1
|
Zhu F, Kamiya T, Fujiwara T, Hashimoto M, Gong S, Wu J, Nakanishi H, Fujimoto M. A Comparison of Rice Root Microbial Dynamics in Organic and Conventional Paddy Fields. Microorganisms 2024; 13:41. [PMID: 39858809 PMCID: PMC11768080 DOI: 10.3390/microorganisms13010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The assembly of plant root microbiomes is a dynamic process. Understanding the roles of root-associated microbiomes in rice development requires dissecting their assembly throughout the rice life cycle under diverse environments and exploring correlations with soil properties and rice physiology. In this study, we performed amplicon sequencing targeting fungal ITS and the bacterial 16S rRNA gene to characterize and compare bacterial and fungal community dynamics of the rice root endosphere and soil in organic and conventional paddy fields. Our analysis revealed that root microbial diversity and composition was significantly influenced by agricultural practices and rice developmental stages (p < 0.05). The root microbiome in the organic paddy field showed greater temporal variability, with typical methane-oxidizing bacteria accumulating during the tillering stage and the amount of symbiotic nitrogen-fixing bacteria increasing dramatically at the early ripening stage. Redundancy analysis identified ammonium nitrogen, iron, and soil organic matter as key drivers of microbial composition. Furthermore, correlation analysis between developmental stage-enriched bacterial biomarkers in rice roots and leaf mineral nutrients showed that highly mobile macronutrient concentrations positively correlated with early-stage biomarkers and negatively correlated with later-stage biomarkers in both paddy fields. Notably, later-stage biomarkers in the conventional paddy field tended to show stronger correlations with low-mobility nutrients. These findings suggest potential strategies for optimizing microbiome management to enhance productivity and sustainability.
Collapse
Affiliation(s)
- Fangming Zhu
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (F.Z.)
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masayoshi Hashimoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (F.Z.)
| | - Siyu Gong
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (F.Z.)
| | - Jindong Wu
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiromi Nakanishi
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masaru Fujimoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (F.Z.)
| |
Collapse
|
2
|
Wang Y, Zhao Z, Jiao M, Li T, Wei Y, Li R, Peng G. Rhizospheric bacterial communities against microplastics (MPs): Novel ecological strategies based on the niche differentiation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135806. [PMID: 39265399 DOI: 10.1016/j.jhazmat.2024.135806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Considerable amounts of microplastics (MPs) are stocked in plant rhizospheres, yielding adverse effects on rhizospheric microorganisms and threatening plant health. However, the adaptation of the rhizospheric microbiota for MPs remains largely unknown. Here, to evaluate the adaptive strategies of rhizospheric bacterial communities against MPs, we characterized the spatial dissimilarities in MPs properties and bacterial communities from mangrove non-rhizosphere to rhizosphere to root hair sediments. Consequently, two strategies were uncovered: (1) Bacterial communities showed significant niche differentiation induced by the increasingly enriched MPs evaluated by piecewise structural equation modeling (piecewise SEM), as increasing specialization (10.2 % to 19.4 % to 23.0 % of specialists) and decreasing generalization (10.4 % to 10.2 % to 8.7 % of generalists). (2) A self-remediation strategy of enhancing microbial plastic-degrading potentials was determined in bacterial communities, tightly coupled to the increase of specialists (linear regression analysis, R2 = 0.54, P < 0.001) and increasing MPs weathering degrees visualized by the scanning electron microscopy (SEM) from non-rhizosphere to rhizosphere to root hair regions. Our study provides a novel insight into the ecological strategies that rhizospheric microbes utilize against MPs, and broadens our knowledge of the interaction between soil microbes and global MPs pollution.
Collapse
Affiliation(s)
- Yijin Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zhen Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Meng Jiao
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Tiezhu Li
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yihua Wei
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ruilong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Gen Peng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Qin Y, Cheng K, Jong MC, Zheng H, Cai Z, Xiao B, Zhou J. Symbiotic bacterial communities and carbon metabolic profiles of Acropora coral with varying health status under thermal stress. MARINE POLLUTION BULLETIN 2024; 209:117116. [PMID: 39418876 DOI: 10.1016/j.marpolbul.2024.117116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Thermal-induced coral bleaching has received substantial research attention; however, the dynamics of symbiotic coral-associated bacterial communities are underexplored and the roles of coral with intermediate health status remain unclear. Using high-throughput sequencing and biochemical analyses, we found that the symbiotic zooxanthellae number gradually decreased with the increase of bleaching degree (non-bleached, semi-bleached, and fully-bleached) in the coral Acropora pruinosa. The semi-bleached host exhibited a relatively more complex microbial interaction network. For the carbon metabolic profiles, relatively higher carbon-fixing abilities observed in non-bleached coral symbiotic bacteria, followed by semi-bleached host, and lowest values appeared in fully-bleached coral. Partial least-squares pathway modeling revealed that bacterial community features and carbon metabolic function were directly related with health status, while temperature exerted a strong influence on the bleaching resilience. These findings can help us better understand the coral microecological feature and carbon metabolic potential under changing environment.
Collapse
Affiliation(s)
- Yuke Qin
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Keke Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Huina Zheng
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518120, Guangdong Province, PR China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Baohua Xiao
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518120, Guangdong Province, PR China.
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China.
| |
Collapse
|
4
|
Liu P, Guo Z, Wang Y, He M, Kang Y, Wu H, Hu Z, Zhang J. Occurrence of polycyclic aromatic hydrocarbons in the Yellow River delta: Sources, ecological risks, and microbial response. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122432. [PMID: 39243646 DOI: 10.1016/j.jenvman.2024.122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
This research investigated the distribution, sources, and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in the Yellow River Delta (YRD), China, emphasizing the response of soil microorganisms. The study involved quantitative analyses of 16 PAHs specified by the U.S. Environmental Protection Agency (USEPA) in both water and soil, utilizing metagenomic technique to determine the response of microbial communities and metabolism within the soil. Results noted that PAHs in the water mainly originate from pyrogenic source and in the soil originate from mixture source, with higher concentrations found in wetland areas compared to river regions. The ecological risk assessment revealed low-to-moderate risk. Microbial analysis demonstrated increased diversity and abundance of bacteria associated with PAHs in areas with higher PAHs pollution. Metagenomic insights revealed significant effects of organic carbon on PAHs degradation genes (ko00624 and ko00626), as well as significant differences in specific metabolic pathways including phenanthrene degradation, with key enzymes showing significant differences between the two environments. The study underscores the importance of understanding PAHs distribution and microbial responses to effectively manage and mitigate pollution in estuarine environments.
Collapse
Affiliation(s)
- Peiqiong Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Yu Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Mingyu He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yan Kang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
5
|
Cheng D, Xiong J, Dong L, Wong JWC, Liu X. Spatial distribution of PAHs and microbial communities in intertidal sediments of the Pearl River Estuary, South China. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109992. [PMID: 39084352 DOI: 10.1016/j.cbpc.2024.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The exploration of sediment pollution caused by PAHs and its impact on microbial communities can provide valuable insights for the remediation of sediments. The spatial distribution of PAHs and their impact on the microbial community within the Pearl River Estuary were investigated in this study. The findings revealed that the total concentration ranges of 16 PAHs were between 24.26 and 3075.93 ng/g, with naphthalene, fluorene, and phenanthrene potentially exerting adverse biological effects. More PAHs were found to accumulate in subsurface sediments, and their average accumulation rates gradually decreased as the number of rings in PAHs increased, ranging from 180 % for 2-ring to 36 % for 6-ring. The phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Chloroflexi were found to dominate both surface and subsurface sediments The correlation between microbial genera and PAHs contents was weak in sediments with low levels of PAHs contamination, while a more significant positive relationship was observed in sediments with high levels of PAHs contamination. The physicochemical properties of sediments, such as pH, soil structure and Cu significantly influence bacterial community composition in highly contaminated sediments. Additionally, the network analysis revealed that certain bacterial genera, including Novosphingobium, Robiginitalea and Synechococcus_CC9902, played a pivotal role in the degradation of PAHs. These findings are significant in comprehending the correlation between bacterial communities and environmental factors in intertidal ecosystems, and establish a scientific foundation for bioremediation of intertidal zones.
Collapse
Affiliation(s)
- Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Jisen Xiong
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Lu Dong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Jonathan Woon Chung Wong
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Xinhui Liu
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai 519087, PR China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
6
|
Zhang H, Zhou J, Wang K, Li Y, Niu L. Interaction patterns and keystone taxa of bacterial and eukaryotic communities during sulfamethoxazole mineralization in lake sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171597. [PMID: 38461980 DOI: 10.1016/j.scitotenv.2024.171597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Sulfamethoxazole (SMX) is a common antibiotic pollutant in aquatic environments, which is highly persistent under various conditions and significantly contributes to the spread of antibiotic resistance. Biodegradation is the major pathway to eliminate antibiotics in the natural environment. The roles of bacteria and eukaryotes in the biodegradation of antibiotics have received considerable attention; however, their successions and co-occurrence patterns during the biodegradation of antibiotics remain unexplored. In this study, 13C-labled SMX was amended to sediment samples from Zhushan Bay (ZS), West Shore (WS), and Gonghu Bay (GH) in Taihu Lake to explore the interplay of bacterial and eukaryotic communities during a 30-day incubation period. The cumulative SMX mineralization on day 30 ranged from 5.2 % to 19.3 %, which was the highest in WS and the lowest in GH. The bacterial community showed larger within-group interactions than between-group interactions, and the positive interactions decreased during incubation. However, the eukaryotic community displayed larger between-group interactions than within-group interactions, and the positive interactions increased during incubation. The proportion of negative interactions between bacteria and eukaryotes increased during incubation. Fifty genera (including 46 bacterial and 4 eukaryotic genera) were identified as the keystone taxa due to their dominance in the co-occurrence network and tolerance to SMX. The cumulative relative abundance of these keystone taxa significantly increased during incubation and was consistent with the SMX mineralization rate. These taxa closely cooperated and played vital roles in co-occurrence networks and microbial community interactions, signifying their crucial role in SMX mineralization. These findings broadened our understanding of the complex interactions of microorganisms under SMX exposure and their potential functions during SMX mineralization, providing valuable insights for in situ bioremediation.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jingya Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Kerong Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
7
|
Min Z, Rui T, Yu L. A combination of microbial electrolysis cells and bioaugmentation can effectively treat synthetic wastewater containing polycyclic aromatic hydrocarbon. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2716-2731. [PMID: 38822610 DOI: 10.2166/wst.2024.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
The anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) is challenging due to its toxic effect on the microbes. Microbial electrolysis cells (MECs), with their excellent characteristics of anodic and cathodic biofilms, can be a viable way to enhance the biodegradation of PAHs. This work assessed different cathode materials (carbon brush and nickel foam) combined with bioaugmentation on typical PAHs-naphthalene biodegradation and analyzed the inhibition amendment mechanism of microbial biofilms in MECs. Compared with the control, the degradation efficiency of naphthalene with the nickel foam cathode supplied with bioaugmentation dosage realized a maximum removal rate of 94.5 ± 3.2%. The highest daily recovered methane yield (227 ± 2 mL/gCOD) was also found in the nickel foam cathode supplied with bioaugmentation. Moreover, the microbial analysis demonstrated the significant switch of predominant PAH-degrading microorganisms from Pseudomonas in control to norank_f_Prolixibacteraceae in MECs. Furthermore, hydrogentrophic methanogenesis prevailed in MEC reactors, which is responsible for methane production. This study proved that MEC combined with bioaugmentation could effectively alleviate the inhibition of PAH, with the nickel foam cathode obtaining the fastest recovery rate in terms of methane yield.
Collapse
Affiliation(s)
- Zhang Min
- College of Engineering, China Agricultural University (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), Beijing 100083, China
| | - Tang Rui
- College of Engineering, China Agricultural University (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), Beijing 100083, China
| | - Li Yu
- College of Engineering, China Agricultural University (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), Beijing 100083, China E-mail:
| |
Collapse
|
8
|
Dong S, Yan PF, Mezzari MP, Abriola LM, Pennell KD, Cápiro NL. Using Network Analysis and Predictive Functional Analysis to Explore the Fluorotelomer Biotransformation Potential of Soil Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7480-7492. [PMID: 38639388 DOI: 10.1021/acs.est.4c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Microbial transformation of per- and polyfluoroalkyl substances (PFAS), including fluorotelomer-derived PFAS, by native microbial communities in the environment has been widely documented. However, few studies have identified the key microorganisms and their roles during the PFAS biotransformation processes. This study was undertaken to gain more insight into the structure and function of soil microbial communities that are relevant to PFAS biotransformation. We collected 16S rRNA gene sequencing data from 8:2 fluorotelomer alcohol and 6:2 fluorotelomer sulfonate biotransformation studies conducted in soil microcosms under various redox conditions. Through co-occurrence network analysis, several genera, including Variovorax, Rhodococcus, and Cupriavidus, were found to likely play important roles in the biotransformation of fluorotelomers. Additionally, a metagenomic prediction approach (PICRUSt2) identified functional genes, including 6-oxocyclohex-1-ene-carbonyl-CoA hydrolase, cyclohexa-1,5-dienecarbonyl-CoA hydratase, and a fluoride-proton antiporter gene, that may be involved in defluorination. This study pioneers the application of these bioinformatics tools in the analysis of PFAS biotransformation-related sequencing data. Our findings serve as a foundational reference for investigating enzymatic mechanisms of microbial defluorination that may facilitate the development of efficient microbial consortia and/or pure microbial strains for PFAS biotransformation.
Collapse
Affiliation(s)
- Sheng Dong
- Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall, 111 Wing Drive, Ithaca, New York 14853, United States
| | - Peng-Fei Yan
- Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall, 111 Wing Drive, Ithaca, New York 14853, United States
| | - Melissa P Mezzari
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Linda M Abriola
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Natalie L Cápiro
- Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall, 111 Wing Drive, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Liu C, Ma X, Xie J, Wang J, Wang H, Wang Y. Impact of waste separation on the biological nitrogen removal in a MSW incineration leachate treatment plant: Performance and microbial community shift. ENVIRONMENTAL RESEARCH 2024; 244:117876. [PMID: 38072101 DOI: 10.1016/j.envres.2023.117876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
After waste separation program was launched in China in 2019, incineration leachate treatment plants are facing a challenge of effective removal of nitrogen from leachate due to lack of sufficient carbon source. In this study, the performance of a biological incineration leachate treatment process (anaerobic digestion (AD) - two-stage anoxic/aerobic (A/O) process) was evaluated after adopting the waste separation program, and the changes in the microbial community and function was analyzed using 16S rRNA amplicon sequencing technology. Results showed that after the waste separation, the influent chemical oxygen demand (COD) concentration reduced by 90% (from 19,300 to 1780 mg L-1) with the COD/N ratio decreased from 12.3 to 1.4, which led to a decreased nitrogen removal efficiency (NRE) of <65% and a high effluent NO3- accumulation (445.8-986.5 mg N·L-1). By bypassing approximately 60% of the influent to the two-stage A/O process and adding external carbon source (glucose), the mean NRE increased to 86.3 ± 7.4%. Spearman's analysis revealed that refractory compounds in the bypassed leachate were closely related to the variations in bacterial community composition and nitrogen removal function in the two-stage A/O, leading to a weakened correlation of microbial network. KEGG functional pathway predictions based on Tax4Fun also confirmed that the bypassed leachate induced xenobiotic compounds to the two-stage A/O process, the relative abundance of nitrogen metabolism was reduced by 32%, and more external carbon source was required to ensure the satisfactory nitrogen removal of >80%. The findings provide a good guide for regulation of incineration leachate treatment processes after the waste separation.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China; Shanghai Youlin Zhuyuan Sewage Investment and Development Co. Ltd., Shanghai, 200125, PR China
| | - Xiaoqian Ma
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China; Xiamen Tungsten Co., Ltd, Xiamen, 361009, PR China.
| | - Junxiang Xie
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Jialin Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
10
|
Qi Y, Wu Y, Zhi Q, Zhang Z, Zhao Y, Fu G. Effects of Polycyclic Aromatic Hydrocarbons on the Composition of the Soil Bacterial Communities in the Tidal Flat Wetlands of the Yellow River Delta of China. Microorganisms 2024; 12:141. [PMID: 38257968 PMCID: PMC10820892 DOI: 10.3390/microorganisms12010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive organic pollutants in coastal ecosystems, especially in tidal flat wetlands. However, the mechanisms through which PAHs impact the soil bacterial communities of wetlands featuring a simple vegetation structure in the Yellow River Delta (China) remain largely unclear. In this study, we examined soil samples from two sites featuring a single vegetation type (Suaeda salsa) in the Yellow River Delta. Specifically, we investigated the impacts of PAHs on the diversity and composition of soil bacteria communities through high-throughput 16 S rRNA sequencing. PAHs significantly increased the soil organic carbon content but decreased the total phosphorus content (p = 0.02). PAH contamination notably reduced soil bacterial community α diversity (Shannon index) and β diversity. Furthermore, PAHs significantly altered the relative abundance of bacterial phyla, classes, and genera (p < 0.05). Specifically, PAHs increased the relative abundance of the bacterial phyla Acidobacteriota and Gemmatimonadota (p < 0.05), while decreasing the relative abundance of Bacteroidota, Desulfobacterota, and Firmicutes compared to the control wetland (p < 0.05). Moreover, PAHs and certain soil properties [total nitrogen (TN), soil organic carbon (SOC), total phosphorus (TP), and total salt (TS)] were identified as key parameters affecting the community of soil bacteria, with the abundance of specific bacteria being both negatively and positively affected by PAHs, SOC, and TN. In summary, our findings could facilitate the identification of existing environmental problems and offer insights for improving the protection and management of tidal flat wetland ecosystems in the Yellow River Delta of China.
Collapse
Affiliation(s)
- Yue Qi
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China (Q.Z.)
| | - Yuxuan Wu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China (Q.Z.)
| | - Qiuying Zhi
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China (Q.Z.)
| | - Zhe Zhang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China (Q.Z.)
| | - Yilei Zhao
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China (Q.Z.)
| | - Gang Fu
- Institute of Geographical Sciences, Heibei Academy of Sciences, Shijiazhuang 050011, China;
| |
Collapse
|
11
|
Li X, Cheng X, Cheng K, Cai Z, Feng S, Zhou J. The influence of tide-brought nutrients on microbial carbon metabolic profiles of mangrove sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167732. [PMID: 37827311 DOI: 10.1016/j.scitotenv.2023.167732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Mangrove ecosystems in the intertidal zone are continually affected by tidal inundation, but the impact of tidal-driven nutrient inputs upon bacterial communities and carbon metabolic features in mangrove surface sediments remains underexplored, and the differences in such impacts across backgrounds are not known. Here, two mangrove habitats with contrasting nutrient backgrounds in Shenzhen Bay and Daya Bay in Shenzhen City, China, respectively, were studied to investigate the effects of varying tidal nutrient inputs (especially dissolved inorganic nitrogen and PO43--P) on bacterial community composition and functioning in sediment via field sampling, 16S rDNA amplicon sequencing, and the quantitative potential of microbial element cycling. Results showed that tidal input increased Shenzhen Bay mangrove's eutrophication level whereas it maintained the Daya Bay mangrove's relatively oligotrophic status. Dissolved inorganic nitrogen and PO43--P levels in Shenzhen Bay were respectively 12.6-39.6 and 7.3-29.1 times higher than those in Daya Bay (p < 0.05). In terms of microbial features, Desulfobacteraceae was the dominant family in Shenzhen Bay, while the Anaerolineaceae family dominated in Daya Bay. Co-occurrence network analysis revealed more interconnected and complex microbial networks in Shenzhen Bay. The quantitative gene-chip analysis uncovered more carbon-related functional genes (including carbon degradation and fixation) enriched in Shenzhen Bay's sediment microbial communities than Daya Bay's. Partial least squares path modeling indicated that tidal behavior directly affected mangrove sediments' physicochemical characteristics, with cascading effects shaping microbial diversity and C-cycling function. Altogether, these findings demonstrate that how tides influence the microbial carbon cycle in mangrove sediments is co-correlated with the concentration of nutrient inputs and background status of sediment. This work offers an insightful lens for better understanding bacterial community structure and carbon metabolic features in mangrove sediments under their tidal influences. It provides a theoretical basis to better evaluate and protect mangroves in the context of global change.
Collapse
Affiliation(s)
- Xinyang Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xueyu Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450056, PR China.
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
12
|
Liu Y, Wang Y, Song X, Hou X, Cao X, Wang Y. The evolution of nitrogen transformation microorganism consortium under continued manganese domestication conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165656. [PMID: 37474054 DOI: 10.1016/j.scitotenv.2023.165656] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Manganese redox-stimulated bioremediation of nitrogen wastewater is receiving increasing attention. However, the nitrogen metabolic capacity and community evolution during manganese-mediated nitrogen transformation process under continued manganese domestication conditions are ambiguous. In this study, nitrogen- metabolizing microbial consortiums were incubated with synthesized Mn-humic acid complex (Mn-HA) for one month (M1), three months (M2) and six months (M3), respectively. During the Mn-HA incubation period, Bio-MnOx accompanying with bacterial consortiums (MnOB consortiums) with high TIN removal capacities were obtained. The TIN removal rates in M1, M2 and M3 were 0.220, 1.246 and 4.237 mg·L-1·h-1, respectively, which were 15.961, 90.006 and 1550.006 times higher than CK (Control Check group, no Mn-HA added group) (0.014 mg·L-1·h-1), respectively. Functional genes (amoA, AMX and narG) were most abundant in M3, which was associated with the highest nitrogen removal rate in M3. MnOB1 (bacterial consortium in M1), including Geobactor, Geothrix, Anaeromyxobacter and Bacillus, may be responsible for the Mnammox-NDMO (MnOx reduction coupled to ammonium oxidation - nitrate/nitrite-dependent low-valent Mn oxidation) process. MnOB3 (bacterial consortium in M2) enriched nitrifying bacteria Ellin6067, and denitrifying bacteria Denitratisoma, which dominated nitrogen transformation. MnOB6 (bacterial consortium in M3) enriched denitrifiers Denitratisoma, nitrifiers Ellin6067 and potential anammox bacteria SM1A02, Candidatus_Brocadia. Combined with the reduced abundance of Nitrospirae, a short-cut partial nitrification and denitrification (PND) or partial nitrification, denitrification and anammox (PNDA) could occurred in M2 and M3. It is suggested that community may have evolved into an energetically efficient short-cut nitrification, denitrification and anammox consortium to replace the full-range nitrification and denitrification community in M1 and CK under the continued manganese domestication conditions. Enhanced metabolic pathways of hydroxylamine oxidation and the nitric oxide reduction may confirm that PND or PNDA occurred in M2 and M3.
Collapse
Affiliation(s)
- Yingying Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China
| | - Yifei Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China
| | - Xinshan Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Xiaoxiao Hou
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China
| | - Xin Cao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China
| | - Yuhui Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
13
|
Wu Y, Xi B, Fang F, Kou B, Gang C, Tang J, Tan W, Yuan Y, Yu T. Insights into relationships between polycyclic aromatic hydrocarbon concentration, bacterial communities and organic matter composition in coal gangue site. ENVIRONMENTAL RESEARCH 2023; 236:116502. [PMID: 37406721 DOI: 10.1016/j.envres.2023.116502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
Coal mining usually brought polycyclic aromatic hydrocarbons (PAHs) contamination. Relationships between the concentration of PAHs, bacterial communities and soil environmental factors were important for bioremediation of PAHs in soil. Total 4 kinds of soil samples with different concentrations of PAHs were selected from 7 typical coal gangue(CG) sites in Huainan, Anhui Province. The relationships between microorganisms, dissolved organic matter (DOM) composition and PAHs concentration were systematically analyzed in this work. Total 11 kinds of PAHs were enriched in the soil surface layer. That was attributed to the strong binding of soil organic matter (SOM) to PAHs. PAHs contamination reduced the diversity of soil microbial. The abundance of PAHs-degrading genera such as Arthrobacter decreased with the increasing concentration of PAHs. Mycobacterium increased with the increasing concentration of PAHs in all samples. The microbial activities decreased with increasing concentration of PAHs. The increasing contents of LWM-PAHs and DOM were beneficial to improve the activities of soil microbial. The increasing DOM aromaticity was beneficial to improve the bioavailability of PAHs according to the correlation analysis between PAHs content and DOM structural parameters. The obtained results provide a basis for better understanding the contamination characteristics and microbial communities of coal gangue PAH-contaminated sites.
Collapse
Affiliation(s)
- Yuman Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fei Fang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Bing Kou
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Chen Gang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Jun Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing 102442, China
| |
Collapse
|
14
|
Chen X, He B, Ding C, Qi X, Li Y, Hu W. Diversity and Functional Distribution Characteristics of Myxobacterial Communities in the Rhizosphere of Tamarix chinensis Lour in Ebinur Lake Wetland, China. Microorganisms 2023; 11:1924. [PMID: 37630484 PMCID: PMC10459050 DOI: 10.3390/microorganisms11081924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Soil salinity and desertification are seriously threatening the ecological environment of Ebinur Lake Wetland. Myxobacteria are the main soil microbes in this wetland. However, it is still unclear if the myxobacterial community structure and diversity can improve the ecological environment of Ebinur Lake Wetland by regulating soil nutrient cycling. Therefore, based on high-throughput sequencing of 16SrRNA gene technology, the composition, function, and diversity of the myxobacterial community in the rhizosphere of Tamarix chinensis Lour in Ebinur Lake Wetland were studied. Rhizosphere soil samples were collected from 10 sampling sites (S1, S2, S3, S4, S5, S6, S7, S8, S9, and S10) for three months (April, July, and October) to explore the main biotic and abiotic factors affecting the diversity and functions of myxobacterial communities. The results revealed that diversity of myxobacterial communities was mainly influenced by the seasons. The diversity of myxobacterial communities was significantly higher in the month of July, as compared to April and October. FAPROTAX functional prediction revealed that, in addition to predation or parasitic functions, myxobacteria were mainly involved in ecological functions, such as nitrite respiration, nitrite ammonification, and nitrogen respiration. The Spearman correlation analysis of the diversity and function of myxobacteria and bacteria showed that there were significant positive correlations between myxobacteria diversity, function, and bacterial diversity. The co-occurrence analysis of myxobacteria and bacterial networks showed that over time, myxobacteria interacted differently with different bacterial networks and jointly regulated the microbial community in the rhizosphere of Tamarix chinensis Lour through predation or cooperation. The redundancy analysis of soil physicochemical factors as well as the myxobacterial community showed that electrical conductivity, exchangeable calcium, and exchangeable potassium were the most important abiotic factors affecting the diversity, structure, and function of the myxobacterial community. These results reveal that myxobacteria may play important roles in degrading nitrogen compounds and regulating the activity of soil microorganisms. This study provides theoretical support for the ecological restoration of Ebinur Lake Wetland and lays the foundation for the future development and utilization of myxobacteria resources.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenge Hu
- School of Life Science, Shihezi University, Shihezi 832000, China; (X.C.); (B.H.); (C.D.); (X.Q.); (Y.L.)
| |
Collapse
|
15
|
Bianco F, Race M, Papirio S, Esposito G. Phenanthrene removal from a spent sediment washing solution in a continuous-flow stirred-tank reactor. ENVIRONMENTAL RESEARCH 2023; 228:115889. [PMID: 37054831 DOI: 10.1016/j.envres.2023.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
The issue of polycyclic aromatic hydrocarbons (PAHs) is widespread in marine sediments involving ecological systems and human health. Sediment washing (SW) has proven to be the most effective remediation approach for sediments polluted by PAHs, such as phenanthrene (PHE). However, SW still raises waste handling concerns due to a considerable amount of effluents generated downstream. In this context, the biological treatment of a PHE- and ethanol-containing spent SW solution can represent a highly efficient and environmentally-friendly strategy, but its knowledge is still scarce in scientific literature and no studies have so far been conducted in continuous mode. Therefore, a synthetic PHE-polluted SW solution was biologically treated in a 1 L aerated continuous-flow stirred-tank reactor for 129 days by evaluating the effect of different pH values, aeration flowrates and hydraulic retention times as operating parameters over five successive phases. A PHE removal efficiency of up to 75-94% was achieved by an acclimated PHE-degrading consortium mainly composed of Proteobacteria, Bacteroidota and Firmicutes phyla through biodegradation following the adsorption mechanism. PHE biodegradation, mainly occurring via the benzoate route due to the presence of PAH-related-degrading functional genes and a phthalate accumulation up to 46 mg/L, was also accompanied by a reduction of dissolved organic carbon and ammonia nitrogen above 99% in the treated SW solution.
Collapse
Affiliation(s)
- Francesco Bianco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|