1
|
Li C, Luo H, Chen M, Lin F, Ren X, Huang Y, Zhou L. Bisphenol AF induces cell cycle arrest and apoptosis in TM3 Leydig cells via the p53 signaling pathway. Reprod Toxicol 2025; 134:108882. [PMID: 40089166 DOI: 10.1016/j.reprotox.2025.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Bisphenol AF (BPAF), one of the most common bisphenol analogues, has been reported to exhibit higher estrogenic activity compared to bisphenol A (BPA) due to the presence of additional hydrophobic groups. To comprehensively understand the male reproductive toxicity of BPAF, TM3 Leydig cells were used to investigate the effects of BPAF on cell proliferation, apoptosis, and cell cycle arrest. The underlying mechanisms of cellular responses induced by BPAF were examined through analysis of target mRNA and protein expression. Results showed that BPAF treatment reduced cell viability and induced both G2/M cell cycle arrest and apoptosis in a time- and dose-dependent manner in TM3 Leydig cells. RNA sequencing analysis and experimental verification further revealed that the p53 signaling pathway was involved in BPAF-induced cytotoxicity. Furthermore, Pifithrin-α (PFT-α), a p53 inhibitor, attenuated BPAF-induced G2/M cell cycle arrest and apoptosis. These results demonstrate that the p53 signaling pathway mediates BPAF-induced cell cycle arrest and apoptosis in Leydig cells, providing mechanistic insights into BPAF's toxicological effects on the male reproductive system.
Collapse
Affiliation(s)
- Chenlu Li
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haolong Luo
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Mengyuan Chen
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Fuxing Lin
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xiangmei Ren
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yefei Huang
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Li Zhou
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
2
|
Vrooman LA, Gieske MC, Lawson C, Cesare J, Zhang S, Bartolomei MS, Garcia BA, Hassold TJ, Hunt PA. Effect of Brief Maternal Exposure to Bisphenol A on the Fetal Female Germline in a Mouse Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:47002. [PMID: 40036665 PMCID: PMC11980919 DOI: 10.1289/ehp15046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Environmental contamination by endocrine-disrupting chemicals (EDCs) has created serious public health, ecological, and regulatory concerns. Prenatal exposures can affect a wide range of developing organ systems and are associated with adverse changes to behavior, metabolism, fertility, and disease risk in the adult. The most serious and puzzling observation for some EDC exposures is the transmission of effects to subsequent unexposed generations (transgenerational effects) in animal models. This requires the induction of epigenetic aberrations to the germline that are not subject to the normal processes of erasure and resetting in subsequent generations. Understanding when and how the germline is vulnerable to environmental contaminants is an essential first step in devising strategies to prevent and reverse their effects. METHODS Fetal mouse oocytes were collected after exposure of the dam to various concentrations of bisphenol A (BPA) or placebo. Meiotic effects were assessed by immunostaining to visualize the synaptonemal complex and recombination sites, as well as whole chromosome fluorescence in situ hybridization probes. Enriched oocyte pools were analyzed by mass spectrometry and RNA sequencing to determine differences in histone posttranslational modifications and gene expression, respectively. RESULTS We found germline effects across a wide range of exposure levels, the severity of which was positively associated with BPA concentration. We identified the onset of meiotic prophase as the vulnerable window of exposure and found surprising exposure-related differences in chromatin. Oocyte analysis by mass spectrometry and immunofluorescence suggested H4K20me2, a histone posttranslational modification involved in DNA damage repair, was particularly affected. Subsequent RNA-seq analysis revealed a relatively small number of differentially expressed genes, but in addition to genes involved in chromatin dynamics, several with important roles in DNA repair/recombination and centromere stability were affected. DISCUSSION Together, our data from a mouse model suggest BPA exposure induced complex molecular differences in the germline that dysregulated chromatin and affected several critical and interrelated meiotic pathways. https://doi.org/10.1289/EHP15046.
Collapse
Affiliation(s)
- Lisa A. Vrooman
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Mary C. Gieske
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Crystal Lawson
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Joseph Cesare
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shuo Zhang
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin A. Garcia
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Terry J. Hassold
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Patricia A. Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
3
|
Cheng L, Li F, Luo Y, Shi C, Cao R, Huang C, Zhang Y, Gao Y, Zhang H, Geng N, Chen J. Medium-Chain Chlorinated Paraffins Induced Reproductive Toxicity in Female Rats by Interfering with Oocyte Meiosis and Triggering DNA Damage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40080447 DOI: 10.1021/acs.est.4c12668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Medium-chain chlorinated paraffins (MCCPs) are among the most prevalent chemicals detected in human serum. As an emerging persistent organic pollutant, their toxicity mechanisms, particularly concerning the female reproductive system, remain poorly understood. In this study, we present both in vivo and in vitro evidence of ovarian toxicity induced by MCCPs and insights into their underlying molecular mechanisms. MCCP exposure induced chromatin condensation in the nucleus and mitochondria vacuolization of ovarian granulosa cells in rats and significantly increased the levels of serum gonadotropins and sex hormones, while reducing gonadotropin-releasing hormone levels. Transcriptomics analysis of ovaries revealed a predominant effect of MCCPs on the cell cycle, oocyte meiosis, and DNA damage repair pathways. Moreover, dual-omics integrative analysis indicated significant disturbance of steroid hormone biosynthesis caused by MCCPs, as well as amino acid metabolism related to TCA cycle. Furthermore, in vitro assays demonstrated that MCCP exposure disrupts intracellular Ca2+ homeostasis and generates reactive oxygen species, ultimately leading to DNA damage. In conclusion, this study revealed potential mechanisms by which MCCPs affect ovary function. These findings can provide valuable insights for the mechanism-based risk assessment of MCCPs on female reproduction.
Collapse
Affiliation(s)
- Lin Cheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Fang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yun Luo
- College of Medicine, Linyi University, Linyi, Shandong 276005, China
| | - Chengcheng Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Rong Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Chenhao Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yichi Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
4
|
Ma T, Yu H, Zhou X, Wang Y, Sun D, Cao Z, Ma C, Ding Z, Xu X, Cao Y. Gestational exposure to PNMC reduces offspring gamete numbers by disrupting oocyte meiosis and spermatogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117980. [PMID: 40037073 DOI: 10.1016/j.ecoenv.2025.117980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
3-Methyl-4-nitrophenol (PNMC) is a prevalent nitrophenolic endocrine disruptor found in pregnant women, with known effects on offspring growth and development. However, its impact on offspring fertility remains unexplored. This study investigates the effects of PNMC exposure during pregnancy on offspring fertility and the underlying mechanisms. Our fertility assessments revealed that PNMC exposure during pregnancy reduced the number of follicles and spermatozoa in offspring, though it did not affect their quality. In male offspring, PNMC exposure impaired spermatogenesis by reducing the number of Sertoli cells and spermatogonia. In female offspring, exposure disrupted the first meiotic prophase (MPI) of oocytes, leading to a reduced number of diplotene oocytes available for primordial follicle assembly. This depletion of primordial follicle reserve ultimately resulted in subfertility. Specifically, PNMC exposure hindered homologous recombination-mediated DNA double-strand break repair, triggering activation of the meiotic checkpoint and leading to MPI arrest. This arrested progression resulted in a depletion of diplotene oocytes. This is the first study to provide comprehensive evidence on the effects of PNMC exposure during pregnancy on offspring reproductive capacity, elucidating key pathways. These findings emphasize the need for stricter regulatory measures to limit PNMC exposure and offer new insights into the etiology of idiopathic oligozoospermia and diminished ovarian reserve.
Collapse
Affiliation(s)
- Tian Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Hui Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Xinyu Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Yuqin Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Dongying Sun
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Zizhuo Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, China
| | - Zhiming Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, China.
| | - Xiaofeng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No. 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
5
|
Głód P, Smoleniec J, Marynowicz W, Gogola-Mruk J, Ptak A. The Ovary as a Target Organ for New Generation Bisphenols Toxicity. TOXICS 2025; 13:164. [PMID: 40137491 PMCID: PMC11946734 DOI: 10.3390/toxics13030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
Bisphenols (BPs) are a group of organic compounds used extensively in plastics, coatings, and epoxy resins; they have been of concern recently due to their endocrine-disrupting effects. Among these, bisphenol A (BPA) is the most studied. Regulatory measures, such as the ban on BPA use in baby bottles by the European Union and its restricted use in thermal paper, reflect the growing awareness of the health risks of BPA. To mitigate these risks, analogs such as bisphenol S (BPS), bisphenol F (BPF), and others (BPAF, BPAP, BPB, BPP, BPZ) have been developed as alternatives. Despite their intended safety, these analogs have been detected in environmental media, including indoor dust and thermal receipt paper, as well as in human biological samples. Studies report their presence in urine at levels comparable to BPA, with BPS and BPF found in 78% and 55% of samples, respectively. In addition, BPs have been found in human follicular fluid (FF) at concentrations that could exert some paracrine effects on ovarian function and reproductive health. With the increased global production of BPs, occupational exposure and environmental contamination also increase. This review summarizes what is currently known about the effects of BPs on the ovary and the mechanisms by which PBs exert ovarian toxicity, with a particular focus on oogenesis, folliculogenesis, and steroidogenesis. Further, this review emphasizes their influence on reproductive functions and the need for further biosafety evaluations.
Collapse
Affiliation(s)
- Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30387 Cracow, Poland; (P.G.); (J.S.); (W.M.); (J.G.-M.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St 11, PL30348 Cracow, Poland
| | - Joanna Smoleniec
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30387 Cracow, Poland; (P.G.); (J.S.); (W.M.); (J.G.-M.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St 11, PL30348 Cracow, Poland
| | - Weronika Marynowicz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30387 Cracow, Poland; (P.G.); (J.S.); (W.M.); (J.G.-M.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St 11, PL30348 Cracow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30387 Cracow, Poland; (P.G.); (J.S.); (W.M.); (J.G.-M.)
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30387 Cracow, Poland; (P.G.); (J.S.); (W.M.); (J.G.-M.)
| |
Collapse
|
6
|
Pandey AN, Yadav PK, Premkumar KV, Tiwari M, Antony MM, Pandey AK, Chaube SK. Damage mechanisms of bisphenols on the quality of mammalian oocytes. Hum Reprod 2025; 40:186-198. [PMID: 39706892 DOI: 10.1093/humrep/deae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
The extensive use of bisphenols in the plastics industry globally is a major growing concern for human health. Bisphenol compounds are easily leached out from plastic containers to food, beverages, and drinking water and contaminate the natural environment. Daily exposure of bisphenol compounds increases their load and impairs various organs, including the reproductive system. Bisphenol compounds directly or indirectly affect ovarian functions, such as folliculogenesis, steroidogenesis, oogenesis, and thereby oocyte quality. Bisphenol A (BPA) and its structural analogues act as endocrine disruptors and induce generation of reactive oxygen species (ROS) within the ovary. Excess levels of ROS induce death pathways in follicular steroidogenic cells and affect ovarian steroidogenesis. The reduced level of estradiol-17β impairs follicular growth and development that reduces the number and quality of oocytes. In addition, excess levels of ROS in follicular fluid trigger meiotic instability, which further deteriorates oocyte quality. The high level of ROS generates oxidative stress that triggers various death pathways in germ cells as well as in oocytes, induces follicular atresia, and depletes ovarian reserve. Although growing evidence indicates the destructive effects of bisphenol compounds at the level of ovary, potential effects and underlying mechanisms that deteriorate oocyte quality remain poorly understood. Therefore, this review summarizes the mechanisms by which bisphenols cause damage to the ovary, impair oocyte quality, and affect women's fertility.
Collapse
Affiliation(s)
- Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Karuppanan V Premkumar
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mano Mohan Antony
- Centre for Molecular Evolutionary Genetics, Department of Zoology, Research Centre, University College Thiruvananthapuram, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
Peters AE, Ford EA, Roman SD, Bromfield EG, Nixon B, Pringle KG, Sutherland JM. Impact of Bisphenol A and its alternatives on oocyte health: a scoping review. Hum Reprod Update 2024; 30:653-691. [PMID: 39277428 PMCID: PMC11532624 DOI: 10.1093/humupd/dmae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) is an endocrine disrupting chemical released from plastic materials, including food packaging and dental sealants, persisting in the environment and ubiquitously contaminating ecosystems and human populations. BPA can elicit an array of damaging health effects and, alarmingly, 'BPA-free' alternatives mirror these harmful effects. Bisphenol exposure can negatively impact female fertility, damaging both the ovary and oocytes therein. Such damage can diminish reproductive capacity, pregnancy success, and offspring health. Despite global government regulations in place to indicate 'safe' BPA exposure levels, these policies have not considered the effects of bisphenols on oocyte health. OBJECTIVE AND RATIONALE This scoping review was conducted to evaluate evidence on the effects of BPA and BPA alternatives on standardized parameters of oocyte health. In doing so, this review addresses a critical gap in the literature providing a comprehensive, up-to-date synthesis of the effects of bisphenols on oocyte health. SEARCH METHODS This scoping review was conducted in accordance with PRISMA guidelines. Four databases, Medline, Embase, Scopus, and Web of Science, were searched twice (23 February 2022 and 1 August 2023) to capture studies assessing mammalian oocyte health post-bisphenol exposure. Search terms regarding oocytes, ovarian follicles, and bisphenols were utilized to identify relevant studies. Manuscripts written in English and reporting the effect of any bisphenol on mammalian oocyte health from all years were included. Parameters for toxicological studies were evaluated, including the number of bisphenol concentrations/doses tested, dosing regimen, biological replicates and/or animal numbers, and statistical information (for human studies). Standardized parameters of oocyte health including follicle counts, oocyte yield, oocyte meiotic capacity, morphology of oocyte and cumulus cells, and oocyte meiotic spindle integrity were extracted across the studies. OUTCOMES After screening 3147 studies, 107 studies of either humans or mammalian animal models or humans were included. Of the in vitro exposure studies, 96.3% (26/27) and 94.1% (16/17) found at least one adverse effect on oocyte health using BPA or BPA alternatives (including BHPF, BPAF, BPB, BPF, and BPS), respectively. These included increased meiotic cell cycle arrest, altered morphology, and abnormal meiotic spindle/chromosomal alignment. In vivo, 85.7% (30/35) of studies on BPA and 92.3% (12/13) on BPA alternatives documented adverse effects on follicle development, morphology, or spindle/chromosome alignment. Importantly, these effects were recorded using levels below those deemed 'safe' for human exposure. Over half (11/21) of all human observational studies showed associations between higher urinary BPA levels and reduced antral follicle counts or oocyte yield in IVF patients. Recommendations are presented based on the identified shortcomings of the current evidence, incorporating elements of FDA requirements for future research in the field. WIDER IMPLICATIONS These data highlight the detrimental impacts of low-level BPA and BPA alternative exposure, contributing to poor oocyte quality and reduced fertility. These outcomes are valuable in promoting the revision of current policies and guidelines pertaining to BPA exposure internationally. This study serves as a valuable resource to scientists, providing key recommendations on study design, reporting elements, and endpoint measures to strengthen future studies. Ultimately, this review highlights oocyte health as a fundamentally important endpoint in reproductive toxicological studies, indicating an important direction for future research into endocrine disrupting chemicals to improve fertility outcomes.
Collapse
Affiliation(s)
- Alexandra E Peters
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emmalee A Ford
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- The Research Centre, Family Planning Australia, Newington, NSW, Australia
| | - Shaun D Roman
- Department of Research, NSW Health Pathology, Newcastle, NSW, Australia
| | - Elizabeth G Bromfield
- Faculty of Science, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kirsty G Pringle
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jessie M Sutherland
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
8
|
Logoteta A, Zhu D, Jannini EA. Comment on: endocrine effect of phthalates metabolites and a butterfly effect of prenatal exposure to androgens on qualitative aspects of female sexual response- an initial survey. Int J Impot Res 2024:10.1038/s41443-024-00993-5. [PMID: 39488670 DOI: 10.1038/s41443-024-00993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/23/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Affiliation(s)
- Alessandra Logoteta
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Dake Zhu
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emmanuele A Jannini
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
9
|
Mhaouty-Kodja S, Zalko D, Tait S, Testai E, Viguié C, Corsini E, Grova N, Buratti FM, Cabaton NJ, Coppola L, De la Vieja A, Dusinska M, El Yamani N, Galbiati V, Iglesias-Hernández P, Kohl Y, Maddalon A, Marcon F, Naulé L, Rundén-Pran E, Salani F, Santori N, Torres-Ruiz M, Turner JD, Adamovsky O, Aiello-Holden K, Dirven H, Louro H, Silva MJ. A critical review to identify data gaps and improve risk assessment of bisphenol A alternatives for human health. Crit Rev Toxicol 2024; 54:696-753. [PMID: 39436315 DOI: 10.1080/10408444.2024.2388712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 10/23/2024]
Abstract
Bisphenol A (BPA), a synthetic chemical widely used in the production of polycarbonate plastic and epoxy resins, has been associated with a variety of adverse effects in humans including metabolic, immunological, reproductive, and neurodevelopmental effects, raising concern about its health impact. In the EU, it has been classified as toxic to reproduction and as an endocrine disruptor and was thus included in the candidate list of substances of very high concern (SVHC). On this basis, its use has been banned or restricted in some products. As a consequence, industries turned to bisphenol alternatives, such as bisphenol S (BPS) and bisphenol F (BPF), which are now found in various consumer products, as well as in human matrices at a global scale. However, due to their toxicity, these two bisphenols are in the process of being regulated. Other BPA alternatives, whose potential toxicity remains largely unknown due to a knowledge gap, have also started to be used in manufacturing processes. The gradual restriction of the use of BPA underscores the importance of understanding the potential risks associated with its alternatives to avoid regrettable substitutions. This review aims to summarize the current knowledge on the potential hazards related to BPA alternatives prioritized by European Regulatory Agencies based on their regulatory relevance and selected to be studied under the European Partnership for the Assessment of Risks from Chemicals (PARC): BPE, BPAP, BPP, BPZ, BPS-MAE, and TCBPA. The focus is on data related to toxicokinetic, endocrine disruption, immunotoxicity, developmental neurotoxicity, and genotoxicity/carcinogenicity, which were considered the most relevant endpoints to assess the hazard related to those substances. The goal here is to identify the data gaps in BPA alternatives toxicology and hence formulate the future directions that will be taken in the frame of the PARC project, which seeks also to enhance chemical risk assessment methodologies using new approach methodologies (NAMs).
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Daniel Zalko
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Testai
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Catherine Viguié
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Nathalie Grova
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Franca Maria Buratti
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicolas J Cabaton
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Lucia Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio De la Vieja
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Maria Dusinska
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Naouale El Yamani
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Valentina Galbiati
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Patricia Iglesias-Hernández
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Francesca Marcon
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Lydie Naulé
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Elise Rundén-Pran
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Francesca Salani
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicoletta Santori
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Mónica Torres-Ruiz
- National Center for Environmental Health (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Jonathan D Turner
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Ondrej Adamovsky
- Faculty of Science, Masaryk University, RECETOX, Brno, Czech Republic
| | | | - Hubert Dirven
- Department of Chemical Toxicology - Division of Climate and the Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Beszterda-Buszczak M, Kasperkowiak M, Teżyk A, Augustynowicz N, Frański R. Mass Spectrometric Study of the Most Common Potential Migrants Extractible from the Inner Coatings of Metallic Beverage Cans. Foods 2024; 13:2025. [PMID: 38998531 PMCID: PMC11241440 DOI: 10.3390/foods13132025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Population exposure to endocrine disrupting chemical- bisphenols, which are used commonly in food containers and drinking water pipes in Europe, is above acceptable health and safety levels, according to updated research data. In order to evaluate the most abundant potential migrants in canned sweetened beverages marketed in Poland, we performed the HPLC-MS screening test of the migrants present in the can coating material. The analyzed samples represented the three top-ranked companies of the global soft drink market; it is reasonable to assume that the obtained data are of global validity. The tested can coatings and beverages contained bisphenols conjugates such as five butoxyethanol (BuOEtOH) adducts with bisphenol A diglycidyl ether (BADGE), one butoxyethanol adduct with bisphenol A monoglycidyl ether (BAMGE), and cyclo-di-BADGE. The performed HPLC-MS/MS analysis in the MRM mode enabled evaluation of the concentrations of the detected conjugates in canned beverages which were found to be very low, namely at the level of 1 µg/L. On the other hand, the high consumption of canned beverages may yield a risk associated with the presence of these compounds in the diet. The subsequent HPLC-QTOF-MS/MS experiments allowed, for the first time, a detailed determination of the fragmentation pathways of the detected migrants as well as detection of the isomers of the two migrants, namely BADGE + BuOEtOH and BADGE + BuOEtOH + HCl.
Collapse
Affiliation(s)
- Monika Beszterda-Buszczak
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, Mazowiecka 48, 60-623 Poznań, Poland;
| | - Małgorzata Kasperkowiak
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland;
| | - Artur Teżyk
- Department of Forensic Medicine, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland;
| | - Natalia Augustynowicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Rafał Frański
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| |
Collapse
|
11
|
Wu X, Tian Y, Zhu H, Xu P, Zhang J, Hu Y, Ji X, Yan R, Yue H, Sang N. Invisible Hand behind Female Reproductive Disorders: Bisphenols, Recent Evidence and Future Perspectives. TOXICS 2023; 11:1000. [PMID: 38133401 PMCID: PMC10748066 DOI: 10.3390/toxics11121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Reproductive disorders are considered a global health problem influenced by physiological, genetic, environmental, and lifestyle factors. The increased exposure to bisphenols, a chemical used in large quantities for the production of polycarbonate plastics, has raised concerns regarding health risks in humans, particularly their endocrine-disrupting effects on female reproductive health. To provide a basis for future research on environmental interference and reproductive health, we reviewed relevant studies on the exposure patterns and levels of bisphenols in environmental matrices and humans (including susceptible populations such as pregnant women and children). In addition, we focused on in vivo, in vitro, and epidemiological studies evaluating the effects of bisphenols on the female reproductive system (the uterus, ovaries, fallopian tubes, and vagina). The results indicate that bisphenols cause structural and functional damage to the female reproductive system by interfering with hormones; activating receptors; inducing oxidative stress, DNA damage, and carcinogenesis; and triggering epigenetic changes, with the damaging effects being intergenerational. Epidemiological studies support the association between bisphenols and diseases such as cancer of the female reproductive system, reproductive dysfunction, and miscarriage, which may negatively affect the establishment and maintenance of pregnancy. Altogether, this review provides a reference for assessing the adverse effects of bisphenols on female reproductive health.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yuchai Tian
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huizhen Zhu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Pengchong Xu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Jiyue Zhang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yangcheng Hu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China;
| | - Ruifeng Yan
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huifeng Yue
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Nan Sang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| |
Collapse
|
12
|
Liu M, Zhou X, Wang XJ, Wang YS, Yang SJ, Ding ZM, Zhang SX, Zhang LD, Duan ZQ, Liang AX, Huo LJ. Curcumin alleviates bisphenol AF-induced oxidative stress and apoptosis in caprine endometrial epithelial cells via the Nrf2 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2904-2914. [PMID: 37555465 DOI: 10.1002/tox.23925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/01/2023] [Accepted: 07/22/2023] [Indexed: 08/10/2023]
Abstract
Bisphenol AF (BPAF), a BPA-substitute, has been widely used in industrial compounds throughout the world. Several studies have shown that BPAF has endocrine interference and reproductive toxicity. However, the toxic effects of BPAF on pregnancy and placenta of goats are still unclear. Therefore, the objective of this study was to reveal the toxic effect of BPAF by using an in vitro culture model of caprine endometrial epithelial cells (EECs) and further attempted to alleviate the toxicity by curcumin pretreatment. The results showed that BPAF induces significant effects on EECs, including decreased cell viability and mitochondrial membrane potential (△ψm), elevating intracellular reactive oxygen species (ROS), promoting cell apoptosis through upregulating the expression of Bax, Cytochrome c, and downregulating the expression of Bcl-2. Meanwhile, BPAF induced dysregulation of oxidative stress by increasing the levels of malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) but decreasing the activities of superoxide dismutase (SOD). However, curcumin pretreatment could significantly attenuate BPAF-induced toxic effects in EECs. Further study revealed that BPAF treatment could activate mitogen-activated protein kinase (MAPK) pathway and nuclear factor-erythroid 2-related factor 2 (Nrf2) expression, but curcumin pretreatment significantly inhibited the activation of MAPK signal pathway and Nrf2 expression induced by BPAF. Overall, this study indicated that curcumin could prevent BPAF-induced EECs cytotoxicity, which provides a potential therapeutic strategy for female infertility associated with BPAF exposure.
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xu Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xiao-Jie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Li-Dan Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ai-Xin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
13
|
Cao Y, Xu J, Liu J, Liang Y, Ao F, Wang S, Wei Z, Wang L. Bisphenol A exposure decreases sperm production and male fertility through inhibition PCBP2 expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123309-123323. [PMID: 37985585 DOI: 10.1007/s11356-023-30815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Growing evidence suggests that the exposure of bisphenol A (BPA), an endocrine disruptor that commonly present in the environment, can impair reproduction. However, conflicting results have been reported, and the underlying mechanism has not been fully understood. In this study, 3-week-old male mice were oral exposed to 50 mg/kg/d BPA or equivalent corn oil for 28 days. Their testis and epididymis were then collected for morphology examination by HE stains. The number of sperm was counted, and the morphology was analyzed by PNA (peptide nucleic acid) and pap staining. Fertilization capacity and successful rate were analyzed after mating with wide-type females. Spermatid DNA damage and apoptosis were evaluated by DFI, γH2AX stain, and TUNEL assay. RNA sequencing analysis was conducted to identify differentially expressed genes in testicular tissue of mice exposed to BPA. RNA interference was used to verify the regulatory mechanism of BPA exposure on gene expression in GC-2 cells. Our data showed that the total number of sperm was decreased and the morphology was impaired in BPA-exposed mice. In addition, the serum testosterone level and fertilization efficiency were also reduced. Mechanism studies showed that BPA could suppress the expression of PCBP2, a key regulatory gene in spermatid development, by activating the EZH2/H3K27me3. In conclusion, we found that BPA exposure can impair spermatid development via affecting key gene expression that is at least partially due to epigenetic modification.
Collapse
Affiliation(s)
- Yuming Cao
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Jinfeng Xu
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Yan Liang
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Fei Ao
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Shengnan Wang
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Zexiao Wei
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Li Wang
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China.
| |
Collapse
|
14
|
Dai L, Xie Y, Zhang Y, Wang Y. Treatment of bisphenol pollutant in water by N,P-co-doped carbon nanosheet: Fast degradation, toxicity elimination and reaction mechanism investigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121586. [PMID: 37044253 DOI: 10.1016/j.envpol.2023.121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Metal-free carbon catalysts perform well in peroxymonosulfate-based advanced oxidation process for the treatment of organic pollutant-containing wastewater. Herein, a natural biomolecule of adenosine triphosphate (ATP), containing abundant N and P elements, served as sole precursor to prepare N,P-co-doped carbon through one-step anoxic pyrolysis, which was applied as peroxymonosulfate activator to treat bisphenol-contaminated water. Owing to the endogenous N and P elements in ATP, in-situ doping was achieved for the prepared carbon material with excellent doping effect, such as high doping amount and numerous defects. During pyrolysis process, the generated gases facilitated the exfoliation of carbon structure, resulting in a nanosheet-like morphology with large specific surface area, e.g., 852.75 m2 g-1 for NPCN-900 sample obtained at 900 °C. Benefiting from the structural modulation brought by N,P co-doping, typical sample of NPCN-900 presented excellent catalytic performance towards bisphenol AF (BPAF) degradation through PMS activation. An apparent reaction rate constant of 0.4115 min-1 was calculated under the investigated reaction conditions. Further studies indicated that 1O2, surface-bound •OH and SO4-• worked together in NPCN-900/PMS system for BPAF degradation. Graphitic N, pyrrolic N, CO groups, defect structure and the doped P atoms in NPCN-900 contributed to PMS activation. It was also important that the toxicity of BPAF solution could be preliminarily eliminated after treatment by NPCN-900/PMS system, which was verified by ecotoxicity assessments through ECOSAR program and green algae growth experiments.
Collapse
Affiliation(s)
- Linli Dai
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Xie
- Moutai Institute, Renhuai, 564507, China
| | - Yongkui Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yabo Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|