1
|
Ujuagu GI, Ejeromedoghene O, Enwemiwe V, Mgbechidinma CL, Omoniyi AO, Oladipo A, Gu J. Exploring the toxicology, socio-ecological impacts and biodegradation of microplastics in Africa: Potentials for resource conservation. Toxicol Rep 2025; 14:101873. [PMID: 39850514 PMCID: PMC11755024 DOI: 10.1016/j.toxrep.2024.101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Achieving upcycling and circularity in the microplastic economy predominantly depends on collecting and sorting plastic waste from the source to the end-user for resource conservation. Microplastics, whether from packaging or non-packaging materials, pose a significant environmental challenge as they are often not prioritized for collection or recycling initiatives. The presence of additives impedes the quality of plastic recyclates and the persistence of microplastics as shredded resultants remain a threat to the aquatic and terrestrial ecosystem and its biodiversity. Despite the increasing global research on microplastics, the success of plastic and microplastic waste management in Africa is yet to be fully attained. Considering the improper disposal, limited recycling and upcycling intervention, lack of policy, and strict laws against plastic waste management defaulters, the ecosystems in Africa remain immensely impacted by several socio-ecological factors leading to the loss of aquatic organisms through reducing fertility and increasing stress. As a ripple consequence, the disruption of economic activities, toxic effects on animal/human health, and climate crisis are among their impact. This review therefore provides comprehensive detail of microplastic production and challenges in Africa, the toxicology concerns, socio-ecological issues associated with microplastic waste management, and insight into approaches to mitigate plastic pollution through recycling, upcycling, bioprocessing and their biodegradation with social insects and microorganisms which may form the basis for adoption by policymakers and researchers, thereby minimizing the consequences of plastic pollution in Africa.
Collapse
Affiliation(s)
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Victor Enwemiwe
- Department of Animal and Environmental Biology, Delta State University, PMB 1, Abraka, Nigeria
| | - Chiamaka Linda Mgbechidinma
- School of Life Sciences, Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Microbiology, University of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Ahmed Olalekan Omoniyi
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Abiodun Oladipo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jintu Gu
- Department of Sociology, Hohai University, Nanjing 211100, China
| |
Collapse
|
2
|
Amberg S, Mitrano DM. Exploring the Essential Use Concept for Primary Microplastics Regulation in the EU. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7799-7809. [PMID: 40245254 DOI: 10.1021/acs.est.4c10830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
With the increasing prevalence of plastic pollution, including microplastics (MPs, particles <5 mm), the pursuit of safer and more sustainable alternatives gains increasing traction. While a substantial portion of MPs in the environment arises from the degradation of plastic litter and the wear of polymer-containing materials (secondary MPs), deliberate incorporation of MPs in certain products (primary MPs) also represents a considerable source, and targeted measures can be implemented to minimize human exposure and environmental releases. Improved policies for managing macroplastic waste help mitigate secondary MPs, but addressing primary MPs requires distinct strategies. Globally, various approaches, such as bans or restrictions on primary MPs, have been proposed, including the recent EU regulation under REACH, which groups intentionally added MPs together based on their diverse uses and properties. However, applying the Essential Use Concept (EUC) provides a more refined regulatory approach; balancing environmental health, technical feasibility, and innovation. This perspective explores the potential, challenges, and limitations of implementing the EUC for primary MPs. By examining four use cases─controlled-release medicines, agricultural seed coatings, personal care products, and artificial turf infill─we highlight how the EUC can prioritize essential and beneficial applications while phasing out nonessential uses.
Collapse
Affiliation(s)
- Stefano Amberg
- Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Denise M Mitrano
- Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
3
|
Wang Y, Zhao P, Yi H, Tang X. Investigating the adsorption of organic compounds onto microplastics via experimental, simulation, and prediction methods. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:849-859. [PMID: 40110709 DOI: 10.1039/d4em00586d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Exploring the adsorption of organic compounds onto microplastics (MPs) is of great significance for understanding their environmental fate and evaluating their ecological risks. To date, various techniques, e.g., experiments, simulations, and prediction models, have been utilized for exploring the adsorption of different organic compounds onto MPs. In this review, we systematically introduce the sources of MPs, the interactions between MPs and organic compounds, the factors influencing the adsorption of organic compounds onto MPs, and research advances in investigating the adsorption of organic compounds by microplastics with different techniques. We also point out that the structures of MPs and environmental factors can have distinct effects on the adsorption mechanisms, and the adsorption mechanisms for numerous organic compounds onto MPs are still unclear. Besides, there is a paucity of multi-dimensional models for predicting the adsorption of organic compounds by MPs under different environmental conditions with a single click. We hope that our review can provide insights into the environmental behavior and fate of organic compounds and microplastics, as well as also guiding future research on the adsorption of organic compounds onto microplastics.
Collapse
Affiliation(s)
- Ya Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 10083, China.
- School of Environment, Tsinghua University, Beijing 10084, China
| | - Peng Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 10083, China.
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 10083, China.
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 10083, China.
| |
Collapse
|
4
|
Vanetti C, Broggiato M, Pezzana S, Clerici M, Fenizia C. Effects of microplastics on the immune system: How much should we worry? Immunol Lett 2025; 272:106976. [PMID: 39900298 DOI: 10.1016/j.imlet.2025.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Plastics are everywhere. It is widely recognized that they represent a global problem, the extent of which is yet to be defined. Humans are broadly exposed to plastics, whose effects and consequences are poorly characterized so far. The main route of exposure is via alimentary and respiratory intake. Plastics pollutions may come from both: water and food contamination itself, and their packaging. The smaller sizes (i.e. microplastics <150 µm - MPs) are considered to be the most pervasive of living organisms and, therefore, potentially the most harmful. As humans occupy one of the apex positions of the food chain, we are exposed to bioaccumulation and biomagnification effects of MPs. In fact, MPs are commonly found in human stools and blood. However, there are no data available yet on their ability to accumulate and to produce detrimental consequences on biological systems. Even though the effects of plastics pollution are poorly studied in mammals, including humans, they appear to have inflammatory effects, which is rather concerning as many etiologies of disease are based on a pro-inflammatory status.
Collapse
Affiliation(s)
- Claudia Vanetti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Martina Broggiato
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Pezzana
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Fondazione Don Carlo Gnocchi, IRCCS Milan Italy
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Prado CCA, Queiroz LG, de Paiva TCB, Pompêo M, Ando R, Rani-Borges B. Oxidative stress dynamics in Hyalella azteca under sub-chronic exposure to naturally aged polypropylene microplastics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 281:107303. [PMID: 40023059 DOI: 10.1016/j.aquatox.2025.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Microplastics (MPs) pollution has revealed a serious environmental issue, demonstrating chronic consequences for the affected environments and organisms. Although these plastic particles, pristine and aged, can circulate in different environmental matrices, their actual impacts on aquatic ecosystems are still under investigation. Here, we studied the toxicity of naturally aged secondary polypropylene (PP) MPs after constant exposure to ultraviolet radiation (26 µm) to the freshwater amphipod Hyalella azteca. The concentrations tested were 135, 1350, and 13,500 items/L. H. azteca was investigated for mortality and changes in enzyme markers after 7 and 14 days of exposure followed by a further 7 days of depuration. The results show that mortality was only significant at the highest concentration tested. The concentration of 13,500 items induced oxidative stress after 7 days of exposure only at the MDA levels and CAT activity, while the concentrations of 1350 and 13,500 items/L induced oxidative stress in all tested markers (SOD, CAT, GST and MDA after 14 days. After 7 days of depuration, the levels of biochemical damage were reduced, demonstrating the ability of the species to recover as they are isolated from this pollutant.
Collapse
Affiliation(s)
- Caio César Achiles Prado
- Sea Institute, Federal University of São Paulo, Unifesp, Dona Maria Máximo Street 168, Santos 11070-100, Brazil
| | - Lucas Gonçalves Queiroz
- Department of Ecology, Institute of Biosciences, University of São Paulo, USP, Matão Street 321, São Paulo 05508-090, Brazil
| | - Teresa Cristina Brazil de Paiva
- Department of Basic and Environmental Sciences, Engineering School of Lorena, University de Sao Paulo, Municipal do Campinho Road, Lorena 12602-810, Brazil
| | - Marcelo Pompêo
- Department of Ecology, Institute of Biosciences, University of São Paulo, USP, Matão Street 321, São Paulo 05508-090, Brazil
| | - Rômulo Ando
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, Prof. Lineu Prestes Avenue 748, São Paulo 05508-000, Brazil
| | - Bárbara Rani-Borges
- Department of Ecology, Institute of Biosciences, University of São Paulo, USP, Matão Street 321, São Paulo 05508-090, Brazil.
| |
Collapse
|
6
|
Li Y, Chen B, Yang S, Jiao Z, Zhang M, Yang Y, Gao Y. Advances in environmental pollutant detection techniques: Enhancing public health monitoring and risk assessment. ENVIRONMENT INTERNATIONAL 2025; 197:109365. [PMID: 40101528 DOI: 10.1016/j.envint.2025.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Accurate detection and monitoring of environmental pollutants are of paramount importance for disease prevention and public health. In recent years, the ever-expanding human activities and industrial production have given rise to a sharp increase in the complexity and variety of these pollutants, which pose significant threats to human well - being. Environmental pollutants stem from multiple sources, such as heavy metals, persistent organic pollutants, inorganic non - metallic pollutants, emerging pollutants, and biological contaminants. Traditional detection technologies, though valuable for their sensitivity and accuracy, are constrained by complex sample preparation, poor selectivity, and the absence of standardized detection methods. On the other hand, emerging technologies, including nanotechnology, molecular detection methods, biosensors, Surface-Enhanced Raman Spectroscopy (SERS), multi-omics, and big data analysis, offer promising solutions for rapid and sensitive pollutant detection. The establishment of environmental monitoring networks and data - sharing platforms further enhances real - time pollutant monitoring and provides solid data support for public health initiatives. Nonetheless, challenges persist, including data integration, exposure assessment, and the development of cost-effective and portable detection solutions. Future progress in interdisciplinary approaches and technology integration will be crucial for advancing environmental pollutant detection and facilitating comprehensive disease prevention. This review systematically classifies environmental pollutants and showcases the latest advancements in detection technologies, offering critical insights for environmental monitoring and public health protection.
Collapse
Affiliation(s)
- Yang Li
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Heilongjiang 150081, PR China; Heilongjiang Eye Hospital, Harbin, 150001, PR China; Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University, Zhejiang, 310009, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China; Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Penttikaiterankatu 1, 90570, Oulu, Finland; Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150006, PR China.
| | - Biqing Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Shuaifei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| | - Zhe Jiao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
7
|
Banaee M, Multisanti CR, Impellitteri F, Piccione G, Faggio C. Environmental toxicology of microplastic particles on fish: A review. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110042. [PMID: 39306266 DOI: 10.1016/j.cbpc.2024.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
The increase in plastic debris and its environmental impact has been a major concern for scientists. Physical destruction, chemical reactions, and microbial activity can degrade plastic waste into particles smaller than 5 mm, known as microplastics (MPs). MPs may eventually enter aquatic ecosystems through surface runoff. The accumulation of MPs in aquatic environments poses a potential threat to finfish, shellfish, and the ecological balance. This study investigated the effect of MP exposure on freshwater and marine fish. MPs could cause significant harm to fish, including physical damage, death, inflammation, oxidative stress, disruption of cell signalling and cellular biochemical processes, immune system suppression, genetic damage, and reduction in fish growth and reproduction rates. The activation of the detoxification system of fish exposed to MPs may be associated with the toxicity of MPs and chemical additives to plastic polymers. Furthermore, MPs can enhance the bioavailability of other xenobiotics, allowing these harmful substances to more easily enter and accumulate in fish. Accumulation of MPs and associated chemicals in fish can have adverse effects on the fish and humans who consume them, with these toxic substances magnifying as they move up the food chain. Changes in migration and reproduction patterns and disruptions in predator-prey relationships in fish exposed to MPs can significantly affect ecological dynamics. These interconnected changes can lead to cascading effects throughout aquatic ecosystems. Thus, implementing solutions like reducing plastic production, enhancing recycling efforts, using biodegradable materials, and improving waste management is essential to minimize plastic waste and its environmental impact.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | | | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy.
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
8
|
Bora SS, Gogoi R, Sharma MR, Anshu, Borah MP, Deka P, Bora J, Naorem RS, Das J, Teli AB. Microplastics and human health: unveiling the gut microbiome disruption and chronic disease risks. Front Cell Infect Microbiol 2024; 14:1492759. [PMID: 39669275 PMCID: PMC11635378 DOI: 10.3389/fcimb.2024.1492759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024] Open
Abstract
Microplastics (MPs), defined as plastic particles smaller than 5 mm, are increasingly recognized as environmental contaminants with potential health risks. These emerge as breakdown products of larger plastics and are omnipresent in marine, freshwater, and terrestrial ecosystems. They are primarily composed of polymers such as polyethylene, polypropylene, polystyrene, and additives that enhance their performance. MPs also adsorb harmful environmental chemicals like persistent organic pollutants and heavy metals, posing risks to human and environmental health. Human exposure to MPs occurs mainly through ingestion and inhalation, with MPs detected in food products, water, and even the air. MPs have been shown to accumulate in the gastrointestinal tract, disrupting the gut microbiome, and causing dysbiosis-a harmful imbalance between beneficial and harmful bacteria. This disruption has been linked to various health issues, including gastrointestinal disorders, systemic inflammation, and chronic diseases. Furthermore, the gut-brain axis may be affected, with potential neuroinflammatory consequences. As research continues to unravel the health impacts of MP exposure, understanding the mechanisms of accumulation and the broader implications on human health is crucial. This review highlights the effects of MPs on human health, emphasizing their impact on the gut microbiome. We discuss the potential connections between MP exposure and cardiometabolic and inflammatory diseases, and disorders related to the Gut-Brain Axis. By synthesizing the latest research, this work sheds light on the silent yet pervasive threat posed by MPs and underscores the importance of further studies to understand their health impacts fully.
Collapse
Affiliation(s)
- Sudipta Sankar Bora
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat, Assam, India
| | - Rahul Gogoi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Madhurjya Ranjan Sharma
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Anshu
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Madhurjya Protim Borah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, India
| | - Priyadarshini Deka
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Jitul Bora
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Romen Singh Naorem
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat, Assam, India
| | - Jugabrata Das
- College of Horticulture and Farming System Research, Assam Agricultural University, Nalbari, Assam, India
| | - Anju Barhai Teli
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat, Assam, India
- Department of Biochemistry, Jorhat Medical College and Hospital, Jorhat, Assam, India
| |
Collapse
|
9
|
Giustra M, Sinesi G, Spena F, De Santes B, Morelli L, Barbieri L, Garbujo S, Galli P, Prosperi D, Colombo M. Microplastics in Cosmetics: Open Questions and Sustainable Opportunities. CHEMSUSCHEM 2024; 17:e202401065. [PMID: 39222323 PMCID: PMC11587687 DOI: 10.1002/cssc.202401065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The cosmetic industry is now changing or rather having an ecological transition in which formulations such as creams, lotions, and powders for make-up, skin and hair care must not contain microplastics, now a taboo word in this field. Nowadays, many companies are intensifying their research and development (R&D) work to align with recent and future legislation that provides for their elimination to safeguard the ecosystem. The production of new eco-sustainable materials is currently a hot topic which finds its place in a market worth above 350 billion dollars which will reach more than 700 billion dollars in a very short time. This review offers an overview of the main advantages and adverse issues relating to the use of microplastics in cosmetics and of their impact, providing an insight into the properties of the polymeric materials that are currently exploited to improve the sensorial characteristics of cosmetic products. In addition, the various regulatory restrictions in the different geographical areas of the world are also described, which is matter for reflection on future direction. Finally, a prospective vision of possible solutions to replace microplastics with sustainable alternatives complete the picture of the next generation personal care products to support decision-making in the cosmetic marketplace.
Collapse
Affiliation(s)
- Marco Giustra
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
- Nanobiotechnologies for Health Center, NANOMIBUniversity of Milano-BicoccaVia Raoul Follereau, 320854Vedano al Lambro, MBItaly
| | - Giulia Sinesi
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
| | - Francesca Spena
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
| | - Beatrice De Santes
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
| | - Lucia Morelli
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
| | - Linda Barbieri
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
| | - Stefania Garbujo
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
- Nanobiotechnologies for Health Center, NANOMIBUniversity of Milano-BicoccaVia Raoul Follereau, 320854Vedano al Lambro, MBItaly
| | - Paolo Galli
- Department of Earth and Environmental SciencesUniversity of Milano-BicoccaPiazza della Scienza, 120126MilanoItaly
- Dubai Business SchoolUniversity of Dubai, United Arab Emirates GoumbookRas Al Khaimah500001United Arab Emirates
- MaRHE Centre (Marine Research and High Education Center)Magoodhoo Island12030Maldives
| | - Davide Prosperi
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
- Nanobiotechnologies for Health Center, NANOMIBUniversity of Milano-BicoccaVia Raoul Follereau, 320854Vedano al Lambro, MBItaly
| | - Miriam Colombo
- NanoBioLab, Department of Biotechnology and BioscienceUniversity of Milano-BicoccaPiazza della Scienza, 220126MilanoItaly
- Nanobiotechnologies for Health Center, NANOMIBUniversity of Milano-BicoccaVia Raoul Follereau, 320854Vedano al Lambro, MBItaly
| |
Collapse
|
10
|
de Carvalho JGR, Augusto HC, Ferraz R, Delerue-Matos C, Fernandes VC. Micro(nano)plastic and Related Chemicals: Emerging Contaminants in Environment, Food and Health Impacts. TOXICS 2024; 12:762. [PMID: 39453182 PMCID: PMC11510996 DOI: 10.3390/toxics12100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Microplastic pollution is a problem of increasing concern in food, and while food safety issues around the world are serious, an increasing number of food safety issues related to microplastics have become the focus of people's attention. The presence of microplastics in food is a worldwide problem, and they are present in all kinds of foods, foods of both animal and plant origin, food additives, drinks, plastic food packaging, and agricultural practices. This can cause problems for both humans and the environment. Microplastics have already been detected in human blood, heart, placenta, and breastmilk, but their effects in humans are not well understood. Studies with mammals and human cells or organoids have given perspective about the potential impact of micro(nano)plastics on human health, which affect the lungs, kidneys, heart, neurological system, and DNA. Additionally, as plastics often contain additives or other substances, the potentially harmful effects of exposure to these substances must also be carefully studied before any conclusions can be drawn. The study of microplastics is very complex as there are many factors to account for, such as differences in particle sizes, constituents, shapes, additives, contaminants, concentrations, etc. This review summarizes the more recent research on the presence of microplastic and other plastic-related chemical pollutants in food and their potential impacts on human health.
Collapse
Affiliation(s)
- Juliana G. R. de Carvalho
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
| | - Helga Coelho Augusto
- Cofisa—Conservas de Peixa da Figueira, S.A., Terrapleno do Porto de Pesca—Gala, 3090-735 Figueira da Foz, Portugal;
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| | - Virgínia Cruz Fernandes
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| |
Collapse
|
11
|
Zhong Z, Shang W, Yang P, Wang S, Chen L, Chen Z, Li L, Khalil MF, Hu M, Xu X, Wang Y. Bio-based microplastic polylactic acid exerts the similar toxic effects to traditional petroleum-based microplastic polystyrene in mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174386. [PMID: 38960152 DOI: 10.1016/j.scitotenv.2024.174386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Microplastics (MPs) have accumulated in the oceans, causing adverse effects on marine organisms and the environment. Biodegradable polylactic acid (PLA) is considered as an excellent substitute for traditional petroleum-based plastics, but it is difficult to degrade completely and easily become MPs in the marine environment. To test the ecological risk of bio-based PLA, we exposed thick-shelled mussels (Mytilus coruscus) to bio-based PLA and petroleum-based polystyrene (PS) (at 102, 104, and 106 particles/L) for 14 days. The significant increase in enzyme activities related to oxidative stress and immune response showed that mussels were under physiological stress after MP ingestion. While enzyme activities of nerve conduction and energy metabolism were significantly disturbed after exposure. Meanwhile, normal physiological activities in respiration, ingestion and assimilation were also suppressed in association with enzyme changes. The negative effects of PS and PLA in mussels were not differentiated, and further integration analysis of integrated biomarker response (IBR) and principal component analysis (PCA) also showed that PLA would induce adverse effects in mussels and ecological risks as PS, especially at environmental concentrations. Therefore, it is necessary to pay more attention to the environmental and ecological risk of bio-based MP PLA accumulating in the marine environment.
Collapse
Affiliation(s)
- Zhen Zhong
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Wenrui Shang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Peiwen Yang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Shixiu Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Zhaowen Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Li'ang Li
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Muhammad Faisal Khalil
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China.
| |
Collapse
|
12
|
Deo L, Benjamin LK, Osborne JW. Critical review on unveiling the toxic and recalcitrant effects of microplastics in aquatic ecosystems and their degradation by microbes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:896. [PMID: 39230754 DOI: 10.1007/s10661-024-13023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Production of synthetic plastic obtained from fossil fuels are considered as a constantly growing problem and lack in the management of plastic waste has led to severe microplastic pollution in the aquatic ecosystem. Plastic particles less than 5mm are termed as microplastics (MPs), these are pervasive in water and soil, it can also withstand longer period of time with high durability. It can be broken down into smaller particles and can be adsorbed by various life-forms. Most marine organisms tend to consume plastic debris that can be accumulated easily into the vertebrates, invertebrates and planktonic entities. Often these plastic particles surpass the food chain, resulting in the damage of various organs and inhibiting the uptake of food due to the accumulation of microplastics. In this review, the physical and chemical properties of microplastics, as well as their effects on the environment and toxicity of their chemical constituents are discussed. In addition, the paper also sheds light on the potential of microorganisms such as bacteria, fungi, and algae which play a pivotal role in the process of microplastics degradation. The mechanism of microbial degradation, the factors that affect degradation, and the current advancements in genetic and metabolic engineering of microbes to promote degradation are also summarized. The paper also provides information on the bacterial, algal and fungal degradation mechanism including the possible enzymes involved in microplastic degradation. It also investigates the difficulties, limitations, and potential developments that may occur in the field of microbial microplastic degradation.
Collapse
Affiliation(s)
- Loknath Deo
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Jabez William Osborne
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
13
|
Seewoo BJ, Wong EV, Mulders YR, Goodes LM, Eroglu E, Brunner M, Gozt A, Toshniwal P, Symeonides C, Dunlop SA. Impacts associated with the plastic polymers polycarbonate, polystyrene, polyvinyl chloride, and polybutadiene across their life cycle: A review. Heliyon 2024; 10:e32912. [PMID: 39022097 PMCID: PMC11253235 DOI: 10.1016/j.heliyon.2024.e32912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/23/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Polymers are the main building blocks of plastic, with the annual global production volume of fossil carbon-based polymers reaching over 457 million metric tons in 2019 and this figure is anticipated to triple by 2060. There is potential for environmental harm and adverse human health impacts associated with plastic, its constituent polymers and the chemicals therein, at all stages of the plastic life cycle, from extraction of raw materials, production and manufacturing, consumption, through to ultimate disposal and waste management. While there have been considerable research and policy efforts in identifying and mitigating the impacts associated with problematic plastic products such as single-use plastics and hazardous chemicals in plastics, with national and/or international regulations to phase out their use, plastic polymers are often overlooked. In this review, the polymer dimension of the current knowledge on environmental release, human exposure and health impacts of plastic is discussed across the plastic life cycle, including chemicals used in production and additives commonly used to achieve the properties needed for applications for which the polymers are generally used. This review focuses on polycarbonate, polystyrene, polyvinyl chloride, and polybutadiene, four common plastic polymers made from the hazardous monomers, bisphenol, styrene, vinyl chloride and 1,3-butadiene, respectively. Potential alternative polymers, chemicals, and products are considered. Our findings emphasise the need for a whole system approach to be undertaken for effective regulation of plastics whereby the impacts of plastics are assessed with respect to their constituent polymers, chemicals, and applications and across their entire life cycle.
Collapse
Affiliation(s)
- Bhedita J. Seewoo
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Enoch V.S. Wong
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yannick R. Mulders
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise M. Goodes
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Ela Eroglu
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
| | - Manuel Brunner
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
| | - Aleksandra Gozt
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
| | - Priyanka Toshniwal
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Christos Symeonides
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Sarah A. Dunlop
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
14
|
Sekar V, Shaji S, Sundaram B. Microplastic prevalence and human exposure in the bottled drinking water in the west Godavari region of Andhra Pradesh, India. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104346. [PMID: 38670001 DOI: 10.1016/j.jconhyd.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Microplastics (MPs) are widespread, minute plastic particles present in various aquatic environments, raising concerns about their effect on human health and ecosystems. The detrimental effects of MPs on the environment, include the contamination of ecosystems, harm to aquatic life through ingestion, potential disruption of food chains, and long-term ecological consequences. Despite numerous studies confirming the MP's presence in aquatic environments, research specifically focused on MPs in bottled drinking water (BDW) is limited. Research on MPs in drinking water is vital to assess potential health risks and develop strategies for ensuring water safety and quality. This study fills a research gap by investigating microplastics (MPs) in nine brands of BDW in the West Godavari region of Andhra Pradesh, India. The average MP concentration in BDW was found to be 2.89 ± 0.48 items/L, with fibers being the predominant shape and sizes ranging from 500 to 1000 μm. Transparent and blue were the most common colors. From ATR-FTIR analysis, the dominant polymer found was polypropylene (PP) followed by polyethylene terephthalate (PET). The human risk assessment was also calculated using the formula of Estimated daily intake (EDI) and Lifetime intake (LTI). The calculation found that the EDI of MPs for children and adults ranged from 0.041 to 0.291 MPs per kilogram per day and 0.019 to 0.133 MPs per kilogram per day, respectively. The mean LTI of MP consumption of an individual, ranged from 17,958 to 2,54,861 MPs, considering an average age of 75 years. The current findings offer valuable information for ongoing evaluations of the potential human risks linked to MP exposure.
Collapse
Affiliation(s)
- Vijaykumar Sekar
- Research Scholar, Department of Civil Engineering, National Institute of Technology, Andhra Pradesh, India
| | - Sheha Shaji
- Research Scholar, Department of Civil Engineering, National Institute of Technology, Andhra Pradesh, India
| | - Baranidharan Sundaram
- Assistant Professor, Department of Civil Engineering, National Institute of Technology, Andhra Pradesh, India.
| |
Collapse
|
15
|
Song X, Chen T, Chen Z, Du L, Qiu X, Zhang Y, Li Y, Zhu Y, Tan Z, Mo Y, Feng X. Micro(nano)plastics in human urine: A surprising contrast between Chongqing's urban and rural regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170455. [PMID: 38286288 DOI: 10.1016/j.scitotenv.2024.170455] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Microplastics (100 nm-5 mm) and nanoplastics (<100 nm) collectively referred to as micro(nano)plastics (MNPs), which are emerging pollutants all over the world. Environmental differences affect its distribution. The content of MNPs differs between urban and rural environments, according to previous studies. To understand the actual situation of human exposure to MNPs in various environments, this study collected 12 urine samples from volunteers in urban and rural regions of Chongqing and used pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and laser direct infrared spectroscopy (LDIR) to detect and analyze MNPs in urine. With an average abundance of 1.50 (2.31) mg/kg, MNPs were found in 9 samples by Py-GC/MS. Polyethylene (PE), polyvinyl chloride (PVC) and polyamide 66 (PA66), three different types of MNPs were found, with PE content being the highest among them. By using LDIR, MNPs were found in 7 samples, with an average abundance of 15.17 (23.13) particles/kg. Five different types of MNPs were found, with acrylates (ACR) being the main type, followed by polymethylmethacrylate (PMMA), polyurethane (PU), polypropylene (PP), polyethylene terephthalate (PET). The findings demonstrated that urban region had much greater levels and more types of MNPs in human urine than rural. Additionally, regular contact with plastic toys and the use of personal care products are linked to the presence of MNPs. The influence of environmental factors on the actual exposure of the human body to MNPs was preliminary explored in this study, and two different methods were used for the first time to simultaneously detect and analyze MNPs in human urine. This allowed for the feasibility of comprehensively and effectively quantitatively analyzing the actual exposure of the human body to MNPs, and also provided the theoretical foundation for further research on the harm of MNPs to human health in different environments.
Collapse
Affiliation(s)
- Xuan Song
- Center of Reproductive Medicine, Chengdu BOE Hospital, Chengdu 610219, China
| | - Tian Chen
- Health Management Center, Chongqing University Three Gorges Hospital, Chongqing 404010, China
| | - Zongwen Chen
- Department of Comprehensive Pediatric Internal Medicine, Chongqing University Three Gorges Hospital, Chongqing 404010, China
| | - Lixia Du
- Department of Gastroenterology, Chengdu BOE Hospital, Chengdu 610219, China
| | - Xihong Qiu
- Department of Obstetrics and Gynecology, Chengdu BOE Hospital, Chengdu 610219, China
| | - Yuxin Zhang
- Department of Obstetrics and Gynecology, Chengdu BOE Hospital, Chengdu 610219, China
| | - Yan Li
- Health Management Center, Chongqing University Three Gorges Hospital, Chongqing 404010, China
| | - Yu Zhu
- Department of Radiology, Yunnan Cancer Hospital (the Third Affiliated Hospital of Kunming Medical University), Kunming 650118, China
| | - Zhongyou Tan
- Department of Comprehensive Pediatric Internal Medicine, Chongqing University Three Gorges Hospital, Chongqing 404010, China
| | - Yunbo Mo
- Department of Pediatric Respiratory Medicine, Chongqing University Three Gorges Hospital, Chongqing 404010, China
| | - Xiaoqian Feng
- Department of Comprehensive Pediatric Internal Medicine, Chongqing University Three Gorges Hospital, Chongqing 404010, China.
| |
Collapse
|
16
|
Phothong N, Aht-Ong D, Napathorn SC. Fabrication, characterization and release behavior of α-tocopherol acetate-loaded pH-responsive polyhydroxybutyrate/cellulose acetate phthalate microbeads. Int J Biol Macromol 2024; 260:129535. [PMID: 38244747 DOI: 10.1016/j.ijbiomac.2024.129535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/23/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Microbeads are used in personal care and cosmetic products (PCCPs) but are produced from nondegradable materials. Biodegradable polyhydroxybutyrate (PHB) has been recognized as a promising alternative material for use in PCCPs; however, utilizing PHB to encapsulate PCCPs is challenging because PCCPs need to be protected from the environment but their release needs to be permitted under specific physiological conditions. The aim of this work was to develop and evaluate pH-responsive cellulose acetate phthalate (CAP) to formulate lipophilic α-tocopherol acetate (α-TA)-loaded pH-responsive PHB/CAP microbeads. The influences of the PHB/CAP ratio and initial α-TA loading on the microbead size, surface morphology, encapsulation efficiency (%EE), loading capacity (%LC), and α-TA release profile were studied. The microbeads exhibited a spherical shape with a size of 328.7 ± 2.9 μm. The EE and LC were 86.7 ± 2.6 % and 13.5 ± 0.4 %, respectively. The release profile exhibited pH-responsive characteristics. These α-TA-loaded pH-responsive microbeads were stable with >50 % of the α-TA remaining after 90 days at 4, 25 and 45 °C in the dark. The results from the cytotoxicity assay with PSVK1 cells demonstrated that the microbeads were nontoxic. Hence, our developed formulation has the potential to be used to encapsulate oil-based drugs to formulate lipophilic substance-loaded pH-responsive microbeads.
Collapse
Affiliation(s)
- Natthaphat Phothong
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| | - Duangdao Aht-Ong
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand; National Center for Petroleum, Petrochemicals and Advance Materials, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| | - Suchada Chanprateep Napathorn
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand; Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand; International Center for Biotechnology, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
17
|
Bhatia SK, Kumar G, Yang YH. Understanding microplastic pollution: Tracing the footprints and eco-friendly solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169926. [PMID: 38199349 DOI: 10.1016/j.scitotenv.2024.169926] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Microplastics (MPs) pollution has emerged as a critical environmental issue with far-reaching consequences for ecosystems and human health. These are plastic particles measuring <5 mm and are categorized as primary and secondary based on their origin. Primary MPs are used in various products like cosmetics, scrubs, body wash, and toothpaste, while secondary MPs are generated through the degradation of plastic products. These have been detected in seas, rivers, snow, indoor air, and seafood, posing potential risks to human health through the food chain. Detecting and quantifying MPs are essential to understand their distribution and abundance in the environment. Various microscopic (fluorescence microscopy, scanning electron microscopy) and spectroscopy techniques (FTIR, Raman spectroscopy, X-ray photoelectron spectroscopy) have been reported to analyse MPs. Despite the challenges in scalable removal methods, biological systems have emerged as promising options for eco-friendly MPs remediation. Algae, bacteria, and fungi have shown the potential to adsorb and degrade MPs in wastewater treatment plants (WWTPs) offering hope for mitigating this global crisis. This review examines the sources, impacts, detection, and biological removal of MPs, highlighting future directions in this crucial field of environmental conservation. By fostering global collaboration and innovative research a path towards a cleaner and healthier planet for future generations can be promised.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
18
|
Zhuo M, Chen Z, Liu X, Wei W, Shen Y, Ni BJ. A broad horizon for sustainable catalytic oxidation of microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122835. [PMID: 37931676 DOI: 10.1016/j.envpol.2023.122835] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/10/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Microplastics (MPs) have attracted tremendous attention due to their widespread appearance in the environment and biota, and their adverse effects on organisms. Since plastics are substantially produced to meet human needs, primary and secondary MPs are extensively trapped in wastewater treatment plants, freshwater, drinking water, ocean, air, and soil. The serious MPs pollution calls for efficient treatment strategies Herein, we discuss three catalytic processes (photocatalysis, electrocatalysis, and biocatalysis) for the sustainable management of MPs, and the relevant catalytic mechanisms are clarified. For photocatalysis, three categories (organic, inorganic, hybrid) of photocatalysts are listed, with degradation efficiency of 23%-100%. Next, relative impact factors on photocatalysis, such as characteristics of MPs and photocatalysts, are discussed. Then, some promising electrocatalysts for the degradation/conversion of (micro)plastics and standard electrolyzer designs are briefly introduced. This electrocatalytic method has achieved over 77% of Faradaic efficiency. Next, potential organisms with abundant biocatalysts for degrading different types of MPs are reviewed. Advances in three bioremediation techniques including biositimulation, bioaugmentation, and biosurfactant are outlined. Lastly, perspectives are put forward to promote scientific development in solving environmental issues on MPs pollution in broad fields. This paper provides insights into the development of next-generation techniques for MPs pollution management in a sustainable manner.
Collapse
Affiliation(s)
- Maoshui Zhuo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Xiaoqing Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Yansong Shen
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
19
|
Gonçalves LC, Roberto MM, Peixoto PVL, Viriato C, da Silva AFC, de Oliveira VJA, Nardi MCC, Pereira LC, de Angelis DDF, Marin-Morales MA. Toxicity of Beauty Salon Effluents Contaminated with Hair Dye on Aquatic Organisms. TOXICS 2023; 11:911. [PMID: 37999563 PMCID: PMC10674561 DOI: 10.3390/toxics11110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 11/25/2023]
Abstract
Cosmetic residues have been found in water resources, especially trace elements of precursors, couplers, and pigments of hair dyes, which are indiscriminately disposed of in the sewage system. These contaminants are persistent, bioactive, and bioaccumulative, and may pose risks to living beings. Thus, the present study assessed the ecotoxicity of two types of effluents generated in beauty salons after the hair dyeing process. The toxicity of effluent derived from capillary washing with water, shampoo, and conditioner (complete effluent-CE) and effluent not associated with these products (dye effluent-DE) was evaluated by tests carried out with the aquatic organisms Artemia salina, Daphnia similis, and Danio rerio. The bioindicators were exposed to pure samples and different dilutions of both effluents. The results showed toxicity in D. similis (CE50 of 3.43% and 0.54% for CE and DE, respectively); A. salina (LC50 8.327% and 3.874% for CE and DE, respectively); and D. rerio (LC50 of 4.25-4.59% and 7.33-8.18% for CE and DE, respectively). Given these results, we can infer that hair dyes, even at low concentrations, have a high toxic potential for aquatic biota, as they induced deleterious effects in all tested bioindicators.
Collapse
Affiliation(s)
- Letícia C. Gonçalves
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (L.C.G.); (A.F.C.d.S.); (V.J.A.d.O.); (D.d.F.d.A.)
- University Center of Hermínio Ometto Foundation (FHO), Av. Dr. Maximiliano Baruto, 500, Jardim Universitário, Araras 13607-339, SP, Brazil;
| | - Matheus M. Roberto
- University Center of Hermínio Ometto Foundation (FHO), Av. Dr. Maximiliano Baruto, 500, Jardim Universitário, Araras 13607-339, SP, Brazil;
| | - Paloma V. L. Peixoto
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu Medical School, São Paulo State University (Unesp), Av. Prof. Mário Rubens Guimarães Montenegro, s/n, Rubião Júnior, Botucatu 18618-687, SP, Brazil; (P.V.L.P.); (C.V.); (L.C.P.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (Unesp), Av. Prof. Mário Rubens Guimarães Montenegro, s/n, Rubião Júnior, Botucatu 18618-687, SP, Brazil
| | - Cristina Viriato
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu Medical School, São Paulo State University (Unesp), Av. Prof. Mário Rubens Guimarães Montenegro, s/n, Rubião Júnior, Botucatu 18618-687, SP, Brazil; (P.V.L.P.); (C.V.); (L.C.P.)
- Department of Bioprocesses and Biotechnology, São Paulo State University (Unesp), R. Dr. José Barbosa de Barros, 1780, Fazenda Experimental Lageado, Botucatu 18610-307, SP, Brazil
| | - Adriana F. C. da Silva
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (L.C.G.); (A.F.C.d.S.); (V.J.A.d.O.); (D.d.F.d.A.)
| | - Valdenilson J. A. de Oliveira
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (L.C.G.); (A.F.C.d.S.); (V.J.A.d.O.); (D.d.F.d.A.)
| | - Mariza C. C. Nardi
- University Center of Hermínio Ometto Foundation (FHO), Av. Dr. Maximiliano Baruto, 500, Jardim Universitário, Araras 13607-339, SP, Brazil;
| | - Lilian C. Pereira
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu Medical School, São Paulo State University (Unesp), Av. Prof. Mário Rubens Guimarães Montenegro, s/n, Rubião Júnior, Botucatu 18618-687, SP, Brazil; (P.V.L.P.); (C.V.); (L.C.P.)
- School of Agriculture (FCA), São Paulo State University (Unesp), Av. Universitária, 3780, Fazenda Experimental Lageado, Botucatu 18610-034, SP, Brazil
| | - Dejanira de F. de Angelis
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (L.C.G.); (A.F.C.d.S.); (V.J.A.d.O.); (D.d.F.d.A.)
| | - Maria A. Marin-Morales
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (L.C.G.); (A.F.C.d.S.); (V.J.A.d.O.); (D.d.F.d.A.)
| |
Collapse
|
20
|
Pop V, Ozunu A, Petrescu DC, Stan AD, Petrescu-Mag RM. The influence of media narratives on microplastics risk perception. PeerJ 2023; 11:e16338. [PMID: 37933256 PMCID: PMC10625762 DOI: 10.7717/peerj.16338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/02/2023] [Indexed: 11/08/2023] Open
Abstract
Background Media are the interface between scientists and citizens, communicating and interpreting the risk message and powerfully influencing individual awareness, public debate, and, hence, people's behavior. Pollution by microplastics (MPs), a threat to public health and terrestrial and marine ecosystems, has received research, media, and public interest. However, how MPs environmental and health risks are reflected in the media and assessed in the scientific literature does not find consensus over time. To date, few studies have examined social aspects around MPs, such as, for example, factors that influence awareness and perception of the risk of MPs. In this context, the objective of this study is twofold. First, we determined if media narratives influenced Romanians' awareness of MPs, and second, we investigated if media narratives influenced Romanians' perceptions of MPs health and environmental risk. Method An online survey was conducted among 417 Romanian respondents. The questionnaire had 21 questions. The questions were related to the awareness of MPs, the perceived health risk of MPs, the perceived environmental risk of MPs, the intensity of exposure to media narratives about the MPs impact on health and the environment, and the demographics. Binary logistic regression was run to identify what media narratives influenced MPs awareness and risk perception. In recent times, mass media has shaped perceptions of health and environmental risks, driven by events like COVID-19 and global climate change. Our study relies on media narratives as its foundation. Results Binary logistic regression showed that the awareness of MPs is influenced by the media narrative "Microplastics in the sea threaten fish stocks" (p = 0.001). When the frequency of exposure to this media narrative increases, the probability of reporting awareness of MPs increases. Likewise, an increase in age represents a higher probability of reporting awareness of MPs. The perceived health risk of MPs, with the highest weighting, was related to the dependent variable "Leakage of harmful chemicals from MPs affects the soil" (p = 0.014). Conclusions Media narratives about plastic and MPs pollution have increased over time, influencing the perception of this risk. The study argues the need for accurate and balanced media reporting on MPs to prevent the spread of misinformation and ensure that people clearly understand MPs risks. Furthermore, a closer examination of people's perceptions supports the design of appropriate interventions to reduce plastic consumption, thereby decreasing the risks of MPs pollution with benefits for human health and the environment.
Collapse
Affiliation(s)
- Valeria Pop
- Research Institute for Sustainability and Disaster Management Based on High-Performance Computing, Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Alexandru Ozunu
- Research Institute for Sustainability and Disaster Management Based on High-Performance Computing, Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
- Disaster Management Training and Education Centre for Africa (DiMTEC), University of the Free State, Bloemfontein, South Africa
| | - Dacinia Crina Petrescu
- Department of Hospitality Services, Faculty of Business, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
- Department of Economy and Rural Development, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Adrian-Daniel Stan
- Department of International Studies and Contemporary History, Faculty of History and Philosophy, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Ruxandra Malina Petrescu-Mag
- Research Institute for Sustainability and Disaster Management Based on High-Performance Computing, Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Economy and Rural Development, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Doctoral School “International Relations and Security Studies”, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
21
|
Niccolai E, Colzi I, Amedei A. Adverse Effects of Micro- and Nanoplastics on Humans and the Environment. Int J Mol Sci 2023; 24:15822. [PMID: 37958802 PMCID: PMC10647433 DOI: 10.3390/ijms242115822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The pervasive pollution caused by nano- and microplastics (N/MPLs) is a pressing concern, and was exacerbated during the COVID-19 pandemic due to the substantial release of disposable Personal Protective Equipment (PPE) into the environment [...].
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| | - Ilaria Colzi
- Department of Biology, University of Florence, 50121 Florence, Italy;
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| |
Collapse
|
22
|
Zhou W, Huang D, Chen S, Du L, Wang G, Li R, Xu W. Modified nano zero-valent iron reduce toxicity of polystyrene microplastics to ryegrass (Lolium Perenne L.). CHEMOSPHERE 2023; 337:139152. [PMID: 37290504 DOI: 10.1016/j.chemosphere.2023.139152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Microplastics pollution in environments has become a major concern and it has been proven to have adverse impacts on plants, so there is an urgent to find approaches to alleviate the detrimental effects of microplastics. In our study, we investigated the influence of polystyrene microplastics (PSMPs) on the growth, photosynthesis, and oxidative defense system changes of ryegrass, as well as the behavior of MPs at roots. Then three types of nanomaterials were applied to alleviate the adverse impact of PSMPs on ryegrass, which were nano zero-valent iron (nZVI), carboxymethylcellulose-modified-nZVI (C-nZVI) and sulfidated nZVI (S-nZVI), respectively. Our results suggested that PSMPs had significant toxicity to ryegrass, leading to decrease of shoot weight, shoot length and root length. Three nanomaterials regained the weight of ryegrass to a varying extent and made more PSMPs aggregate near roots. In addition, C-nZVI and S-nZVI facilitated the entrance of PSMPs into the root and promoted the chlorophyll a and chlorophyll b contents in leaves. Analysis of antioxidant enzymes and malondialdehyde content indicated that ryegrass coped well with the internalization of PSMPs, and all three types of nZVI could alleviate PSMPs-stress in ryegrass. This study elaborates the toxicity of MPs on plants and provides a novel insight into the fixing of MPs by plants and nanomaterials in environments, which needs to be further explored in future research.
Collapse
Affiliation(s)
- Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Sha Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, 430068, PR China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
23
|
Li Y, Meenatchisundaram K, Rajendran K, Gohil N, Kumar V, Singh V, Solanki MK, Harirchi S, Zhang Z, Sindhu R, Taherzadeh MJ, Awasthi MK. Sustainable Conversion of Biowaste to Energy to Tackle the Emerging Pollutants: A Review. CURRENT POLLUTION REPORTS 2023; 9:660-679. [DOI: 10.1007/s40726-023-00281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 01/11/2025]
|
24
|
Awasthi MK, Ganeshan P, Gohil N, Kumar V, Singh V, Rajendran K, Harirchi S, Solanki MK, Sindhu R, Binod P, Zhang Z, Taherzadeh MJ. Advanced approaches for resource recovery from wastewater and activated sludge: A review. BIORESOURCE TECHNOLOGY 2023; 384:129250. [PMID: 37286046 DOI: 10.1016/j.biortech.2023.129250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Due to resource scarcity, current industrial systems are switching from waste treatment, such as wastewater treatment and biomass, to resource recovery (RR). Biofuels, manure, pesticides, organic acids, and other bioproducts with a great market value can be produced from wastewater and activated sludge (AS). This will not only help in the transition from a linear economy to a circular economy, but also contribute to sustainable development. However, the cost of recovering resources from wastewater and AS to produce value-added products is quite high as compared to conventional treatment methods. In addition, most antioxidant technologies remain at the laboratory scale that have not yet reached the level at industrial scale. In order to promote the innovation of resource recovery technology, the various methods of treating wastewater and AS to produce biofuels, nutrients and energy are reviewed, including biochemistry, thermochemistry and chemical stabilization. The limitations of wastewater and AS treatment methods are prospected from biochemical characteristics, economic and environmental factors. The biofuels derived from third generation feedstocks, such as wastewater are more sustainable. Microalgal biomass are being used to produce biodiesel, bioethanol, biohydrogen, biogas, biooils, bioplastics, biofertilizers, biochar and biopesticides. New technologies and policies can promote a circular economy based on biological materials.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Prabakaran Ganeshan
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Vinay Kumar
- Ecotoxicity and Bioconversion Laboratory, Department of Community Medicine, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Karthik Rajendran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh, India
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | |
Collapse
|
25
|
Cai C, Zhu L, Hong B. A review of methods for modeling microplastic transport in the marine environments. MARINE POLLUTION BULLETIN 2023; 193:115136. [PMID: 37329736 DOI: 10.1016/j.marpolbul.2023.115136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
Microplastic (MP) pollution is ubiquitous in the oceans and poses serious threats to the marine ecosystems. Nowadays numerical modeling has become one of the widely used tools for monitoring and predicting the transport and fate of MP in marine environments. Despite the growing body of research on numerical modeling of marine MP, the advantages and disadvantages of various modeling methods have not received systematic evaluation in published works. Important aspects such as parameterization schemes for MP behaviors, factors influencing MP transport, and proper configuration in beaching are essential for guiding researchers to choose proper methods in their work. For this purpose, we comprehensively reviewed the current knowledge on factors influencing MP transport, classified modeling approaches according to the governing equations, and summarized up-to-date parameterization schemes for MP behaviors. Critical factors such as vertical velocity, biofouling, degradation, fragmentation, beaching, and washing-off were reviewed in the frame of MP transport processes.
Collapse
Affiliation(s)
- Caiyuan Cai
- School of Civil and Transportation Engineering, South China University of Technology, Guangzhou, China
| | - Liangsheng Zhu
- School of Civil and Transportation Engineering, South China University of Technology, Guangzhou, China
| | - Bo Hong
- School of Civil and Transportation Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
26
|
Wu Y, Tan X, Shi X, Han P, Liu H. Combined Effects of Micro- and Nanoplastics at the Predicted Environmental Concentration on Functional State of Intestinal Barrier in Caenorhabditis elegans. TOXICS 2023; 11:653. [PMID: 37624159 PMCID: PMC10459583 DOI: 10.3390/toxics11080653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
The possible toxicity caused by nanoplastics or microplastics on organisms has been extensively studied. However, the unavoidably combined effects of nanoplastics and microplastics on organisms, particularly intestinal toxicity, are rarely clear. Here, we employed Caenorhabditis elegans to investigate the combined effects of PS-50 (50 nm nanopolystyrene) and PS-500 (500 nm micropolystyrene) at environmentally relevant concentrations on the functional state of the intestinal barrier. Environmentally, after long-term treatment (4.5 days), coexposure to PS-50 (10 and 15 μg/L) and PS-500 (1 μg/L) resulted in more severe formation of toxicity in decreasing locomotion behavior, in inhibiting brood size, in inducing intestinal ROS production, and in inducting intestinal autofluorescence production, compared with single-exposure to PS-50 (10 and 15 μg/L) or PS-500 (1 μg/L). Additionally, coexposure to PS-50 (15 μg/L) and PS-500 (1 μg/L) remarkably caused an enhancement in intestinal permeability, but no detectable abnormality of intestinal morphology was observed in wild-type nematodes. Lastly, the downregulation of acs-22 or erm-1 expression and the upregulation expressions of genes required for controlling oxidative stress (sod-2, sod-3, isp-1, clk-1, gas-1, and ctl-3) served as a molecular basis to strongly explain the formation of intestinal toxicity caused by coexposure to PS-50 (15 μg/L) and PS-500 (1 μg/L). Our results suggested that combined exposure to microplastics and nanoplastics at the predicted environmental concentration causes intestinal toxicity by affecting the functional state of the intestinal barrier in organisms.
Collapse
Affiliation(s)
| | | | | | | | - Huanliang Liu
- Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
27
|
Cattaneo N, Zarantoniello M, Conti F, Frontini A, Chemello G, Dimichino B, Marongiu F, Cardinaletti G, Gioacchini G, Olivotto I. Dietary Microplastic Administration during Zebrafish ( Danio rerio) Development: A Comprehensive and Comparative Study between Larval and Juvenile Stages. Animals (Basel) 2023; 13:2256. [PMID: 37508033 PMCID: PMC10376277 DOI: 10.3390/ani13142256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
One of the main sources of MPs contamination in fish farms is aquafeed. The present study investigated, for the first time through a comparative approach, the effects of different-sized fluorescent MPs included in a diet intended for zebrafish (Danio rerio). A comparison based on fish developmental stage (larval vs. juvenile), exposure time, and dietary MPs' size and concentration was performed. Four experimental diets were formulated, starting from the control, by adding fluorescent polymer A (size range 1-5 µm) and B (size range 40-47 µm) at two different concentrations (50 and 500 mg/kg). Zebrafish were sampled at 20 (larval phase) and 60 dpf (juvenile stage). Whole larvae, intestine, liver and muscles of juveniles were collected for the analyses. Polymer A was absorbed at the intestinal level in both larvae and juveniles, while it was evidenced at the hepatic and muscular levels only in juveniles. Hepatic accumulation caused an increase in oxidative stress markers in juveniles, but at the same time significantly reduced the number of MPs able to reach the muscle, representing an efficient barrier against the spread of MPs. Polymer B simply transited through the gut, causing an abrasive effect and an increase in goblet cell abundance in both stages.
Collapse
Affiliation(s)
- Nico Cattaneo
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Federico Conti
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Giulia Chemello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Beniamino Dimichino
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Fabio Marongiu
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Gloriana Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| |
Collapse
|
28
|
Banaei G, García-Rodríguez A, Tavakolpournegari A, Martín-Pérez J, Villacorta A, Marcos R, Hernández A. The release of polylactic acid nanoplastics (PLA-NPLs) from commercial teabags. Obtention, characterization, and hazard effects of true-to-life PLA-NPLs. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131899. [PMID: 37354720 DOI: 10.1016/j.jhazmat.2023.131899] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
This study investigates MNPLs release from commercially available teabags and their effects on both undifferentiated monocultures of Caco-2 and HT29 and in the in vitro model of the intestinal Caco-2/HT29 barrier. Teabags were subjected to mechanical and thermodynamic forces simulating the preparation of a cup of tea. The obtained dispersions were characterized using TEM, SEM, DLS, LDV, NTA, and FTIR. Results confirmed that particles were in the nano-range, constituted by polylactic acid (PLA-NPLs), and about one million of PLA-NPLs per teabag were quantified. PLA-NPLs internalization, cytotoxicity, intracellular reactive oxygen species induction, as well as structural and functional changes in the barrier were assessed. Results show that PLA-NPLs present high uptake rates, especially in mucus-secretor cells, and bio-persisted in the tissue after 72 h of exposure. Although no significant cytotoxicity was observed after the exposure to 100 µg/mL PLA-NPLs during 48 h, a slight barrier disruption could be detected at short-time periods. The present work reveals new insights into the safety of polymer-based teabags, the behavior of true-to-life MNPLs in the human body, as well as new questions on how repeated and prolonged exposures could affect the structure and function of the human intestinal epithelium.
Collapse
Affiliation(s)
- Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba García-Rodríguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Juan Martín-Pérez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
29
|
Chengappa S K, Rao A, K S A, Jodalli PS, Shenoy Kudpi R. Microplastic content of over-the-counter toothpastes - a systematic review. F1000Res 2023; 12:390. [PMID: 37521767 PMCID: PMC10372460 DOI: 10.12688/f1000research.132035.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Microplastic particles are used as ingredients in personal care products such as face washes, shower gels and toothpastes and form one of the main sources of microplastic pollution, especially in the marine environment. In addition to being a potential pollutant to the environment, the transfer of microplastics to humans can become a severe threat to public health. This systematic review was conceptualized to identify evidence for the presence of and characteristics of microplastics in toothpaste formulations. Methods: The PICOS Criteria was used for including studies for the review. Electronic databases of Scopus, Embase, Springer Link, PubMed, Web of Science and Google Scholar were searched, as well as hand and reference searching of the articles was carried out. The articles were screened using the software application, Covidence® and data was extracted. Results: This systematic review showed that toothpastes from China, Vietnam, Myanmar and the UAE, reported no evidence of microplastics and those from Malaysia, Turkey and India reported the presence of microplastics. The shape of the microplastics present in these toothpastes were found to be granular, irregular with opaque appearance and also in the form of fragments and fibers and the percentage weight in grams ranged from 0.2 to 7.24%. Malaysia releases 0.199 trillion microbeads annually from personal care products into the environment and toothpastes in Turkey release an average of 871 million grams of microplastics annually. Similarly, in India, it has been reported that 1.4 billion grams of microplastic particles are emitted annually from toothpaste. Conclusions: The findings of this systematic review provide evidence that toothpastes, at least in some parts of the world, do contain microplastics and that there is a great risk of increase in the addition of microplastics to the environment by the use of toothpaste.
Collapse
Affiliation(s)
- Kavery Chengappa S
- Public Health Dentistry, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ashwini Rao
- Public Health Dentistry, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Aparna K S
- Public Health Dentistry, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Praveen S Jodalli
- Public Health Dentistry, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ramya Shenoy Kudpi
- Public Health Dentistry, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|