1
|
Li F, Qu G, Dai Y, Zhao C, Xu C. Optimizing FeS crystallinity of sulfidated nZVI to enhance electron transport capacity for clothianidin efficient degradation: Regulation of biochar pyrolysis temperature. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137256. [PMID: 39837039 DOI: 10.1016/j.jhazmat.2025.137256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/16/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
Clothianidin (CTD), a highly water soluble neonicotinoid insecticide, easily enters water through runoff. Developing eco-friendly materials to degrade CTD is essential. Nano zero valent iron (nZVI) is effective for contaminant removal, but it deactivates due to agglomeration. Biochar supported sulfidated nano zero valent iron (S-nZVI-BC) can effectively mitigate nZVI aggregation while enhancing anti-passivation and electron transfer. However, the regulation of BC preparation conditions on S-nZVI-BC performance and contaminant degradation mechanism remains elusive. This work systematically investigated the effects of BC pyrolysis temperature on FeS formation in S-nZVI-BC and CTD degradation mechanism. BC enhanced FeS crystallinity and increased Fe0 lattice constants, facilitating electron transfer. Compared to S-ZVI, the CTD removal kinetics constants of S-nZVI-BC was 2.30 folds higher. Competitive dynamics model revealed BC pyrolysis temperature and S modulated the competition between O2 and CTD, enhancing electron utilization efficiency and improving nZVI anti-passivation under oxic conditions. Quenching experiment and electrochemical tests indicated S incorporation and changes in BC pyrolysis temperature modulated nZVI active reduced species (H*) production and contribution to CTD degradation. Additionally, increasing FeS crystallinity by adjusting BC pyrolysis temperature improved the electron transfer efficiency of S-nZVI-BC, enabling efficient CTD degradation. Density functional theory (DFT) calculations revealed CTD preferentially underwent nitro-reduction over dechlorination. All these findings can provide guidance for the application of S-nZVI-BC.
Collapse
Affiliation(s)
- Fengmin Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Guanjun Qu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yinshun Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chengxuan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Yan Z, Ouyang J, Wu B, Liu C, Wang H, Wang A, Li Z. Nonmetallic modified zero-valent iron for remediating halogenated organic compounds and heavy metals: A comprehensive review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100417. [PMID: 38638605 PMCID: PMC11024576 DOI: 10.1016/j.ese.2024.100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/20/2024]
Abstract
Zero Valent Iron (ZVI), an ideal reductant treating persistent pollutants, is hampered by issues like corrosion, passivation, and suboptimal utilization. Recent advancements in nonmetallic modified ZVI (NM-ZVI) show promising potential in circumventing these challenges by modifying ZVI's surface and internal physicochemical properties. Despite its promise, a thorough synthesis of research advancements in this domain remains elusive. Here we review the innovative methodologies, regulatory principles, and reduction-centric mechanisms underpinning NM-ZVI's effectiveness against two prevalent persistent pollutants: halogenated organic compounds and heavy metals. We start by evaluating different nonmetallic modification techniques, such as liquid-phase reduction, mechanical ball milling, and pyrolysis, and their respective advantages. The discussion progresses towards a critical analysis of current strategies and mechanisms used for NM-ZVI to enhance its reactivity, electron selectivity, and electron utilization efficiency. This is achieved by optimizing the elemental compositions, content ratios, lattice constants, hydrophobicity, and conductivity. Furthermore, we propose novel approaches for augmenting NM-ZVI's capability to address complex pollution challenges. This review highlights NM-ZVI's potential as an alternative to remediate water environments contaminated with halogenated organic compounds or heavy metals, contributing to the broader discourse on green remediation technologies.
Collapse
Affiliation(s)
- Zimin Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jia Ouyang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Bin Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Chenchen Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Hongcheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
3
|
Wang Y, Deng Y, Yao L, Yang X. Colloid-bound radicals formed in NOM-enhanced Fe(III)/peroxymonosulfate process accelerate the degradation of trace organic contaminants in water. WATER RESEARCH 2024; 248:120880. [PMID: 38007886 DOI: 10.1016/j.watres.2023.120880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
The omnipresence of natural organic matter (NOM) in water bodies traditionally hinders the degradation of trace organic contaminants (TrOCs) in peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs). This study elucidates the positive role of NOM in enhancing the degradation of TrOCs through the Fe(III)/PMS process. During this process, NOM reduces Fe(III), yielding semiquinone-like radical (NOM•) and concurrently forming NOM-Fe(III) colloids. In addition to the Fe(II)-mediated activation pathway, Fe(III) sites on NOM-Fe(III) colloids effectively transfer electrons from NOM• or some redox-active moieties to PMS, resulting in the generation of long-lived colloid-bound SO4•-, which can readily undergo hydrolysis to produce HO•. The stabilization of SO4•- and HO• by NOM-Fe(III) colloids, combined with their moderate adsorption of TrOCs, results in surface-confined reactions that significantly enhance TrOC removal, despite the presence of concurrent quenching reactions between radicals and NOM. Further, the significant positive correlation between the phenolic contents of eight NOM types and TrOC degradation kinetics suggests phenolic moieties as the primary electron source for PMS activation. By in-situ utilizing NOM in raw water, a PMS-amended iron coagulation process with 0.2 mM Fe(III) and PMS effectively removes 90-100 % of six coexisting TrOCs. This study unveils the previously unrecognized role of colloid-bound radicals in decontamination processes, offering valuable insights into harnessing NOM's influence in advanced oxidation water treatment processes.
Collapse
Affiliation(s)
- Yu Wang
- College of Resources and Environment, Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China
| | - Yanchun Deng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lu Yao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
4
|
Zhang Q, Wang J, Wei Z, Li Y, Li W, Yang X, Wu X. S modified manganese oxide for high efficiency of peroxydisulfate activation: Critical role of S and mechanism. CHEMOSPHERE 2023; 328:138563. [PMID: 37028724 DOI: 10.1016/j.chemosphere.2023.138563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Mn2O3 as a typical Mn based semiconductor has attracted growing attention due to its peculiar 3d electron structure and stability, and the multi-valence Mn on the surface is the key to peroxydisulfate activation. Herein, an octahedral structure of Mn2O3 with (111) exposed facet was synthesized by a hydrothermal method, which was further sulfureted to obtained a variable-valent Mn oxide for the high activation efficiency of peroxydisulfate under the light emitting diode irradiation. The degradation experiments showed that under the irradiation of 420 nm light, S modified manganese oxide showed an excellent removal for tetracycline within 90 min, which is about 40.4% higher than that of pure Mn2O3. In addition, the degradation rate constant k of S modified sample increased 2.17 times. Surface sulfidation not only increased the active sites and oxygen vacancies on the pristine Mn2O3 surface, but also changed the electronic structure of Mn due to the introduce of surface S2-. This modification accelerated the electronic transmission during the degradation process. Meanwhile, the utilization efficiency of photogenerated electrons was greatly improved under light. Besides, the S modified manganese oxide had an excellent reuse performance after four cycles. The scavenging experiments and EPR analyses showed that •OH and 1O2 were the main reactive oxygen species. This study therefore provides a new avenue for further developing manganese-based catalysts towards high activation efficiency for peroxydisulfate.
Collapse
Affiliation(s)
- Qingwen Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinpeng Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhenlun Wei
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yubiao Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Wanqing Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xu Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoyong Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|