1
|
Yang W, Shi M, Zhao T, Xu Z, Chu W. Unseen streams tracing emerging contaminants from stormwater to surface water: A brief review. J Environ Sci (China) 2025; 155:96-110. [PMID: 40246520 DOI: 10.1016/j.jes.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 04/19/2025]
Abstract
Emerging contaminants (ECs) have raised global concern due to their adverse effect on ecosystems and human health. However, the occurrence and transport of ECs in stormwater remain unclear. The impact of ECs from stormwater on surface water quality and ecosystem health is also poorly documented. In this review, we examined the variations in EC concentrations in surface water resulting from stormwater. During the wet weather, the concentrations of most investigated ECs, e.g., microplastics, per- and polyfluoroalkyl substances, and vehicle-related compounds, significantly increase in surface water, indicating that stormwater may be a critical source of these contaminants. Furthermore, the potential pathways of ECs from stormwater enter surface water are outlined. Studies demonstrate that surface runoff and combined sewer overflows are important pathways for ECs, with discharges comparable to or exceeding those from wastewater treatment plants. Illicit connection also plays an important part in elevated EC concentrations in surface water. Overall, our findings underscore the importance of stormwater as a source for ECs in surface waters, and urge for increased emphasis on, and reinforcement of, stormwater monitoring and control measures to minimize the transport of ECs into receiving water bodies.
Collapse
Affiliation(s)
- Wenyuan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Minghao Shi
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; Zhejiang Heda Technology, Co., Ltd., Jiaxing 314000, China; ZENNER Metering Technology (Shanghai) Ltd., Shanghai 201700, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Hao M, Zuo Q, Zhao X, Shi S, Wu J, Gao H, Lu Y. Multimedia contamination characteristics, risk assessment, and source quantification of phthalates in the Shaying River Basin, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:202. [PMID: 40343535 DOI: 10.1007/s10653-025-02518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Phthalates (PAEs), a class of typical endocrine-disrupting chemicals, have been widely detected in the environment due to their prevalent use as plasticizers in plastic products. This study investigates the multimedia contamination characteristics and potential ecological risks of PAEs in water, soil, and sediments of the Shaying River (SYR) Basin. A Geodetector model (GDM) was employed to identify the key drivers influencing the spatial distribution of PAEs, while factor analysis and the Positive Matrix Factorization (PMF) model were utilized to quantitatively apportion the potential sources of PAEs. Results revealed that the concentrations and spatial variation of PAEs were significantly higher in soil and sediments than in water, with distinct compositional profiles. Water samples exhibited a higher proportion of low-molecular-weight PAEs compared to soil and sediment, where high-molecular-weight PAEs prevailed to a lesser extent. Notably, among the 6 target PAEs, di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) were uniformly the primary PAEs in water, soil, and sediment of the SYR Basin, posing higher ecological risks to algae, crustaceans, amphibians, and fish compared to the other 4 PAEs. The spatial distribution of PAEs in the SYR Basin was comprehensively influenced by land use, precipitation, human activities, and soil types. Key factors vary across media, but the interaction between popdensity and other variables significantly enhanced the interpretation degree, jointly shaping the PAEs distribution patterns. Primary sources of PAEs in the basin were sewage and wastewater discharges (37.0%), nonpoint industrial sources (36.4%), and domestic sources (25.6%).
Collapse
Affiliation(s)
- Minghui Hao
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Qiting Zuo
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China.
- Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou, 450001, China.
| | - Xinna Zhao
- Henan Ecological Environmental Monitoring Center, Zhengzhou, 450003, China
| | - Shujuan Shi
- Henan Ecological Environmental Monitoring Center, Zhengzhou, 450003, China
| | - Junfeng Wu
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Hongbin Gao
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yizhen Lu
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| |
Collapse
|
3
|
Xu S, Zhang K, Lao JY, Wang Q, Jiang Y, Li C, Kwok JK, Cao G, Chen C, Deng Y, Leung KMY. Rubber-derived chemicals in urban sewer networks and receiving waters: Fingerprints, driving factors and ecological impacts. WATER RESEARCH 2025; 282:123629. [PMID: 40239373 DOI: 10.1016/j.watres.2025.123629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Rubber-derived chemicals (RDCs), which include rubber additives (RAs) and their transformation products (TPs), can be released into aquatic environments when rubber products, such as vehicle tires, are in use or discarded. However, RDCs and associated ecological risks have not been thoroughly investigated inside urban sewer networks and their receiving water bodies. To address these issues, we investigated the RDCs in Hong Kong's municipal sewer networks, including sewage and stormwater, as well as their receiving waters, such as rivers and coastal water. Among 45 target RDCs, the vulcanizing agents and corrosion inhibitors were found to be predominant in the water samples, accounting for 26-66 % and 29-72 % of total concentrations of 45 RDCs (∑45RDC), respectively, while antioxidants and their TPs presented in smaller quantities, accounting for 0.21-26 % and 0-15 % of ∑45RDC, respectively. Ten RAs from five classes were additionally identified by suspect screening. An estimated mass load of ∑45RDC amounting to 1690 kg/month is discharged into the coastal marine environment of Hong Kong, with sewage effluent being the primary source. Population density and vehicle-related factors (e.g., traffic load) were the major drivers shaping the spatial distribution of RDCs in surface water. Based on the ecological risk assessment outcomes, 16 out of 45 RDCs exhibited medium to high risks, and lists of candidate contaminants for various water bodies were proposed to support future risk management in water quality. These findings suggest that RDCs in stormwater and rivers should be carefully monitored, and management strategies should be developed to mitigate their risks.
Collapse
Affiliation(s)
- Shaopeng Xu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, PR China.
| | - Kai Zhang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, PR China; National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao, PR China
| | - Jia-Yong Lao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, PR China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, PR China
| | - Yan Jiang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, PR China
| | - Chen Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, PR China
| | - Jun Kin Kwok
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, PR China
| | - Guodong Cao
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan, 4300782, PR China
| | - Chong Chen
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, PR China
| | - Yue Deng
- Department of Biomedical Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, PR China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, PR China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, PR China.
| |
Collapse
|
4
|
Leite BA, Rossato B, Dorta DJ, Gravato C, Palma de Oliveira D. Exploring DiPP (diisopentyl phthalate) neurotoxicity and the detoxification process in zebrafish larvae - A Silent contaminant? ENVIRONMENTAL RESEARCH 2025; 269:120825. [PMID: 39800301 DOI: 10.1016/j.envres.2025.120825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Diisopentyl phthalate (DiPP) is present in many consumer goods, but can be absorbed into the human body, and can disrupt the endocrine system affecting reproductive health and fetal development. Studies revealed that biological samples of pregnant women in Brazil contained DiPP, raising even more the concerns about its usage. This study investigated how DiPP concentrations (12.5-1000 μg l-1) affect the different developmental stages (24, 48, 72, 120, and 144 hpf) of embryos and larvae of zebrafish. DiPP induced deleterious alterations in neuromuscular development and morphometry of organs, Low concentrations of DiPP decreased acetylcholinesterase and cellular energy allocation concomitantly with increased glutathione S-transferase. Zebrafish swimming period seemed to be decreased not only due to direct neurotoxicity, but also to less allocation of energy for behavioral purposes. Moreover, high concentrations of DiPP induced spinal deformities and developmental alterations specially of the eye and liver of larvae. These findings emphasize that DiPP exerts complex effects that should be considered when assessing its potential effects on health of humans and the total environment. The biomarkers and behavioral parameters showed to be good complimentary early-warning tools exhibiting a high sensitivity compared to FET.
Collapse
Affiliation(s)
- Bianca Arruda Leite
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruno Rossato
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Junqueira Dorta
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Universidade de São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo, CEP 14040901, Brazil; National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil
| | - Carlos Gravato
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil.
| |
Collapse
|
5
|
Dou Y, Hu W, Wang J, Cong J, Nie B, Guo R, Duan Z. Spatial Distribution and Chronic Ecological risk Assessment of Typical Phthalate Esters in the Surface Waters of China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 114:11. [PMID: 39676106 DOI: 10.1007/s00128-024-03988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
The chronic ecological risks posed by residual PAEs in China remain unclear. In this study, we analyzed the spatial distribution of five typical PAEs in the surface waters of China, dibutyl phthalate (DBP), diethylhexyl phthalate (DEHP), butylbenzyl phthalate (BBP), diethyl phthalate (DEP), and dimethyl phthalate (DMP). The highest concentration of PAEs were detected in the Liao River, ranging from 5 to 79.8 µg/L. DBP was of the PAEs type with the highest concentration in the surface waters in China. By fitting the species sensitivity distribution curves base on the collected data over the past decade, the chronically hazardous concentrations affecting 5% of the aquatic species were calculated to be 0.018, 0.022, 0.062, 0.851, and 9.437 mg/L for DBP, DEHP, BBP, DEP, and DMP, respectively. Thus, DBP, DEHP, and BBP pose the greatest threat to aquatic organisms, and PAEs pose high ecological risks in the Liao, Huangpu, and Pearl Rivers.
Collapse
Affiliation(s)
- Yuhang Dou
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Weixuan Hu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Jing Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Jiaoyue Cong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Boyan Nie
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Ruru Guo
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Zhenghua Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China.
| |
Collapse
|
6
|
Chen S, Liu C, Liu Y, Liu J, Wang Z, Liu H, Li Y, Liu M. Characterization and mechanism of phthalic acid esters bioaccumulation in dominant mangrove fish at different habitats in the mangrove ecosystem of Dongzhai Harbor, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176221. [PMID: 39304146 DOI: 10.1016/j.scitotenv.2024.176221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
With the wide application of phthalic acid esters (PAEs) in the manufacturing of plastic products, a large number of PAEs were discharged into marine ecosystem and accumulated in fish, which has posed a serious threat to marine ecological environment and fishery resources. However, the bioaccumulation of PAEs in fish in mangrove ecosystem, the most productive marine ecosystem, has not been well characterized. In this study, dominant fish and their potential food sources (including particulate organic matter (POM), sedimentary organic matter (SOM), Metapenaeus ensis (Shrimp) and Oreochromis (Ore) were collected from Dongzhai Harbor, a typical mangrove ecosystem. The concentrations of nine PAEs in fish and their potential food sources were determined. Then stable nitrogen and carbon isotope analysis, combined with a new Bayesian mixing model (MixSIMMR) was used to quantify the diet compositions of fish and elucidate the effect of dietary habit on PAEs bioaccumulation in fish. The results indicated that the median concentration of ∑9PAEs in fish was 1119 μg/kg ww, positioning it at a moderate to low level in comparison to other regions. di-n-butyl phthalate (DBP) and diisononyl ortho-phthalate (DINP) were the dominant PAEs in fish. The PAEs concentration in demersal fish was significantly higher than that of pelagic fish, which may be attributed to the substantial contributions of shrimp (28.5 %) and POM (25.3 %) to the diet of demersal fish. This study provided new insights on the bioaccumulation of PAEs in dominant mangrove fish and confirmed that habitat preferences and food sources could significantly influence the bioaccumulation of PAEs in fish.
Collapse
Affiliation(s)
- Siwen Chen
- School of Geography adnd Environmental Sciences, Hainan Normal University, Haikou, Hainan 571158, PR China; Key Laboratory of Earth Surface Processes and Environmental Change of Tropical Islands, Hainan Province, PR China
| | - Cheng Liu
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong 256603, PR China
| | - Yuyan Liu
- School of Geography adnd Environmental Sciences, Hainan Normal University, Haikou, Hainan 571158, PR China; Key Laboratory of Earth Surface Processes and Environmental Change of Tropical Islands, Hainan Province, PR China.
| | - Jianan Liu
- School of Geography adnd Environmental Sciences, Hainan Normal University, Haikou, Hainan 571158, PR China; Key Laboratory of Earth Surface Processes and Environmental Change of Tropical Islands, Hainan Province, PR China
| | - Zefeng Wang
- School of Geography adnd Environmental Sciences, Hainan Normal University, Haikou, Hainan 571158, PR China; Key Laboratory of Earth Surface Processes and Environmental Change of Tropical Islands, Hainan Province, PR China
| | - Haofeng Liu
- School of Geography adnd Environmental Sciences, Hainan Normal University, Haikou, Hainan 571158, PR China; Key Laboratory of Earth Surface Processes and Environmental Change of Tropical Islands, Hainan Province, PR China
| | - Ye Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, PR China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, PR China
| |
Collapse
|
7
|
Singh I, Kanade GS, Kumar AR. Levels, distribution, and health risk assessment of phthalic acid esters in urban surface soils of Nagpur city, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1084. [PMID: 39432121 DOI: 10.1007/s10661-024-13281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Surface soil samples from residential, commercial, and industrial areas of Nagpur city, India, were collected to study the levels, distribution, and impact of land use patterns on phthalic acid ester (PAEs) contamination. The Σ6PAEs concentrations in soils from residential, commercial, and industrial areas ranged between 6,493 to 13,195 µg/kg, 707 to 18,446 µg/kg, and 1,882 to 5,004 µg/kg with medians of 10,399, 6,199, and 3,401 µg/kg, respectively. Bis-2-ethylhexyl phthalate (DEHP) and dimethyl phthalate (DMP) were the dominant PAEs in the urban soils. The concentrations of DEHP and DMP were significantly greater than those in Ontario's soil quality guidelines. Among the PAEs, benzyl-butyl phthalate (BzBP) was found at relatively high concentrations (1,238 and 9,171 µg/kg) at two locations (i.e., S1 and S15). The chronic toxic risk (CTR) of PAEs was below the threshold, although the risk to children through ingestion and dermal exposure routes was greater than that to adults. The CR due to BzBP and DEHP were below the threshold level; however, the CR due to DMP was > 1 × 10-6 in residential areas. The cumulative CR of the six PAEs for adults (1.33-1.41 × 10-5) and children (8.08-8.89 × 10-6) surpassed the threshold level. This study revealed that PAEs in urban soils pose a risk to public health and require immediate risk reduction strategies.
Collapse
Affiliation(s)
- Ishan Singh
- CSIR-National Environmental Engineering Research Institute, Stockholm Convention Regional Centre (SCRC India), Nehru Marg, Nagpur, 440020, Maharashtra, India
- Rashatrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, 440033, Maharashtra, India
| | - Gajanan Sitaramji Kanade
- CSIR-National Environmental Engineering Research Institute, Stockholm Convention Regional Centre (SCRC India), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Asirvatham Ramesh Kumar
- CSIR-National Environmental Engineering Research Institute, Stockholm Convention Regional Centre (SCRC India), Nehru Marg, Nagpur, 440020, Maharashtra, India.
- Rashatrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, 440033, Maharashtra, India.
| |
Collapse
|
8
|
Shende N, Singh I, Hippargi G, Ramesh Kumar A. Occurrence and Health Risk Assessment of Phthalates in Municipal Drinking Water Supply of a Central Indian City. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:288-303. [PMID: 38568248 DOI: 10.1007/s00244-024-01061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/12/2024] [Indexed: 04/21/2024]
Abstract
In this study, the occurrence of phthalates in the municipal water supply of Nagpur City, India, was studied for the first time. The study aimed to provide insights into the extent of phthalate contamination and identify potential sources of contamination in the city's tap water. We analyzed fifteen phthalates and the total concentration (∑15phthalates) ranged from 0.27 to 76.36 µg L-1. Prominent phthalates identified were di-n-butyl phthalate (DBP), di-isobutyl phthalate (DIBP), benzyl butyl phthalate (BBP), di (2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP), and di-nonyl phthalate (DNP). Out of the fifteen phthalates analyzed, DEHP showed the highest concentration in all the samples with the median concentration of 2.27 µg L-1, 1.39 µg L-1, 1.83 µg L-1, 2.02 µg L-1, respectively in Butibori, Gandhibaag, Civil Lines, and Kalmeshwar areas of the city. In 30% of the tap water samples, DEHP was found higher than the EPA maximum contaminant level of 6 µg L-1. The average daily intake (ADI) of phthalates via consumption of tap water was higher for adults (median: 0.25 µg kg-1 day-1) compared to children (median: 0.07 µg kg-1 day-1). The hazard index (HI) calculated for both adults and children was below the threshold level, indicating no significant health risks from chronic toxic risk. However, the maximum carcinogenic risk (CR) for adults (8.44 × 10-3) and children (7.73 × 10-3) was higher than the threshold level. Knowledge of the sources and distribution of phthalate contamination in municipal drinking water is crucial for effective contamination control and management strategies.
Collapse
Affiliation(s)
- Nandini Shende
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ishan Singh
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Stockholm Convention Regional Centre (SCRC India), CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Girivvankatesh Hippargi
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
| | - Asirvatham Ramesh Kumar
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
- Stockholm Convention Regional Centre (SCRC India), CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
9
|
Zhu H, Zheng N, Chen C, Li N, An Q, Zhang W, Lin Q, Xiu Z, Sun S, Li X, Li Y, Wang S. Multi-source exposure and health risks of phthalates among university students in Northeastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169701. [PMID: 38159748 DOI: 10.1016/j.scitotenv.2023.169701] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/19/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The endocrine disruptor phthalates (PAEs) are widely used as important chemical additives in a variety of areas around the globe. PAEs are toxic to reproduction and development and may adversely affect the health of adolescents. Risk assessments of exposure to PAEs from different sources are more reflective of actual exposure than single-source assessments. We used personal exposure parameters to estimate the dose of PAEs to 107 university students from six media (including dormitory dust, dormitory air, clothing, food, disposable food containers, and personal care products (PCPs)) and three exposure routes (including ingestion, inhalation, and dermal absorption). Individual factors and lifestyles may affect PAE exposure to varying degrees. Based on a positive matrix factorization (PMF) model, the results indicated that the main sources of PAEs in dust were indoor building materials and plastics, while PCPs and adhesives were the major sources of airborne PAEs. The relative contribution of each source to PAE exposure showed that food and air were the primary sources of dimethyl phthalate (DMP) and dibutyl phthalate (DBP). Air source contributed the most to diethyl phthalate (DEP) exposure, followed by PCPs. Food was the most significant source of diisobutyl phthalate (DiBP), benzyl butyl phthalate (BBP), and bis(2-ethylhexyl) phthalate (DEHP) exposure. Additionally, the exposure of DEHP to dust was not negligible. The ingestion pathway was the most dominant among the three exposure pathways, followed by dermal absorption. The non-carcinogenic risk of PAEs from the six sources was within acceptable limits. DEHP exhibits a low carcinogenic risk. We suggest university students maintain good hygienic and living habits to minimize exposure to PAEs.
Collapse
Affiliation(s)
- Huicheng Zhu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Na Zheng
- College of New Energy and Environment, Jilin University, Changchun 130012, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, China.
| | - Changcheng Chen
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Ning Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Qirui An
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenhui Zhang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Qiuyan Lin
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhifei Xiu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Siyu Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiaoqian Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yunyang Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Sujing Wang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| |
Collapse
|
10
|
Wang D, Jiang SY, Fan C, Fu L, Ruan HD. Occurrence and correlation of microplastics and dibutyl phthalate in rivers from Pearl River Delta, China. MARINE POLLUTION BULLETIN 2023; 197:115759. [PMID: 37988965 DOI: 10.1016/j.marpolbul.2023.115759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Microplastics have been identified as the novel contaminants in various environments. Phthalates would be released from plasticized microplastics into a riverine environment while transporting to a marine region, but data on their relationship in rivers have been scarce. In this study, the occurrence, distribution and correlation of microplastics and dibutyl phthalate (DBP) in two rivers from the Pearl River Estuary were investigated. The elevated level of DBP in the Qianshan River (2.70 ± 0.20 μg/L) was in alignment with the presence of highest microplastic concentration at the same sampling site (15.8 ± 9.8 items/L). A positive correlation was observed between microplastics and DBP in all sampling sites (p < 0.05). The results showed that UV irradiation from sunlight was a majorly inducing factor of DBP leaching from polyethylene microplastics. The concentrations of chemical additives in some degrees reflect the microplastic pollution, but environmental factors and multidimensionality of microplastics such as residence times and types may cause spatial differences of chemical additives in aquatic systems.
Collapse
Affiliation(s)
- Duojia Wang
- Environmental Science Program, Department of Life Science, Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong Province 519087, PR China
| | - Sabrina Yanan Jiang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa 999078, Macao.
| | - Changchang Fan
- Environmental Science Program, Department of Life Science, Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong Province 519087, PR China
| | - Longshan Fu
- Environmental Science Program, Department of Life Science, Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong Province 519087, PR China; National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa 999078, Macao
| | - Huada Daniel Ruan
- Environmental Science Program, Department of Life Science, Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong Province 519087, PR China.
| |
Collapse
|
11
|
Wang H, Li C, Yan G, Zhang Y, Wang H, Dong W, Chu Z, Chang Y, Ling Y. Seasonal distribution characteristics and ecological risk assessment of phthalate esters in surface sediment of Songhua River basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122567. [PMID: 37717898 DOI: 10.1016/j.envpol.2023.122567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Phthalic acid esters (PAEs) are typical industrial chemicals used in China. PAEs have received considerable attention because of their ubiquity and potential hazard to humans and the ecology. The spatiotemporal distributions of six PAEs in the surface sediments of the Songhua River in the spring (March), summer (July), and autumn (September) are investigated in this study. The total concentration of phthalic acid esters (∑6PAEs) ranges from 1.62 × 102 ng g-1 dry weight (dw) to 3.63 × 104 ng g-1·dw, where the amount in the spring is substantially higher (p < 0.01) than those in the autumn and summer. Seasonal variations in PAEs may be due to rainfall and temperature. The ∑6PAEs in the Songhua River's upper reaches are significantly higher than those in the middle and lower reaches (p < 0.05). Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are the two most abundant PAEs. The ecological hazard of five PAEs is assessed using the hazard quotient method. DBP and DEHP pose moderate or high ecological risks to aquatic organisms at various trophic levels. PAEs originate primarily from industrial, agricultural, and domestic sources. Absolute principal components-multiple linear regression results indicate that agricultural sources are the most dominant contributor to the ∑6PAEs (53.7%). Guidelines for controlling PAEs pollution in the Songhua River are proposed.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Congyu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Yanjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Zhaosheng Chu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| |
Collapse
|
12
|
Lorre E, Bianchi F, Vybernaite-Lubiene I, Mėžinė J, Zilius M. Phthalate esters delivery to the largest European lagoon: Sources, partitioning and seasonal variations. ENVIRONMENTAL RESEARCH 2023; 235:116667. [PMID: 37453508 DOI: 10.1016/j.envres.2023.116667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Phthalate esters (PAEs) due to their ability to leach from plastics, widely used in our daily life, are intensely accumulating in wastewater water treatment plants (WWTP) and rivers, before being exported to downstream situated estuarine systems. This study aimed to investigate the external sources of eight plasticizers to the largest European lagoon (the Curonian Lagoon, south-east Baltic Sea), focusing on their seasonal variation and transport behaviour through the partitioning between dissolved and particulate phases. The obtained results were later combined with hydrological inputs at the inlet and outlet of the lagoon to estimate system role in regulating the transport of pollutants to the sea. Plasticizers were detected during all sampling events with a total concentration ranging from 0.01 to 6.17 μg L-1. Di(2-ethylhexyl) phthalate (DEHP) was the most abundant PAEs and was mainly found attached to particulate matter, highlighting the importance of this matrix in the transport of such contaminant. Dibutyl phthalate (DnBP) and diisobutyl phthalate (DiBP) were the other two dominant PAEs found in the area, mainly detected in dissolved phase. Meteorological conditions appeared to be an important factor regulating the distribution of PAEs in environment. During the river ice-covered season, PAEs concentration showed the highest value suggesting the importance of ice in the retention of PAEs. While heavy rainfall impacts the amount of water delivered to WWTP, there is an increase of PAEs concentration supporting the hypothesis of their transport via soil leaching and infiltration into wastewater networks. Rainfall could also be a direct source of PAEs to the lagoon resulting in net surplus export of PAEs to the Baltic Sea.
Collapse
Affiliation(s)
- Elise Lorre
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania.
| | - Federica Bianchi
- University of Parma, Department of Chemistry, Life Science and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy; University of Parma, Interdepartmental Center for Energy and Environment (CIDEA), Parco Area delle Scienze, 43124, Parma, Italy
| | | | - Jovita Mėžinė
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania
| | - Mindaugas Zilius
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania; University of Parma, Department of Chemistry, Life Science and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
13
|
Chang X, Wang WX. Phthalate acid esters contribute to the cytotoxicity of mask leachate: Cell-based assay for toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132093. [PMID: 37494796 DOI: 10.1016/j.jhazmat.2023.132093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
After the COVID-19 outbreak, masks have become an essential part of people lives. Although several studies have been conducted to determine the release of hazardous substances from masks, how their co-presence poses a potential exposure risk to human health remains unexplored. In this study, we quantitatively compared the leaching of substances from six different common types of masks, including phthalate acid esters (PAEs), metals, and microplastics (MPs), and comprehensively evaluated the potential cytotoxicity of different leachates. MPs smaller than 3 µm were quantified by Py-GC-MS, and reusable masks showed greater releasing potentials up to 1504 µg/g. We also detected the prevalence of PAEs in masks, with the highest release reaching 42 μg/g, with dibutyl phthalate (DBP), diisobutyl phthalate (DiBP) and bis (2-ethylhexyl) phthalate (DEHP) being the predominant types. Moreover, the antimicrobial cloth masks released 173.0 µg of Cu or 4.5 µg of Ag, representing 2.7% and 0.04% of the original masks, respectively. Our cell-based assay results demonstrated for the first time that mask leachate induced nuclear condensation with DNA damage, and simultaneously triggered high levels of glutathione and reactive oxidative stress production, which exacerbated mitochondrial fragmentation, eventually leading to cell death. Combined with substance identification and correlation analysis, PAEs were found to be the contributors to cytotoxicity. Masks containing Cu or Ag led to acidification of lysosomes and alkalinization of cells. These results strongly suggested that the levels of PAEs in the production of regulatory masks should be strictly controlled.
Collapse
Affiliation(s)
- Xinyi Chang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
14
|
Lao JY, Xu S, Zhang K, Lin H, Cao Y, Wu R, Tao D, Ruan Y, Yee Leung KM, Lam PKS. New Perspective to Understand and Prioritize the Ecological Impacts of Organophosphate Esters and Transformation Products in Urban Stormwater and Sewage Effluents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11656-11665. [PMID: 37503546 DOI: 10.1021/acs.est.3c04159] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Due to their prevalence in urban contaminated water, the driving factors of organophosphate esters (OPEs) need to be well examined, and their related ecological impacts should include that of their transformation products (TPs). Additionally, a robust framework needs to be developed to integrate multiple variables related to ecological impacts for improving the ecological health assessment. Therefore, OPEs and TPs in urban stormwater and wastewater in Hong Kong were analyzed to fill these gaps. The results revealed that the total concentrations of OPEs in stormwater were positively correlated with the area of transportation land. Individual TP concentrations and the mass ratios of individual TPs/OPEs were somewhat higher in sewage effluents than that in stormwater. OPEs generally showed relatively higher risk quotients than TPs; however, the total risk quotients increased by approximately 38% when TPs were factored in. Moreover, the molecular docking results suggested that the investigated TPs might cause similar endocrine disruption in marine organisms as their parent OPEs. This study employed the Toxicological-Priority-Index scheme to successfully integrate the ecological risks and endocrine-disrupting effects to refine the ecological health assessment of the exposure to OPEs and their TPs, which can better inform the authority on the prioritization for regulating these contaminants of emerging concern in urban built environments.
Collapse
Affiliation(s)
- Jia-Yong Lao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Kai Zhang
- National Observation and Research Station of Coastal Ecological Environments in Macao; Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
- Center for Ocean Research in Hong Kong and Macau (CORE), The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yaru Cao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Danyang Tao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
- Center for Ocean Research in Hong Kong and Macau (CORE), The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, Hong Kong 999077, China
| |
Collapse
|
15
|
Mi L, Xie Z, Xu W, Waniek JJ, Pohlmann T, Mi W. Air-Sea Exchange and Atmospheric Deposition of Phthalate Esters in the South China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11195-11205. [PMID: 37459505 PMCID: PMC10399291 DOI: 10.1021/acs.est.2c09426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Phthalate esters (PAEs) have been investigated in paired air and seawater samples collected onboard the research vessel SONNE in the South China Sea in the summer of 2019. The concentrations of ∑7PAEs ranged from 2.84 to 24.3 ng/m3 with a mean of 9.67 ± 5.86 ng/m3 in air and from 0.96 to 8.35 ng/L with a mean of 3.05 ng/L in seawater. Net air-to-seawater deposition dominated air-sea exchange fluxes of DiBP, DnBP, DMP, and DEP, while strong water-to-air volatilization was estimated for bis(2-ethylhexyl) phthalate (DEHP). The estimated net atmospheric depositions were 3740 t/y for the sum of DMP, DEP, DiBP, and DnBP, but DEHP volatilized from seawater to air with an average of 900 t/y. The seasonally changing monsoon circulation, currents, and cyclones occurring in the Pacific can significantly influence the concentration of PAEs, and alter the direction and magnitude of air-sea exchange and particle deposition fluxes. Consequently, the dynamic air-sea exchange process may drive the transport of PAEs from marginal seas and estuaries toward remote marine environments, which can play an important role in the environmental transport and cycling of PAEs in the global ocean.
Collapse
Affiliation(s)
- Lijie Mi
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
- Institute of Oceanography, University of Hamburg, Hamburg 20146, Germany
| | - Zhiyong Xie
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - Weihai Xu
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Joanna J Waniek
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock 18119, Germany
| | - Thomas Pohlmann
- Institute of Oceanography, University of Hamburg, Hamburg 20146, Germany
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21502, Germany
| |
Collapse
|
16
|
Kumari M, Pulimi M. Phthalate esters: occurrence, toxicity, bioremediation, and advanced oxidation processes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2090-2115. [PMID: 37186617 PMCID: wst_2023_119 DOI: 10.2166/wst.2023.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Phthalic acid esters are emerging pollutants, commonly used as plasticizers that are categorized as hazardous endocrine-disrupting chemicals (EDCs). A rise in anthropogenic activities leads to an increase in phthalate concentration in the environment which leads to various adverse environmental effects and health issues in humans and other aquatic organisms. This paper gives an overview of the research related to phthalate ester contamination and degradation methods by conducting a bibliometric analysis with VOS Viewer. Ecotoxicity analysis requires an understanding of the current status of phthalate pollution, health impacts, exposure routes, and their sources. This review covers five toxic phthalates, occurrences in the aquatic environment, toxicity studies, biodegradation studies, and degradation pathways. It highlights the various advanced oxidation processes like photocatalysis, Fenton processes, ozonation, sonolysis, and modified AOPs used for phthalate removal from the environment.
Collapse
Affiliation(s)
- Madhu Kumari
- Centre of Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India E-mail:
| | - Mrudula Pulimi
- Centre of Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India E-mail:
| |
Collapse
|