1
|
Mahmoud SELME, Abdel-Fattah TM, Mahmoud ME, Díaz E. Efficient removal performance of polystyrene microplastics from strongly acidic solutions by two functionalized nanosized biochars derived from low-cost sustainable sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178892. [PMID: 40020576 DOI: 10.1016/j.scitotenv.2025.178892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/15/2025] [Accepted: 02/16/2025] [Indexed: 03/03/2025]
Abstract
Microplastic pollution in aquatic systems and other environments has garnered significant concern due to its persistence, widespread environmental migration, and detrimental impact on entire ecosystems. Such pollution type poses severe threats to human life quality, as well as flora and fauna. In response to this pressing global issue, the current research explores a simple, sustainable, and cost-effective solution by employing two newly modified nanobiochar materials with oxalic acid, for the adsorptive removing of polystyrene microplastics (PSMPs) from aquatic systems. The two nanobiochars were derived from sustainable and low-cost feedstocks, specifically pineapple and artichoke wastes via pyrolysis at 300 °C and 350 °C, yielding NBP and NBA, respectively. These were subsequently modified with oxalic acid (OA) to create OA@NBP and OA@NBA nanobiosorbents. The EDX analysis confirmed the primary elemental composition of carbon, oxygen, nitrogen, calcium, and magnesium. TEM analysis revealed distinct differences in particle size and morphology of OA@NBA which displayed small particles ranging from 9.81 to 16.15 nm, while OA@NBP exhibited larger particles with size ranging from 68.86 to 105.12 nm, highlighting their structural differences. OA@NBP and OA@NBA nanobiosorbents were evaluated in PSMPs removing from aquatic systems providing the optimum conditions 30-50 mg nanobiosorbent, 40 min time and pH 2.0. The adsorption and binding mechanisms were best fitted to pseudo-second-order kinetics and Langmuir-Freundlich models. Thermodynamic analysis revealed that the adsorption process was non-spontaneous and endothermic. The loaded PSMPs on OA@NBA and OA@NBP nanobiosorbents were successfully regenerated and successively used to remove PSMPs with 86.8 % and 89.5 %, respectively, after the first regeneration step. Additionally, the two nanobiosorbents demonstrated excellent PSMPs removal efficiencies in simulated seawater samples adjusted to pH 2.0, achieving removal rates of 93.4 % (OA@NBA) and 87.4 % (OA@NBP). Therefore, the characterized PSMPs removal performance at pH 2.0 can afford a good avenue for potential application of the two explored nanobiosorbents in effective removal of PSMPs pollutant from other acidic industrial wastewater matrices.
Collapse
Affiliation(s)
- Safe ELdeen M E Mahmoud
- Department of Chemical and Environmental Engineering, University of Oviedo, Faculty of Chemistry, Julián Clavería s/n, 33006 Oviedo, Spain; Chemical and Petrochemical Engineering Department, College of Engineering and Technology, Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt
| | - Tarek M Abdel-Fattah
- Department of Molecular Biology and Chemistry and Applied Research Center Thomas Jefferson National Accelerator, Facility, Christopher Newport University, Newport News, VA 23606, USA
| | - Mohamed E Mahmoud
- Faculty of Sciences, Chemistry Department, Alexandria University, Alexandria, Egypt.
| | - Eva Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, Faculty of Chemistry, Julián Clavería s/n, 33006 Oviedo, Spain
| |
Collapse
|
2
|
Shahzad K, Hasan A, Hussain Naqvi SK, Parveen S, Hussain A, Ko KC, Park SH. Recent advances and factors affecting the adsorption of nano/microplastics by magnetic biochar. CHEMOSPHERE 2025; 370:143936. [PMID: 39667528 DOI: 10.1016/j.chemosphere.2024.143936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The increase in nano/microplastics (NPs/MPs) from various everyday products entering aquatic environments highlights the urgent need to develop mitigation strategies. Biochar (BC), known for its excellent adsorption capabilities, can effectively target various harmful organic and inorganic pollutants. However, traditional methods involving powdered BC necessitate centrifugation and filtration, which can lead to the desorption of pollutants and subsequent secondary pollution. Magnetic biochar (MBC) offers a solution that facilitates straightforward and rapid separation from water through magnetic techniques. This review provides the latest insights into the progress made in MBC applications for the adsorption of NPs/MPs. This review further discusses how external factors such as pH, ionic strength, temperature, competing ions, dissolved organic matter, aging time, and particle size impact the MBC adsorption efficiency of MPs. The use of machine learning (ML) for optimizing the design and properties of BC materials is also briefly addressed. Finally, this review addresses existing challenges and future research directions aimed at improving the large-scale application of MBC for NPs/MPs removal.
Collapse
Affiliation(s)
- Khurram Shahzad
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Areej Hasan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Syed Kumail Hussain Naqvi
- Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Saima Parveen
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Abrar Hussain
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Kyong-Cheol Ko
- Korea Preclinical Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34113, Republic of Korea.
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Gao P, Song S, Wang M, Yao M, Xue J. Oxygen atmosphere enhances ball milling remediation of petroleum-contaminated soil and reuse as adsorptive/catalytic materials for wastewater treatment. J Environ Sci (China) 2025; 147:652-664. [PMID: 39003080 DOI: 10.1016/j.jes.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 07/15/2024]
Abstract
Ball milling is an environmentally friendly technology for the remediation of petroleum-contaminated soil (PCS), but the cleanup of organic pollutants requires a long time, and the post-remediation soil needs an economically viable disposal/reuse strategy due to its vast volume. The present paper develops a ball milling process under oxygen atmosphere to enhance PCS remediation and reuse the obtained carbonized soil (BCS-O) as wastewater treatment materials. The total petroleum hydrocarbon removal rates by ball milling under vacuum, air, and oxygen atmospheres are 39.83%, 55.21%, and 93.84%, respectively. The Langmuir and pseudo second-order models satisfactorily describe the adsorption capacity and behavior of BCS-O for transition metals. The Cu2+, Ni2+, and Mn2+ adsorbed onto BCS-O were mainly bound to metal carbonates and metal oxides. Furthermore, BCS-O can effectively activate persulfate (PDS) oxidation to degrade aniline, while BCS-O loaded with transition metal (BCS-O-Me) shows better activation efficiency and reusability. BCS-O and BCS-O-Me activated PDS oxidation systems are dominated by 1O2 oxidation and electron transfer. The main active sites are oxygen-containing functional groups, vacancy defects, and graphitized carbon. The oxygen-containing functional groups and vacancy defects primarily activate PDS to generate 1O2 and attack aniline. Graphitized carbon promotes aniline degradation by accelerating electron transfer. The paper develops an innovative strategy to simultaneously realize efficient remediation of PCS and sequential reuse of the post-remediation soil.
Collapse
Affiliation(s)
- Pingting Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Simin Song
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Mingxin Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; Jiangsu Petrochemical Safety and Environmental Protection Engineering Research Center, Changzhou 213164, China.
| | - Meng Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jinjuan Xue
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
4
|
Tripathi A, Ekanayake A, Tyagi VK, Vithanage M, Singh R, Rao YRS. Emerging contaminants in polluted waters: Harnessing Biochar's potential for effective treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123778. [PMID: 39721395 DOI: 10.1016/j.jenvman.2024.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Biochar is a carbon-rich, sponge-like material with intricate functionalities, making it suitable for various environmental remediation applications, including water treatment, soil amendment and, additives in construction materials, anaerobic digesters, and electrodes, among others. Its easy adaptability and low cost make it particularly attractive. This review highlights a range of biochar and surface-modified biochar exhibiting high uptake and degradation efficiencies for a broad spectrum of contaminants, including humic acid, disinfection by-products (DBPs), radioactive materials, dyes, heavy metals, antibiotics, microplastics, pathogens, Per- and polyfluoroalkyl substances (PFAS), and cytotoxins. The study provides a detailed discussion on different classes of pollutants and their removal mechanisms using biochar, covering processes like physical and chemical adsorption, electrostatic interactions, π-π interactions, hydrogen bonding, as well as surface complexation, chelation, among others. This review article stands out for its comprehensive exploration of biochar's effectiveness in removing a wide range of emerging contaminants, as well as recent advancements in the removal of conventional pollutants like heavy metals and antibiotics.
Collapse
Affiliation(s)
- Abhilasha Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, India
| | - Anusha Ekanayake
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India.
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, 248007, India; Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia
| | - Rajesh Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| | - Y R S Rao
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| |
Collapse
|
5
|
Chen M, Nan J, Breider F. A comparative study on the stability and coagulation removal of aged vs. nonaged nanoplastics in surface water. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136490. [PMID: 39547043 DOI: 10.1016/j.jhazmat.2024.136490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Nanoplastics (NPs) are released into surface water due to the widespread use of plastics, undergoing aging from environmental and human factors that alter their physical and chemical characteristics. However, detecting NPs remains challenging, resulting in limited research on their behavior in surface water and their removal efficiency by drinking water treatment. This study utilizes palladium-doped polystyrene nanoplastics (PSNPs) as tracers to enable precise detection and quantification through ICP-MS, thereby overcoming the limitations of conventional detection methods. PSNPs are aged using solar irradiation and ozone to simulate both natural and artificial aging processes, affecting the physical and chemical properties of NPs, which in turn influence their behavior in water treatment systems. Moreover, the study investigates the impact of various coagulation conditions, including different coagulants (AlCl3 and PACl), pH levels (4-9), and humic acid (HA) concentrations (0-10 mg/L), on the of both aged and nonaged NPs. The results demonstrate solar aging triggers significant morphological changes in PSNPs, while ozone aging induces more oxygen functional groups on PSNPs (CIozone=20.99; CIsolar=0.70), increasing sensitivity to HA concentrations and resulting in reduced removal efficiencies for ozone aged PSNPs by AlCl3 (68.68 %) and PACl (74.74 %). In addition, PACl achieves higher PSNPs removal efficiencies (REmin=88.59 %) than that of AlCl3 (REmin=85.57 %) under varied pH levels. This research fills a gap in understanding aged NPs behavior in surface water and offers practical solutions for optimizing coagulation for NPs removal, enhancing our ability to predict NPs environmental fate and manage NPs pollution to ensure drinking water safety.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China; Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, Station 2, CH-1015 Lausanne, Switzerland
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, Station 2, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
6
|
Vicente-Martínez Y, Soler-García I, Hernández-Córdoba M, López-García I, Penalver R. Development of a Fast and Efficient Strategy Based on Nanomagnetic Materials to Remove Polystyrene Spheres from the Aquatic Environment. Molecules 2024; 29:4565. [PMID: 39407495 PMCID: PMC11477501 DOI: 10.3390/molecules29194565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Microplastics contamination is growing globally, being a risk for different environmental compartments including animals and humans. At present, some Spanish beaches and coasts have been affected by discharges of these pollutants, which have caused a serious environmental problem. Therefore, efficient strategies to remove microplastics (MPs) from environmental samples are needed. In this study, the application of three magnetic materials, namely iron oxide (Fe3O4) and the composites Fe3O4@Ag and Fe3O4@Ag@L-Cysteine, to remove MPs, specifically polystyrene (PS), from water samples has been assessed. The magnetic nanoparticles were synthesized and characterized by field effect scanning electron microscopy with energy dispersive X-ray spectroscopy detection (FESEM-EDX). Experimental conditions such as temperature, time, and pH during the removal process were assessed for the different adsorbent materials. The removal rate was calculated by filtering the treated water samples and counting the remaining MPs in the water using ImageJ software. The strongest removal efficiency (100%) was shown using Fe3O4@Ag@L-Cysteine for PS at 50 mg L-1 within 15 min of the separation process at room temperature and a neutral pH. A thermodynamic study demonstrated that the developed MPs elimination strategy was a spontaneous and physisorption process. Coated Fe3O4 magnetic nanoparticles were demonstrated to be an efficient adsorbent for MP removal in aquatic environments and their use a promising technique for the control of MPs contamination.
Collapse
Affiliation(s)
| | | | | | | | - Rosa Penalver
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (Y.V.-M.); (I.S.-G.); (M.H.-C.); (I.L.-G.)
| |
Collapse
|
7
|
Ma Y, Yao Y, Deng Z, Zeng C, Liu Y, Ma J, Zhang Z. Hydrothermal N-doping, magnetization and ball milling co-functionalized sludge biochar design and its selective adsorption of trace concentration sulfamethoxazole from waters. CHEMOSPHERE 2024; 363:142855. [PMID: 39019195 DOI: 10.1016/j.chemosphere.2024.142855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
This study aimed to design an efficient and easily collected/regenerated adsorbent for trace concentration sulfamethoxazole (SMX) removal to eliminate its negative impacts on human health, reduce the risk of adsorbed SMX release and boost the reusability of adsorbent. Various multiple modified sludge-derived biochars (SBC) were synthesized in this work and applied to adsorb trace level SMX. The results demonstrated that hydrothermal N-doping, magnetization coupled with ball milling co-functionalized SBC (BMNSBC) displayed the greater adsorption ability for SMX. The maximum adsorption capacity of BMNSBC for SMX calculated by Langmuir model was 1.02 × 105 μg/g, which was 12.9 times of SBC. Characterization combined with adsorption experiments (e.g., models fitting) and DFT calculation confirmed that π-π conjugation, Lewis acid-base, pore filling and Fe3O4 complexation were the primary forces driving SMX binding to BMNSBC. These diversified physicochemical forces contributed to the fine anti-interference of BMNSBC to background substances (e.g., inorganic compounds and organic matter) and its remarkable adsorption ability for SMX in diverse real waters. The great magnetization strength of BMNSBC was advantage for its collection and efficient regeneration by NaOH desorption. Additionally, BMNSBC exhibited an outstanding security in view of its low leaching levels of iron (Fe) and total nitrogen (TN). The multiple superiority of BMNSBC enable it to be a prospective material for emerging contaminants (e.g., SMX) purification, also offering a feasible disposal approach for municipal waste (e.g., sludge).
Collapse
Affiliation(s)
- Yongfei Ma
- Xianghu Laboratory, Hangzhou, 311231, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Yanlai Yao
- Xianghu Laboratory, Hangzhou, 311231, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | | | | | - Yan Liu
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Junwei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
8
|
Son SH, Jung YJ, Koo HY, Choi WS. Amphiphilic Magnetic Particles Dispersed in Water and Oil for the Removal of Hydrophilic and Hydrophobic Microplastics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26849-26861. [PMID: 38597322 DOI: 10.1021/acsami.3c19398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The study explores the synthesis and versatile properties of amphiphilic magnetic particles (AMPs) achieved through sequential coatings. Modulating the hydrophobic content in the synthesis process allows for the formation of hydrophilic, amphiphilic, and hydrophobic magnetic particles, with stable AMPs synthesis achieved at a ratio of hydrophilic to hydrophobic portions of approximately 71 to 29%. These AMPs exhibited outstanding dispersion in both oil and water within an oil/water mixture. Polyethylenimine in the AMP primarily enhances the removal of hydrophilic microparticles and facilitates dispersion in water. On the other hand, octadecylamine is specifically designed for the effective elimination of hydrophobic microparticles and their dispersion in oil. AMPs demonstrated effective removal capabilities for both hydrophilic and hydrophobic microparticles in water as well as hydrophobic microparticles in 100% oil. Our approach is also suited for eliminating hydrophobic microparticles dispersed in small quantities of oil floating on large bodies of water in real-world situations.
Collapse
Affiliation(s)
- Su Hyeon Son
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Republic of Korea
| | - Young Ju Jung
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Republic of Korea
| | - Hye Young Koo
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk Institute of Advanced Composite Materials, Wanju-gun, Jeollabuk-do 55324, Republic of Korea
| | - Won San Choi
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Republic of Korea
| |
Collapse
|
9
|
Jin H, Song Z, Luo Y, Mao Y, Yan Q, Huang Z, Kang H, Yan X, Xing J, Wu Y. Seeking the adsorption of tetracycline in water by Fe-modified sludge biochar at different pyrolysis temperatures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36702-36715. [PMID: 38753232 DOI: 10.1007/s11356-024-33631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
The composite material SBC-Fe-x with sludge and Fe3+ was developed by different calcination temperatures (600, 700, and 800 °C) for the removal of tetracycline (TC). The adsorption rates of SBC-Fe-600, SBC-Fe-700, and SBC-Fe-800 were 77.5%, 89%, and 91%, respectively. Furthermore, the Langmuir model indicated that the maximum adsorption capacity of SBC-Fe-700 (157.93 mg/g) was three times greater than that of SBC-Fe-600. The conclusions were confirmed by a series of characterizations that SBC-Fe-700 showed a larger specific surface area, well-developed pore structure, rich oxygen-containing functional groups and a high degree of graphitization. The results of pH experiments indicated the broad applicability of SBC-Fe-700 for TC adsorption. In addition, SBC-Fe-700 suggested outstanding performance in different water environments. This work produced a feasible adsorbent for the removal of TC, and a new direction for sludge resource utilization was proposed.
Collapse
Affiliation(s)
- Hanyu Jin
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, People's Republic of China
- School of Civil and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China
| | - Zhongxian Song
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, People's Republic of China
| | - Yulong Luo
- Faculty of Innovation and Design, City University of Macao, Macao, 999078, People's Republic of China
| | - Yanli Mao
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, People's Republic of China.
| | - Qun Yan
- School of Civil and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China
| | - Zhenzhen Huang
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, People's Republic of China
| | - Haiyan Kang
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, People's Republic of China
| | - Xu Yan
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, People's Republic of China
| | - Jiajing Xing
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, People's Republic of China
| | - Yongle Wu
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, People's Republic of China
| |
Collapse
|
10
|
Gupta N, Parsai T, Kulkarni HV. A review on the fate of micro and nano plastics (MNPs) and their implication in regulating nutrient cycling in constructed wetland systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119559. [PMID: 38016236 DOI: 10.1016/j.jenvman.2023.119559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/06/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023]
Abstract
This review discusses the micro-nano plastics (MNPs) and their interaction with physical, chemical and biological processes in a constructed wetland (CW) system that is typically used as a nature-based tertiary wastewater treatment for municipal as well as industrial applications. Individual components of the CW system such as substrate, microorganisms and plants were considered to assess how MNPs influence the CW processes. One of the main functions of a CW system is removal of nutrients like nitrogen (N) and phosphorus (P) and here we highlight the pathways through which the MNPs influence CW's efficacy of nutrient removal. The presence of morphologically (size and shape) and chemically different MNPs influence the growth rate of microorganisms important in N and P cycling, invertebrates, decomposers, and the plants which affect the overall efficiency of a CW treatment system. Certain plant species take up the MNPs, and some toxicity has been observed. This review focuses on two significant aspects: (1) the presence of MNPs in a significant concentration affects the efficiency of N and P removal, and (2) the removal of MNPs. Because MNPs reduce the enzyme activities in abundance and overproduction of ROS oxidizes the enzyme active sites, resulting in the depletion of proteins, ultimately inhibiting nitrogen and phosphorus removal within the substrate layer. The review found that the majority of the studies used sand-activated carbon (SAC), granular-activated carbon (GAC), rice straw, granular limestone, and calcium carbonate, as a substrate for CW treatment systems. Common plant species used in the CW include Phragmites, Arabidopsis thaliana, Lepidium sativum, Thalia dealbata, and Canna indica, which were also found to be dominant in the uptake of the MNPs in the CWs. The MNPs were found to affect earthworms such as Eisenia fetida, Caenorhabditis elegans, and, Enchytraeus crypticus, whereas Metaphire vulgaris were found unaffected. Though various mechanisms take place during the removal process, adsorption and uptake mechanism effectively emphasize the removal of MNPs and nitrogen and phosphorus in CW. The MNPs characteristics (type, size, and concentration) play a crucial role in the removal efficiency of nano-plastics (NPs) and micro-plastics (MPs). The enhanced removal efficiency of NPs compared to MPs can be attributed to their smaller size, resulting in a faster reaction rate. However, NPs dose variation showed fluctuating removal efficiency, whereas MPs dose increment reduces removal efficiency. MP and NPs dose variation also affected toxicity to plants and earthworms as observed from data. Understanding the fate and removal of microplastics in wetland systems will help determine the reuse potential of wastewater and restrict the release of microplastics. This study provides information on various aspects and highlights future gaps and needs for MNP fate study in CW systems.
Collapse
Affiliation(s)
- Nikita Gupta
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| | - Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Harshad Vijay Kulkarni
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
11
|
Wang B, Liu W, Zhang M. Application of carbon-based adsorbents in the remediation of micro- and nanoplastics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119522. [PMID: 37939465 DOI: 10.1016/j.jenvman.2023.119522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Micro-nano plastics (MNPs) are emerging contaminants that can easily enter the food chain, posing risks to both the aquatic ecosystem and human health. Various physical, biological, and chemical methods have been explored to remove MNPs from water, and recently, adsorption technology has gained attention as an effective approach. Among the potential candidates, carbon-based adsorbent has emerged as a promising choice due to their low cost, eco-friendly nature, and sustainability. This paper summarizes recent advancements in MNP removal using carbon-based adsorbents, with a focus on the modification methods and adsorption mechanisms. Additionally, the factors influencing the adsorption performance and the methods for characterizing the adsorption mechanism are analyzed. Finally, the advantages and disadvantages of carbon-based adsorbents over other adsorbents are discussed, along with the current state of sustainable recycling and future research prospects.
Collapse
Affiliation(s)
- Bin Wang
- College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wenjing Liu
- College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Minghui Zhang
- College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
12
|
He M, Dai P, Lu J, Kang Y, Zhang J, Wu H, Hu Z, Guo Z. Releasing and Assessing the Toxicity of Polycyclic Aromatic Hydrocarbons from Biochar Loaded with Iron. ACS OMEGA 2023; 8:48104-48112. [PMID: 38144079 PMCID: PMC10734020 DOI: 10.1021/acsomega.3c06950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023]
Abstract
Iron (Fe)-loaded biochar has garnered attention for its potential applications in recent years. However, the pyrolysis process of Fe-loaded biochar generates polycyclic aromatic hydrocarbons (PAHs), which can have adverse effects on both human health and the environment. This study explored the correlation between Fe loading and PAH production in Fe-loaded biochar. The results indicate that increasing Fe loading in biochar reduces the PAH concentration, with the most significant decrease observed in naphthalene (0.02-0.08 mg/kg). This reduction can be attributed to the decrease in precursor compounds (e.g., C2H2), substitution of the C=O bond by Fe-O, and a decrease in the dissolved organic matter concentration (3.19-10.76 mg/L) with Fe loading. When Fe loading increased from 0 to 10%, the ecological toxicity of biochar increased by 33.48% due to an elevated production of dibenzo[a,h]anthracene, which poses a significant risk to human health. Therefore, it is imperative to take into consideration the ecological risk of PAHs prior to the application of Fe-loaded biochar. This study presents a comprehensive risk assessment of Fe-loaded biochar and provides valuable insights into the optimization of its production and safe application.
Collapse
Affiliation(s)
- Mingyu He
- Key
Laboratory of Ecological Impacts of Hydraulic-projects and Restoration
of Aquatic Ecosystem of Ministry of Water Resources, Wuhan 430079, China
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Peng Dai
- Department
of Civil & Environmental Engineering, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Jiaxing Lu
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yan Kang
- College
of Environment and Safety Engineering, Qingdao
University of Science and Technology, Qingdao 266042, China
| | - Jian Zhang
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haiming Wu
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zizhang Guo
- Key
Laboratory of Ecological Impacts of Hydraulic-projects and Restoration
of Aquatic Ecosystem of Ministry of Water Resources, Wuhan 430079, China
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
13
|
Zheng Z, Huang Y, Liu L, Wang L, Tang J. Interaction between microplastic biofilm formation and antibiotics: Effect of microplastic biofilm and its driving mechanisms on antibiotic resistance gene. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132099. [PMID: 37517232 DOI: 10.1016/j.jhazmat.2023.132099] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
As two pollutants with similar transport pathways, microplastics (MPs) and antibiotics (ATs) inevitably co-exist in water environments, and their interaction has become a topic of intense research interest for scholars over the past few years. This paper comprehensively and systematically reviews the current interaction between MPs and ATs, in particular, the role played by biofilm developed MPs (microplastic biofilm). A summary of the formation process of microplastic biofilm and its unique microbial community structure is presented in the paper. The formation of microplastic biofilm can enhance the adsorption mechanisms of ATs on primary MPs. Moreover, microplastic biofilm system is a diverse and vast reservoir of genetic material, and this paper reviews the mechanisms by which microplastics with biofilm drive the production of antibiotic resistance genes (ARGs) and the processes that selectively enrich for more ARGs. Meanwhile, the enrichment of ARGs may lead to the development of microbial resistance and the gradual loss of the antimicrobial effect of ATs. The transfer pathways of ARGs affected by microplastic biofilm are outlined, and ARGs dependent transfer of antibiotic resistance bacteria (ARB) is mainly through horizontal gene transfer (HGT). Furthermore, the ecological implications of the interaction between microplastic biofilm and ATs and perspectives for future research are reviewed. This review contributes to a new insight into the aquatic ecological environmental risks and the fate of contaminants (MPs, ATs), and is of great significance for controlling the combined pollution of these two pollutants.
Collapse
Affiliation(s)
- Zhijie Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
14
|
Wang L, Yan Z, Yan H, Hao Z, Huang J, Jiang H. Magnetic loofah sponge biochar facilitates microbial interspecies cooperation in surface and subsurface sediments for enhanced PAH biodegradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122185. [PMID: 37442325 DOI: 10.1016/j.envpol.2023.122185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
Magnetic biochar had been used for the bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated sediments. However, the long-term remediation pattern of vertical stratification driven by the application of magnetic biochar and the assembly of microbes had received little attention. In this study, magnetic loofah sponge biochar (MagLsBC), magnetic iron oxide (MagOx) and magnetic coconut shell activated carbon (MagCoAC) were applied for the 900-day remediation of contaminated sediments. Significant (p < 0.05) PAH biodegradation was observed in both the surface and subsurface sediments with MagLsBC addition. However, enhanced PAH biodegradation was observed only in the surface sediments with MagOx and MagCoAC treatments. Magnetotactic bacteria (Magnetococcus) was dominant genera in surface sediments and indigenous PAH degradation bacteria were more abundant in subsurface sediments of MagLsBC relative to other bacterial communities. The network interaction between microbes in surface and subsurface sediments with MagLsBC treatments was a less complex and tighter than those with MagCoAC, MagOx or Control treatments. Long-distance electron transfer rates could be enhanced through cooperation between magnetotactic bacteria and indigenous degradation bacteria, thus accelerating PAH degradation in sediment with MagLsBC treatment, especially in the underlying sediment.
Collapse
Affiliation(s)
- Luming Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Haifeng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Zheng Hao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
15
|
Zou M, Tian W, Chu M, Lu Z, Liu B, Xu D. Magnetically separable laccase-biochar composite enable highly efficient adsorption-degradation of quinolone antibiotics: Immobilization, removal performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163057. [PMID: 36966832 DOI: 10.1016/j.scitotenv.2023.163057] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
The tremendous potential of hybrid technologies for the elimination of quinolone antibiotics has recently attracted considerable attention. This current work prepared a magnetically modified biochar (MBC) immobilized laccase product named LC-MBC through response surface methodology (RSM), and LC-MBC showed an excellent capacity in the removal of norfloxacin (NOR), enrofloxacin (ENR) and moxifloxacin (MFX) from aqueous solution. The superior pH, thermal, storage and operational stability demonstrated by LC-MBC revealed its potential for sustainable application. The removal efficiencies of LC-MBC in the presence of 1 mM 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) for NOR, ENR and MFX were 93.7 %, 65.4 % and 77.0 % at pH 4 and 40 °C after 48 h reaction, respectively, which were 1.2, 1.3 and 1.3 times higher than those of MBC under the same conditions. The synergistic effect of adsorption by MBC and degradation by laccase dominated the removal of quinolone antibiotics by LC-MBC. Pore-filling, electrostatic, hydrophobic, π-π interactions, surface complexation and hydrogen bonding contributed in the adsorption process. The attacks on the quinolone core and piperazine moiety were involved in the degradation process. This study underscored the possibility of immobilization of laccase on biochar for enhanced remediation of quinolone antibiotics-contaminated wastewater. The proposed physical adsorption-biodegradation system (LC-MBC-ABTS) provided a novel perspective for the efficient and sustainable removal of antibiotics in actual wastewater through combined multi-methods.
Collapse
Affiliation(s)
- Mengyuan Zou
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Weijun Tian
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China; Laoshan Laboratory, Qingdao 266234, PR China.
| | - Meile Chu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Zhiyang Lu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Bingkun Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Dongpo Xu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| |
Collapse
|
16
|
Choi JH, Jung YJ, Kim HJ, Seo YJ, Choi WS. A Janus branch filter for washing machines: Simultaneous removal of microplastics and surfactants. CHEMOSPHERE 2023; 331:138741. [PMID: 37084898 DOI: 10.1016/j.chemosphere.2023.138741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Emerging pollutants, such as microplastics (MPs), are becoming a significant issue worldwide. The highest percentage of MPs released into the environment occurs through daily laundry. The average weight of dreg obtained from 5 kg of laundry was 1.26 g/kg. According to energy dispersive X-ray (EDX) and thermogravimetric analysis (TGA) analyses, the dreg consisted of MPs (78.3-89 wt%, organic elements: C/O) and alien materials (11-21.7 wt%, inorganic elements: Al/Fe/Ca, etc.). Thus, to reproduce the real environment, alien materials (Fe3O4 and CaCO3) were added to various types of model MPs in the presence and absence of sodium dodecyl benzenesulfonate (SDBS) to test MP removal. Hydrophobic and hydrophilic MPs were generated upon laundering, accounting for 55-59% and 41-45% of MPs, respectively. We provide a novel approach to design a laundry filter system for the simultaneous removal of SDBS and hydrophilic/hydrophobic MPs.
Collapse
Affiliation(s)
- Ji Hee Choi
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon, 305-719, North Korea
| | - Young Ju Jung
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon, 305-719, North Korea
| | - Hee Ju Kim
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon, 305-719, North Korea
| | - Yu Jin Seo
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon, 305-719, North Korea
| | - Won San Choi
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon, 305-719, North Korea.
| |
Collapse
|