1
|
Lin P, Ferguson B, Greene KM, Xing W, Xu C, Bagwell CE, Watts DW, Kaplan DI. Uptake of technetium and iodine (I -, IO 3- and organo-I) by pecan biochar. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2025; 285:107674. [PMID: 40121954 DOI: 10.1016/j.jenvrad.2025.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/26/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Remediation of land and groundwater that are contaminated with high-risk driving anionic-radionuclides, such as iodine-129 (I-129) and technetium-99 (Tc-99), remains an intractable problem. The objective of this study was to evaluate biochar materials as a low-cost and effective sorbent for Tc-99 and three iodine species, iodide/iodate/organo-iodine (org-I). Sorption studies were conducted with biochar derived from pecan shells (Carya illinoinensis), that underwent two pyrolysis temperatures (500 °C and 700 °C) and two types of acid-activation (H3PO4 and HCl). Acid-activated biochar had much higher sorption capacities (in terms of distribution coefficient, Kd, the concentration ratio of solid:liquid) for Tc-99 and different iodine species, than non-acid-activated biochar. The H3PO4-activated biochar (500 °C) was the most effective sorbent with Tc-99 Kd of 49,390 ± 14,268 mL/g, iodide Kd of 2433 ± 312 mL/g, iodate Kd of 410 ± 168 mL/g, and org-I Kd of 857 ± 181 mL/g. The HCl-activated biochar (700 °C) was also effective at sequestering Tc-99 (Kd of 7864 ± 5,585 mL/g) and iodide (Kd of 2481 ± 237 mL/g) but not for iodate/org-I. Solid-state 13C-nuclear magnetic resonance (NMR) analysis suggested the strong sorption capacity related to the formation of abundant alkene, aromatic and heteroaromatic functional groups, which was also supported by the Fourier-transform infrared spectroscopy (FTIR) analysis. Additionally, the FTIR suggested the possible electrophilic substitution of C-H by iodine to form C-I bond. Surface area measurements and SEM images indicated the H3PO4-activated biochar (500 °C) had especially high surfaces areas. Functionalized biochar may provide a cost effective and efficient sorbent for sequestering I-129 and Tc-99 from the biosphere, thereby reducing human risk.
Collapse
Affiliation(s)
- Peng Lin
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Brennan Ferguson
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA; Department of Geology, University of Georgia, Athens, GA, USA
| | - Karah M Greene
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| | - Wei Xing
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| | - Chen Xu
- Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A&M University-Galveston, Galveston, TX, USA
| | - Christopher E Bagwell
- Pacific Northwest National Laboratory, Earth Systems Science Division, Richland, WA, USA
| | - Donald W Watts
- United States Department of Agriculture, Agricultural Research Service, Coastal Plains Research Laboratory, Florence, SC, USA
| | - Daniel I Kaplan
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| |
Collapse
|
2
|
Shin J, Lee SH, Kwak J, Son C, Kim S, Lee YG, Kim HJ, Rho H, Park Y, Chon K. Post-calcination as an effective approach to enhance adsorption of arsenic and antimony anions by Mg/Al layered double hydroxide-decorated spent coffee ground biochars: Role of charge properties and active sites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124850. [PMID: 39216672 DOI: 10.1016/j.envpol.2024.124850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
This study evaluated the effects of post-calcination on the charge properties and active sites of Mg/Al layered double hydroxide-decorated spent coffee ground biochars (LDHMgAl@SCGB) governing adsorption behaviors and mechanisms of arsenic (AsV) and antimony (SbV) anions from aqueous phases. Post-calcinated LDHMgAl@SCGB (PLDHMgAl@SCGB) exhibited higher adsorption capacities for AsV and SbV compared to spent coffee ground biochars (SCGB) and LDHMgAl@SCGB as post-calcination of LDHMgAl@SCGB enhanced the charge properties (surface zeta potential at pH 7.0: SCGB = -21.8 mV, LDHMgAl@SCGB = 28.5 mV, and PLDHMgAl@SCGB = 34.4 mV) and increased active sites by eliminating the anions (i.e., Cl- ions) and water molecules at its interlayers. The calculated kinetic, intra-particle diffusion, and isotherm parameters indicated that the chemisorption and intra-particle diffusion were mainly responsible for the adsorption of AsV and SbV by SCGB, LDHMgAl@SCGB, and PLDHMgAl@SCGB. Moreover, post-calcination of LDHMgAl@SCGB enhanced its selectivity toward AsV and SbV by reinforcing the electrostatic surface complexation via its improvement of charge properties. Since PLDHMgAl@SCGB exhibited the excellent reusability for the adsorption of AsV (reuse efficiency >63.6%) and SbV (reuse efficiency >52.1%), it can be concluded that post-calcination of LDHMgAl@SCGB is a promising method for improving the adsorption capacities for AsV and SbV in real water matrices.
Collapse
Affiliation(s)
- Jaegwan Shin
- Department of Integrated Energy and Infra system, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| | - Sang-Ho Lee
- Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Jinwoo Kwak
- Department of Integrated Energy and Infra system, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Changgil Son
- Department of Integrated Energy and Infra system, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Sangwon Kim
- Department of Integrated Energy and Infra system, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Yong-Gu Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea; Puricyclesolution, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Hee-Joong Kim
- Department of Environmental Engineering, College of Engineering, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea; Puricyclesolution, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Hojung Rho
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Yongeun Park
- School of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Kangmin Chon
- Department of Integrated Energy and Infra system, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
3
|
Yang H, Feng Q, Xu W, Tang Y, Bai G, Liu Y, Liu Z, Xia S, Wu Z, Zhang Y. Unraveling the nuclear isotope tapestry: Applications, challenges, and future horizons in a dynamic landscape. ECO-ENVIRONMENT & HEALTH 2024; 3:208-226. [PMID: 38655003 PMCID: PMC11035956 DOI: 10.1016/j.eehl.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 04/26/2024]
Abstract
Nuclear isotopes, distinct atoms characterized by varying neutron counts, have profoundly influenced a myriad of sectors, spanning from medical diagnostics and therapeutic interventions to energy production and defense strategies. Their multifaceted applications have been celebrated for catalyzing revolutionary breakthroughs, yet these advancements simultaneously introduce intricate challenges that warrant thorough investigation. These challenges encompass safety protocols, potential environmental detriments, and the complex geopolitical landscape surrounding nuclear proliferation and disarmament. This comprehensive review embarks on a deep exploration of nuclear isotopes, elucidating their nuanced classifications, wide-ranging applications, intricate governing policies, and the multifaceted impacts of their unintended emissions or leaks. Furthermore, the study meticulously examines the cutting-edge remediation techniques currently employed to counteract nuclear contamination while projecting future innovations in this domain. By weaving together historical context, current applications, and forward-looking perspectives, this review offers a panoramic view of the nuclear isotope landscape. In conclusion, the significance of nuclear isotopes cannot be understated. As we stand at the crossroads of technological advancement and ethical responsibility, this review underscores the paramount importance of harnessing nuclear isotopes' potential in a manner that prioritizes safety, sustainability, and the greater good of humanity.
Collapse
Affiliation(s)
- Hang Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qi Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixiang Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yadong Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoliang Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Jaffari ZH, Abbas A, Kim CM, Shin J, Kwak J, Son C, Lee YG, Kim S, Chon K, Cho KH. Transformer-based deep learning models for adsorption capacity prediction of heavy metal ions toward biochar-based adsorbents. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132773. [PMID: 37866140 DOI: 10.1016/j.jhazmat.2023.132773] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/24/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Biochar adsorbents synthesized from food and agricultural wastes are commonly applied to eliminate heavy metal (HM) ions from wastewater. However, biochar's diverse characteristics and varied experimental conditions make the accurate estimation of their adsorption capacity (qe) challenging. Herein, various machine-learning (ML) and three deep learning (DL) models were built using 1518 data points to predict the qe of HM on various biochars. The recursive feature elimination technique with 28 inputs suggested that 14 inputs were significant for model building. FT-transformer with the highest test R2 (0.98) and lowest root mean square error (RMSE) (0.296) and mean absolute error (MAE) (0.145) outperformed various ML and DL models. The SHAP feature importance analysis of the FT-transformer model predicted that the adsorption conditions (72.12%) were more important than the pyrolysis conditions (25.73%), elemental composition (1.39%), and biochar's physical properties (0.73%). The two-feature SHAP analysis proposed the optimized process conditions including adsorbent loading of 0.25 g, initial concentration of 12 mg/L, and solution pH of 9 using phosphoric-acid pre-treated biochar synthesized from banana-peel with a higher O/C ratio. The t-SNE technique was applied to transform the 14-input matrix of the FT-Transformer into two-dimensional data. Finally, we outlined the study's environmental implications.
Collapse
Affiliation(s)
- Zeeshan Haider Jaffari
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ather Abbas
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Chang-Min Kim
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Jaegwan Shin
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Jinwoo Kwak
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Changgil Son
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Yong-Gu Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Sangwon Kim
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Kangmin Chon
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea.
| | - Kyung Hwa Cho
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
5
|
Duborská E, Vojtková H, Matulová M, Šeda M, Matúš P. Microbial involvement in iodine cycle: mechanisms and potential applications. Front Bioeng Biotechnol 2023; 11:1279270. [PMID: 38026895 PMCID: PMC10643221 DOI: 10.3389/fbioe.2023.1279270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Stable iodine isotopes are essential for humans as they are necessary for producing thyroid gland hormones. However, there are hazardous radioactive iodine isotopes that are emitted into the environment through radioactive waste generated by nuclear power plants, nuclear weapon tests, and medical practice. Due to the biophilic character of iodine radionuclides and their enormous biomagnification potential, their elimination from contaminated environments is essential to prevent the spread of radioactive pollution in ecosystems. Since microorganisms play a vital role in controlling iodine cycling and fate in the environment, they also can be efficiently utilized in solving the issue of contamination spread. Thus, this paper summarizes all known on microbial processes that are involved in iodine transformation to highlight their prospects in remediation of the sites contaminated with radioactive iodine isotopes.
Collapse
Affiliation(s)
- Eva Duborská
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Bratislava, Slovakia
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB–Technical University of Ostrava, Ostrava, Czechia
| | - Michaela Matulová
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Bratislava, Slovakia
- Radioactive Waste Repository Authority (SÚRAO), Praha, Czechia
| | - Martin Šeda
- Department of Applied Chemistry, Faculty of Agriculture and Technology, University of South Bohemia, České Budějovice, Czechia
| | - Peter Matúš
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
6
|
Kim J, Bak GH, Yoo DY, Lee YI, Lee YG, Chon K. Functionalization of pine sawdust biochars with Mg/Al layered double hydroxides to enhance adsorption capacity of synthetic azo dyes: Adsorption mechanisms and reusability. Heliyon 2023; 9:e14142. [PMID: 36923877 PMCID: PMC10008992 DOI: 10.1016/j.heliyon.2023.e14142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
This study determined that the adsorption of azo dyes, Methyl Orange (MO) and Sunset Yellow FCF (SYF), using the pristine pine sawdust biochar (PSB) and post-modified PSB with Mg/Al layered double hydroxides (PSB-LDHMgAl) was examined to offer valuable information into the differences in their adsorption mechanisms. Although a lower specific surface area of PSB-LDHMgAl (147.2 m2 g-1) than PSB (495.7 m2 g-1), LDHMgAl were successfully functionalized on the PSB surface through co-precipitation, which was highly related to the improvements of adsorption capacity of PSB-LDHMgAl toward MO and SYF. The MO and SYF adsorption kinetics by PSB and PSB-LDHMgAl were confirmed to the pseudo-second-order and considered chemisorption. The adsorption capacity of MO and SYF adsorbed onto PSB-LDHMgAl (MO = 21.8 mg g-1, SYF = 23.6 mg g-1) were significantly higher than that of PSB (MO = 2.2 mg g-1, SYF = 1.6 mg g-1). The adsorption isotherms of MO and SYF by PSB were well fitted by Freundlich isotherm, whereas the MO and SYF via PSB-LDHMgAl were by Langmuir isotherm. Even after 3 adsorption-desorption cycles using desorbents, the PSB-LDHMgAl remained excellent reusability (reuse efficiency: >81.2%). These findings suggest that post-modification with LDHMgAl might accelerate the adsorption performance (i.e., electrostatic interaction) of azo dyes to PSB in water.
Collapse
Affiliation(s)
- Jonggu Kim
- Department of Integrated Energy and Infra System, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.,Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Guen-Hyeok Bak
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Da-Young Yoo
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Young-In Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Yong-Gu Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Kangmin Chon
- Department of Integrated Energy and Infra System, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.,Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| |
Collapse
|
7
|
Tian X, Zhou G, Xi J, Sun R, Zhang X, Wang G, Mei L, Hou C, Jiang L, Qiu J. Vinyl-functionalized covalent organic frameworks for effective radioactive iodine capture in aqueous solution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|