to 0.4 % and up to 40 %, respectively, and a wide range of H2/CO2 ratios (2 - 10) had no negative influence on the main process performances. The role played by H2S- and CO-tolerant HOB species was fundamental to guarantee a high tolerance to microbial inhibitors, and demonstrated the high potential of mixed cultures for resource recovery and valorisation.
Collapse
Affiliation(s)
- Vincenzo Pelagalli
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, Cassino 03043, Italy.
| | - Silvio Matassa
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, Napoli 80125, Italy
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, Cassino 03043, Italy
| | - Michela Langone
- Laboratory Technologies for the Efficient Use and Management of Water and Wastewater, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese, 301, Rome 00123, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, Napoli 80125, Italy
| | - Piet N L Lens
- National University of Ireland, Galway, University Road, Galway H91 TK33, Ireland
| | | | | | - Luigi Petta
- Laboratory Technologies for the Efficient Use and Management of Water and Wastewater, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Martiri di Monte Sole, 4, Bologna 40129, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, Napoli 80125, Italy
| |
Collapse
|
7
|
He X, Yan B, Jiang J, Ouyang Y, Wang D, Liu P, Zhang XX. Identification of key degraders for controlling toxicity risks of disguised toxic pollutants with division of labor mechanisms in activated sludge microbiomes: Using nonylphenol ethoxylate as an example. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131740. [PMID: 37269567 DOI: 10.1016/j.jhazmat.2023.131740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Efficient management of disguised toxic pollutants (DTPs), which can undergo microbial degradation and convert into more toxic substances, necessitates the collaboration of diverse microbial populations in wastewater treatment plants. However, the identification of key bacterial degraders capable of controlling the toxicity risks of DTPs through division of labor mechanisms in activated sludge microbiomes has received limited attention. In this study, we investigated the key degraders capable of controlling the risk of estrogenicity associated with nonylphenol ethoxylate (NPEO), a representative DTP, in textile activated sludge microbiomes. The results of our batch experiments revealed that the transformation of NPEO into NP and subsequent NP degradation were the rate-limiting processes for controlling the risk of estrogenicity, resulting in an inverted V-shaped curve of estrogenicity in water samples during the biodegradation of NPEO by textile activated sludge. By utilizing enrichment sludge microbiomes treated with NPEO or NP as the sole carbon and energy source, a total of 15 bacterial degraders, including Sphingbium, Pseudomonas, Dokdonella, Comamonas, and Hyphomicrobium, were identified as capable of participating in these processes, Among them, Sphingobium and Pseudomonas were the two key degraders that could cooperatively interact in the degradation of NPEO with division of labor mechanisms. Co-culturing Sphingobium and Pseudomonas isolates exhibited a synergistic effect in degrading NPEO and reducing estrogenicity. Our study underscores the potential of the identified functional bacteria for controlling estrogenicity associated with NPEO and provides a methodological framework for identifying key cooperators engaged in labor division, contributing to the management of risks associated with DTPs by leveraging intrinsic microbial metabolic interactions.
Collapse
Affiliation(s)
- Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Bingwei Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jinhong Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yixin Ouyang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Bolan S, Hou D, Wang L, Hale L, Egamberdieva D, Tammeorg P, Li R, Wang B, Xu J, Wang T, Sun H, Padhye LP, Wang H, Siddique KHM, Rinklebe J, Kirkham MB, Bolan N. The potential of biochar as a microbial carrier for agricultural and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163968. [PMID: 37164068 DOI: 10.1016/j.scitotenv.2023.163968] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Biochar can be an effective carrier for microbial inoculants because of its favourable properties promoting microbial life. In this review, we assess the effectiveness of biochar as a microbial carrier for agricultural and environmental applications. Biochar is enriched with organic carbon, contains nitrogen, phosphorus, and potassium as nutrients, and has a high porosity and moisture-holding capacity. The large number of active hydroxyl, carboxyl, sulfonic acid group, amino, imino, and acylamino hydroxyl and carboxyl functional groups are effective for microbial cell adhesion and proliferation. The use of biochar as a carrier of microbial inoculum has been shown to enhance the persistence, survival and colonization of inoculated microbes in soil and plant roots, which play a crucial role in soil biochemical processes, nutrient and carbon cycling, and soil contamination remediation. Moreover, biochar-based microbial inoculants including probiotics effectively promote plant growth and remediate soil contaminated with organic pollutants. These findings suggest that biochar can serve as a promising substitute for non-renewable substrates, such as peat, to formulate and deliver microbial inoculants. The future research directions in relation to improving the carrier material performance and expanding the potential applications of this emerging biochar-based microbial immobilization technology have been proposed.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lauren Hale
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, United States
| | - Dilfuza Egamberdieva
- Institute of Fundamental and Applied Research, National Research University (TIIAME), Tashkent 100000, Uzbekistan; Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Priit Tammeorg
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Rui Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, People's Republic of China
| | - Jiaping Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Ting Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland, 1010, New Zealand
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia.
| |
Collapse
|
9
|
Bianco F, Race M, Papirio S, Esposito G. Phenanthrene removal from a spent sediment washing solution in a continuous-flow stirred-tank reactor. ENVIRONMENTAL RESEARCH 2023; 228:115889. [PMID: 37054831 DOI: 10.1016/j.envres.2023.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
The issue of polycyclic aromatic hydrocarbons (PAHs) is widespread in marine sediments involving ecological systems and human health. Sediment washing (SW) has proven to be the most effective remediation approach for sediments polluted by PAHs, such as phenanthrene (PHE). However, SW still raises waste handling concerns due to a considerable amount of effluents generated downstream. In this context, the biological treatment of a PHE- and ethanol-containing spent SW solution can represent a highly efficient and environmentally-friendly strategy, but its knowledge is still scarce in scientific literature and no studies have so far been conducted in continuous mode. Therefore, a synthetic PHE-polluted SW solution was biologically treated in a 1 L aerated continuous-flow stirred-tank reactor for 129 days by evaluating the effect of different pH values, aeration flowrates and hydraulic retention times as operating parameters over five successive phases. A PHE removal efficiency of up to 75-94% was achieved by an acclimated PHE-degrading consortium mainly composed of Proteobacteria, Bacteroidota and Firmicutes phyla through biodegradation following the adsorption mechanism. PHE biodegradation, mainly occurring via the benzoate route due to the presence of PAH-related-degrading functional genes and a phthalate accumulation up to 46 mg/L, was also accompanied by a reduction of dissolved organic carbon and ammonia nitrogen above 99% in the treated SW solution.
Collapse
Affiliation(s)
- Francesco Bianco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
10
|
Taweetanawanit P, Therdkiattikul N, Sonsuphab K, Sucharitpwatskul S, Suriyawanakul J, Radpukdee T, Ratpukdi T, Siripattanakul-Ratpukdi S. Triclocarban-contaminated wastewater treatment by innovative hybrid moving entrapped bead activated sludge reactor (HyMER): Continuous performance and computational dynamic simulation analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163037. [PMID: 37001270 DOI: 10.1016/j.scitotenv.2023.163037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Triclocarban (TCC) has been used in consumer products and is a widespread contaminant in municipal wastewater treatment systems that ultimately accumulates in natural receiving water and soil. This work aims to apply an innovative hybrid moving entrapped bead activated sludge reactor (named "HyMER") that integrates entrapped TCC-degrading microbes and freely suspended activated sludge to treat TCC-contaminated wastewater. A previously isolated TCC-degrading bacterium (Pseudomonas fluorescens strain MC46, called MC46) and barium alginate entrapment were applied. The synthetic TCC-contaminated wastewater treatment (with TCC concentration of 10 mg/L) was performed using 20-cycle fed-batch reactor operation with feeding times of 12 and 24 h and cycle times of 13 and 25 h. The results indicated that the HyMER effectively reduced chemical oxygen demand by up to 80 and 95 % and TCC by up to 53 and 83 %, respectively, with feeding times of 12 and 24 h. Three TCC degradation intermediate products were found-3,4-dichloroaniline, 4-chloroaniline, and aniline. Scanning electron microscopic analysis revealed shorter cells and bacterial appendage development as cell adaptations against TCC and its intermediates. The live/dead assay indicated high survival of entrapped MC46 in toxic conditions, with up to 84 % viable cells. Based on computational fluid dynamic analysis, no entrapped cell agglomeration showed in the reactor, indicating the potential application of HyMER for real wastewater treatment. These results exhibit the feasibility of HyMER and its applicability for future toxic wastewater treatment.
Collapse
Affiliation(s)
- Pongsatorn Taweetanawanit
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nakharin Therdkiattikul
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Khuanchanok Sonsuphab
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sedthawatt Sucharitpwatskul
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Jarupol Suriyawanakul
- Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thana Radpukdee
- Department of Industrial Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thunyalux Ratpukdi
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | - Sumana Siripattanakul-Ratpukdi
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand.
| |
Collapse
|
11
|
Washing Bottom Sediment for The Removal of Arsenic from Contaminated Italian Coast. Processes (Basel) 2023. [DOI: 10.3390/pr11030902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Among various forms of anthropogenic pollution, the release of toxic metals in the environment is a global concern due to the high toxicity of these metals towards living organisms. In the last 20 years, sediment washing has gained increasing attention thanks to its capability to remove toxic metals from contaminated matrices. In this paper, we propose a Response Surface Methodology method for the washing of selected marine sediments of the Bagnoli-Coroglio Bay (Campania region, Italy) polluted with arsenic and other contaminants. We focused our attention on different factors affecting the clean-up performance (i.e., liquid/solid ratio, chelating concentration, and reaction time). The highest As removal efficiency (i.e., >30 μg/g) was obtained at a liquid/solid ratio of 10:1 (v/w), a citric acid concentration of 1000 mM, and a washing time of 94.22 h. Based on these optimum results, ecotoxicological tests were performed and evaluated in two marine model species (i.e., Phaeodactylum tricornutum and Aliivibrio fischeri), which were exposed to the washing solutions. Reduced inhibition of the model species was observed after nutrient addition. Overall, this study provides an effective tool to quickly assess the optimum operating conditions to be set during the washing procedures of a broad range of marine sediments with similar physicochemical properties (i.e., grain size and type of pollution).
Collapse
|
12
|
Li C, Cui C, Zhang J, Shen J, He B, Long Y, Ye J. Biodegradation of petroleum hydrocarbons based pollutants in contaminated soil by exogenous effective microorganisms and indigenous microbiome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114673. [PMID: 36827898 DOI: 10.1016/j.ecoenv.2023.114673] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Microbial remediation is an eco-friendly and promising approach for the restoration of sites contaminated by petroleum hydrocarbons (PHCs). The degradation of total petroleum hydrocarbons (TPHs), semi volatile organic compounds (SVOCs) and volatile organic compounds (VOCs) of the soil samples collected from a petrochemical site by indigenous microbiome and exogenous microbes (Saccharomyces cerevisiae ATCC 204508/S288c, Candida utilis AS2.281, Rhodotorula benthica CBS9124, Lactobacillus plantarum S1L6, Bacillus thuringiensis GDMCC1.817) was evaluated. Community structure and function of soil microbiome and the mechanism involved in degradation were also revealed. After bioremediation for two weeks, the concentration of TPHs in soil samples was reduced from 17,800 to 13,100 mg/kg. The biodegradation efficiencies of naphthalene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene, 1,2,3-trichloropropane, 1,2-dichloropropane, ethylbenzene and benzene in soil samples with the addition of S. cerevisiae were 38.0%, 35.7%, 36.2%, 40.4%, 33.6%, 36.2%, 12.0%, 43.9%, 43.3% and 43.0%, respectively. The microbial diversity and community structure were improved during the biodegradation process. S. cerevisiae supplemented soil samples exhibited the highest relative abundance of the genus Acinetobacter for bacteria and Saccharomyces for yeast. The findings offer insight into the correlation between microbes and the degradation of PHC-based pollutants during the bioremediation process.
Collapse
Affiliation(s)
- Chongshu Li
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Zhang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China; CAS Testing Technical Services (Guangzhou) Co., Ltd., Guangzhou 510650, China
| | - Jing Shen
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Baoyan He
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Yan Long
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Jinshao Ye
- School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Shi Y, Xue H, Li J, Yao Y, Liu R, Niu Q. Response of methanogenic system to long-term polycyclic aromatic hydrocarbon exposure: Adsorption and biodegradation, performance variation, and microbial function assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117010. [PMID: 36603323 DOI: 10.1016/j.jenvman.2022.117010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Phenanthrene (PHE) as a typical polycyclic aromatic hydrocarbon (PAH) is prevalent and harmful to organisms in petroleum-polluted sites. The effects of PHE concentration levels on performance, microbial community and functions in methanogenic system were comprehensively investigated by an operation of UASB reactor (198 days) and a series of batch tests. The results found that PHE was prone to accumulate in reactor by sludge adsorption (Final concentration = 12.53 mg/g TS Sludge), which posed significant influences on methanogenic system. The removal of chemical oxygen demand (COD), NH4+-N and volatile fatty acids (VFAs) in reactor were reduced with PHE accumulation. Meanwhile, microbes with higher ATPase secrete more EPS activity to self-protect against PHE toxicity. Sequencing analysis showed that PHE interfered significantly diversity and structure of microbial community. For bacteria, PHE was toxic to Bacteroidetes and Latescibacteria, while syntrophs (f_Syntrophaceae, Syntrophorhabdus, etc.) involved in VFAs oxidation and aromatic organics degradation were tolerant of PHE stress. For archaea, acetoclastic methanogens (Methanosaeta) abundance was continuously diminished by 45.1% under long-term PHE exposure. Further functions analysis suggested that microbial community accelerated amino acid metabolism, energy metabolism and xenobiotics biodegradation & metabolism to satisfy physiological demanding under PHE stress. Combining batch tests of methanogenic metabolism proved that acetoclastic methanogenesis was negatively affected by PHE due to inhibition of functional enzymes (acetate kinase, phosphate acetyltransferase, etc.) expression. These findings may provide the basis for enhancing bioremediation of PAH pollution in anaerobic environment.
Collapse
Affiliation(s)
- Yongsen Shi
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; China-America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China
| | - Hanhan Xue
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; China-America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China
| | - Jingyi Li
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; China-America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China
| | - Yilin Yao
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; China-America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; China-America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China
| | - Qigui Niu
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; China-America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
14
|
Li L, Liang T, Qiu S, Zhang Y, Qu J, Liu T, Ma F. A rapid and simplified method for evaluating the performance of fungi-algae pellets: A hierarchical analysis model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160442. [PMID: 36435261 DOI: 10.1016/j.scitotenv.2022.160442] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Microbial pellets technology has undergone extensive research recently and has increasingly matured, showing significant promise. However, the performance of microbial pellets cannot be predicted quickly by the current evaluating methods because they are complicated to operate, take a long time, and pose a risk to the environment. In this study, a representative microbial pellet, fungi-algae pellet, was selected as the research object. Eight evaluation parameters and four evaluation indices were chosen to construct the performance evaluation system of the fungal-algal pellets using the analytic hierarchy process (AHP) and weighting method. Combining the correlation analysis and expert opinion, we found that among the eight parameters selected, the adsorption saturation rate of mycelial pellets on algae had the most significant influence weight on the performance of fungi-algae pellet, followed by algal culture time and fungal incubation time. This research proposes and validates the Performance Evaluation Value (PEV) of fungi-algae pellet and its calculation method. We also discuss the effectiveness of this new evaluation system in saving time, cost, and emission reductions. The results of this paper enable the rapid evaluation of fungi-algae pellets and promote the better development of fungi-algae pellets technology and even other multi-microbial symbiotic pellet technologies.
Collapse
Affiliation(s)
- Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China.
| | - Taojie Liang
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shan Qiu
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanlong Zhang
- Department of Environmental Science and Engineering, Nankai University Binhai College, Tianjin 300270, China
| | - Jiwei Qu
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Tiantian Liu
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
15
|
Bolan S, Padhye LP, Mulligan CN, Alonso ER, Saint-Fort R, Jasemizad T, Wang C, Zhang T, Rinklebe J, Wang H, Siddique KHM, Kirkham MB, Bolan N. Surfactant-enhanced mobilization of persistent organic pollutants: Potential for soil and sediment remediation and unintended consequences. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130189. [PMID: 36265382 DOI: 10.1016/j.jhazmat.2022.130189] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
This review aims to provide an overview of the sources and reactions of persistent organic pollutants (POPs) and surfactants in soil and sediments, the surfactant-enhanced solubilisation of POPs, and the unintended consequences of surfactant-induced remediation of soil and sediments contaminated with POPs. POPs include chemical compounds that are recalcitrant to natural degradation through photolytic, chemical, and biological processes in the environment. POPs are potentially toxic compounds mainly used in pesticides, solvents, pharmaceuticals, or industrial applications and pose a significant and persistent risk to the ecosystem and human health. Surfactants can serve as detergents, wetting and foaming compounds, emulsifiers, or dispersants, and have been used extensively to promote the solubilization of POPs and their subsequent removal from environmental matrices, including solid wastes, soil, and sediments. However, improper use of surfactants for remediation of POPs may lead to unintended consequences that include toxicity of surfactants to soil microorganisms and plants, and leaching of POPs, thereby resulting in groundwater contamination.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Catherine N Mulligan
- Department of Bldg, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Emilio Ritore Alonso
- Departamento de Ingeniería Química y Ambiental, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Sevilla, Spain
| | - Roger Saint-Fort
- Department of Environmental Science, Faculty of Science & Technology, Mount Royal University, Calgary, AB T3E6K6, Canada
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Chensi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Kadambot H M Siddique
- UWA institute of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; UWA institute of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia.
| |
Collapse
|
16
|
Coupling of Anammox Activity and PAH Biodegradation: Current Insights and Future Directions. Processes (Basel) 2023. [DOI: 10.3390/pr11020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Anaerobic ammonium oxidation (anammox) has shown success in past years for the treatment of municipal and industrial wastewater containing inorganic nutrients (i.e., nitrogen). However, the increase in polycyclic aromatic hydrocarbon (PAH)-contaminated matrices calls for new strategies for efficient and environmentally sustainable remediation. Therefore, the present review examined the literature on the connection between the anammox process and PAHs using VOSviewer to shed light on the mechanisms involved during PAH biodegradation and the key factors affecting anammox bacteria. The scientific literature thoroughly discussed here shows that PAHs can be involved in nitrogen removal by acting as electron donors, and their presence does not adversely affect the anammox bacteria. Anammox activity can be improved by regulating the operating parameters (e.g., organic load, dissolved oxygen, carbon-to-nitrogen ratio) and external supplementation (i.e., calcium nitrate) that promote changes in the microbial community (e.g., Candidatus Jettenia), favoring PAH degradation. The onset of a synergistic dissimilatory nitrate reduction to ammonium and partial denitrification can be beneficial for PAH and nitrogen removal.
Collapse
|
17
|
Akash S, Sivaprakash B, Rajamohan N, Selvankumar T. Biotransformation as a tool for remediation of polycyclic aromatic hydrocarbons from polluted environment - review on toxicity and treatment technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120923. [PMID: 36566676 DOI: 10.1016/j.envpol.2022.120923] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons, a prominent family of persistent organic molecules produced by both anthropogenic and natural processes, are widespread in terrestrial and aquatic environments owing to their hydrophobicity, electrochemical stability and low aqueous solubility. Phenanthrene and naphthalene belong to the group of polycyclic aromatic hydrocarbons whose occurrence are reported to be relatively higher. The bioremediation mode of removing the toxicities of these two compounds has been reported to be promising than other methods. Most of the microbial classes of bacterial, fungal and algal origin are reported to degrade the target pollutants into non-toxic compounds effectively. The review aims to give an overview on toxicological studies, identification and enrichment techniques of phenanthrene and naphthalene degrading microbes and the bioremediation technologies (microbial assisted reactors, microbial fuel cells and microbial assisted constructed wetlands) reported by various researchers. All the three modes of bioremediation techniques were proved to be promising on different perspectives. In the treatment of phenanthrene, a maximum recovery of 96% and 98% was achieved in an aerobic membrane reactor with Bacillus species and single chamber air cathode microbial fuel cell with Acidovorax and Aquamicrobium respectively were reported. With the constructed wetland configuration, 95.5% of removal was attained with manganese oxide based microbial constructed wetland. The maximum degradation efficiency reported for naphthalene are 99% in a reverse membrane bioreactor, 98.5% in a marine sediment microbial fuel cell and 92.8% with a low-cost sandy soil constructed wetland.
Collapse
Affiliation(s)
- S Akash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, PC-608002, India
| | - Baskaran Sivaprakash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, PC-608002, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman.
| | - Thangaswamy Selvankumar
- PG and Research Department of Biotechnology, Mahendra Arts and Science College, Kalipatti, Namakkal, Tamilnadu, India
| |
Collapse
|
18
|
Zhang X, Zhang X, Zhao S, Cai Y, Wang S. Sulfurized bimetallic biochar as adsorbent and catalyst for selective co-removal of cadmium and PAHs from soil washing effluents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120333. [PMID: 36208826 DOI: 10.1016/j.envpol.2022.120333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Although biosurfactant enhanced soil washing is effective to remediate Polycyclic Aromatic Hydrocarbons (PAHs)-Heavy metals (HMs) co-contaminated soil, the treatment of soil washing effluents containing pollutant and biosurfactant remains a critical challenge. In this study, the sulfurized Fe-Mn bimetallic biochar, named FMSBC was prepared, which exhibited excellent performance in activating sodium percarbonate (SPC) to degrade phenanthrene and the good adsorption capacity of cadmium. A simple system using FMSBC adsorption and SPC oxidation (FMSBC/SPC) is thus developed to remove phenanthrene and cadmium from soil washing effluents. Although there was antagonistic behavior between PAHs and HMs in the FMSBC/SPC system, over 80% phenanthrene and cadmium can be simultaneously removed from soil washing effluents. Adsorption of cadmium was mainly driven by complexation and precipitation. Free radical quenching studies and electron paramagnetic resonance (EPR) analyses verified that the dominant radical in the FMSBC/SPC system was hydroxyl radical (·OH). The performances of adsorption and catalyst were stable across a wide pH range and in the presence of competitive metal ions or natural organic matters. The recovered biosurfactants could be further reused for three washing cycles. This study has suggested biosurfactant enhanced soil washing coupled with FMSBC/SPC system is a promising method for remediation of HMs-PAHs co-contaminated soil.
Collapse
Affiliation(s)
- Xu Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Xiaodong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Shan Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
19
|
Microbial Communities of Seawater and Coastal Soil of Russian Arctic Region and Their Potential for Bioremediation from Hydrocarbon Pollutants. Microorganisms 2022; 10:microorganisms10081490. [PMID: 35893548 PMCID: PMC9332119 DOI: 10.3390/microorganisms10081490] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
The development of Arctic regions leads to pollution of marine and coastal environments with oil and petroleum products. The purpose of this work was to determine the diversity of microbial communities in seawater, as well as in littoral and coastal soil, and the potential ability of their members to degrade hydrocarbons degradation and to isolate oil-degrading bacteria. Using high-throughput sequencing of the V4 region of the 16S rRNA gene, the dominance of bacteria in polar communities was shown, the proportion of archaea did not exceed 2% (of the total number of sequences in the libraries). Archaea inhabiting the seawater belonged to the genera Nitrosopumilus and Nitrosoarchaeum and to the Nitrososphaeraceae family. In the polluted samples, members of the Gammaproteobacteria, Alphaproteobacteria, and Actinomycetes classes predominated; bacteria of the classes Bacteroidia, Clostridia, Acidimicrobiia, Planctomycetia, and Deltaproteobacteria were less represented. Using the iVikodak program and KEGG database, the potential functional characteristics of the studied prokaryotic communities were predicted. Bacteria were potentially involved in nitrogen and sulfur cycles, in degradation of benzoate, terephthalate, fatty acids, and alkanes. A total of 19 strains of bacteria of the genera Pseudomonas, Aeromonas, Oceanisphaera, Shewanella, Paeniglutamicibacter, and Rhodococcus were isolated from the studied samples. Among them were psychrotolerant and psychrophilic bacteria growing in seawater and utilizing crude oil, diesel fuel, and motor oils. The data obtained suggest that the studied microbial communities could participate in the removal of hydrocarbons from arctic seawater and coastal soils and suggested the possibility of the application of the isolates for the bioaugmentation of oil-contaminated polar environments.
Collapse
|