1
|
Bergmann M, Andersen ZJ, Massling A, Loft S, Cole-Hunter T, Nordstrøm C, Tuffier S, Zhang J, Lim YH. Short-term exposure to ultrafine particles and asthma hospital admissions in children in Copenhagen, Denmark. Thorax 2025:thorax-2024-222465. [PMID: 40274412 DOI: 10.1136/thorax-2024-222465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Ultrafine particles (UFP; <0.1 µm in diameter) are not regulated or commonly monitored but may be harmful to human health, particularly for children. In this study, we aimed to examine the association between short-term exposure to UFP and asthma hospital admissions in children. METHODS Daily UFP concentrations (2002-2018) were monitored at an urban background station in Copenhagen, Denmark. Asthma hospital admissions, demographic and socioeconomic information of children (0-18 years) were obtained from registries. A case-crossover design was applied to estimate the association between hospital admissions and up to 6-day UFP exposure windows for all children, and stratified by age, sex, family income, mother's education, prior asthma or prior respiratory infection. RESULTS We observed 15 903 asthma hospital admissions in total. An IQR increase in UFP was significantly associated with asthma hospital admissions, strongest at 2-day exposure windows (risk ratio (RR): 1.17 (95% CI: 1.09, 1.25)). These associations remained unchanged when adjusting for particulate matter <2.5 µm in diameter (PM2.5) or nitrogen dioxide (NO2), for which we also detected significant positive associations. Associations with UFP were stronger for school-aged children (5-14 years: RR: 1.26 (95% CI: 1.15, 1.38)) than for children younger than 5 years (1.01 (95% CI: 0.93, 1.10)). CONCLUSIONS In this large study in a low-exposure setting, we find that short-term exposure to UFP can trigger asthma hospital admissions in children, independently of associations with PM2.5 or NO2. This study adds evidence calling for the regulation and improvement of UFP exposure assessment to protect children's health in urban areas.
Collapse
Affiliation(s)
- Marie Bergmann
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Massling
- Department of Environmental Science, Aarhus University, Aarhus, Denmark
| | - Steffen Loft
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Cole-Hunter
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Claus Nordstrøm
- Department of Environmental Science, Aarhus University, Aarhus, Denmark
| | - Stéphane Tuffier
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jiawei Zhang
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Youn-Hee Lim
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Kuntic M, Kuntic I, Cleppien D, Pozzer A, Nußbaum D, Oelze M, Junglas T, Strohm L, Ubbens H, Daub S, Bayo Jimenez MT, Danckwardt S, Berkemeier T, Hahad O, Kohl M, Steven S, Stroh A, Lelieveld J, Münzel T, Daiber A. Differential inflammation, oxidative stress and cardiovascular damage markers of nano- and micro-particle exposure in mice: Implications for human disease burden. Redox Biol 2025; 83:103644. [PMID: 40319735 DOI: 10.1016/j.redox.2025.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
Particulate matter (PM) poses a significant risk to human health; however, it remains uncertain which size fraction is especially harmful and what mechanisms are involved. We investigated the varying effects of particle size on specific organ systems using a custom mouse exposure system and synthetic PM (SPM). Whole-body exposure of mice showed that micrometer-sized fine SPM (2-4 μm) accumulated in the lungs, the primary entry organ, while nanometer-sized SPM (<250 nm) did not accumulate, suggesting a transition into circulation. Mice exposed to micro-SPM exhibited inflammation and NADPH oxidase-derived oxidative stress in the lungs. In contrast, nano-SPM-exposed mice did not display oxidative stress in the lungs but rather at the brain, heart, and vascular levels, supporting the hypothesis that they penetrate the lungs and reach the circulation. Sources of reactive oxygen species from micro-SPM in the lung are NOX1 and NOX2, driven by pulmonary inflammation, while oxidative stress from nano-SPM in the heart is mediated by protein kinase C-dependent p47phox phosphorylation, leading to NOX2 activation in infiltrated monocytes. Endothelial dysfunction and increased blood pressure were more pronounced in nano-SPM-exposed mice, also supported by elevated endothelin-1 and reduced endothelial nitric oxide synthase expression, which enhances constriction and diminishes vasodilation. Further, we estimated the cardiovascular disease burden of nano-particles in humans based on global exposure data and hazard ratios from an epidemiological cohort study. These results provide novel insights into the disease burdens of inhaled nano- and micro-particles (corresponding to fine and ultrafine categories), guiding future studies.
Collapse
Affiliation(s)
- Marin Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Ivana Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Dirk Cleppien
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Andrea Pozzer
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - David Nußbaum
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Matthias Oelze
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Tristan Junglas
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Lea Strohm
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Henning Ubbens
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Steffen Daub
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | | | - Sven Danckwardt
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; University Medical Center Ulm, Department of Clinical Chemistry, Ulm, Germany
| | - Thomas Berkemeier
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany
| | - Omar Hahad
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Matthias Kohl
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Sebastian Steven
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; Division of Cardiology, Goethe University Frankfurt, University Hospital, Department of Medicine III, Frankfurt a. M., Germany
| | - Albrecht Stroh
- Leibniz Institute for Resilience Research, Mainz, Germany; University Medical Center Mainz, Institute of Pathophysiology, Mainz, Germany; Institute of Physiology I, University Hospital Muenster, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Thomas Münzel
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
3
|
Qi Q, Xue Y, Madani NA, Tangang RT, Yu F, Nair A, Romeiko XX, Luo G, Brackett I, Thorncroft C, Lin S. Individual effects and interactions between ultrafine particles and extreme temperatures on hospital admissions of high burden diseases. ENVIRONMENT INTERNATIONAL 2025; 197:109348. [PMID: 40020633 DOI: 10.1016/j.envint.2025.109348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Health effects of ultrafine particles (UFPs) and their interactions with temperature are less studied. We investigated the risks of UFPs concentrations and extreme temperatures on hospitalizations for high-burden diseases (HBDs) in New York State (NYS). METHODS This case-crossover study included hospitalizations for HBDs that contain ischemic heart diseases, diabetes, stroke, kidney diseases, and depression using NYS Hospital Discharge Data (2013-2018). Daily pollutants and temperature data were obtained from a chemical transport model validated by multiple prior studies. UFP changes were measured using interquartile range increase, and extreme heat and cold were defined as temperatures >= 90th% and <=10th% respectively by month and location. Conditional logistic regression was applied controlling for criteria pollutants, relative humidity, and time-varying variables. RESULTS Among 1,308,518 cases, significant risk ratios (RR) were observed for UFPs (RRs ranged: 1.009-1.012) and extreme heat (RRs ranged: 1.024-1.028) on overall HBDs, but extreme cold had protective effects on HBDs. The adverse effect of UFPs had significant interactions with extreme cold and was higher in winter and fall. UFPs affected all HBD subtypes except kidney diseases, and extreme heat increased the risks of ischemic heart disease and kidney disease. There were disparities across demographics in exposures-HBDs associations although they were not statistically significant. Elevated UFP concentrations were associated with four clinical indicators (hospital stays, charges etc.). CONCLUSION We observe positive associations between elevated UFP concentrations or extreme heat and HBD hospitalizations, but negative associations with extreme cold. The UFPs' risks were higher in children and during cold seasons.
Collapse
Affiliation(s)
- Quan Qi
- Department of Economics, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Yukang Xue
- Department of Educational Psychology, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Najm Alsadat Madani
- Institute for Health and the Environment, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Randy T Tangang
- Department of Environmental Health Science, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Fangqun Yu
- Atmosphere Science Research Center, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Arshad Nair
- Atmosphere Science Research Center, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Xiaobo Xue Romeiko
- Department of Environmental Health Science, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Gan Luo
- Atmosphere Science Research Center, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Isa Brackett
- Department of Environmental Health Science, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Chris Thorncroft
- Atmosphere Science Research Center, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Shao Lin
- Department of Environmental Health Science, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA; Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA.
| |
Collapse
|
4
|
Bergmann ML, Taghavi Shahri SM, Tayebi S, Kerckhoffs J, Cole-Hunter T, Hoek G, Lim YH, Massling A, Vermeulen R, Loft S, Andersen ZJ, Amini H. Spatial and temporal variation of façade-level particle number concentrations using portable monitors in Copenhagen, Denmark. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125398. [PMID: 39603323 DOI: 10.1016/j.envpol.2024.125398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/05/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Ultrafine particles (UFP), commonly expressed as particle number concentrations (PNC), have been associated with harm to human health yet are currently not regulated or routinely monitored in many places. This has limited the potential for studies of health effects of long-term exposure to UFP. The present study aims to understand the spatial and temporal variation in façade-level UFP exposures in Copenhagen, Denmark. We measured PNC at the façades of 27 residences across the city for approximately 72 h each in two campaigns and continuously at an urban background reference site for twelve consecutive months, using portable monitors (miniature diffusion size classifiers [DiSCminis]). We estimated annual means at the residential sites based on temporal adjustment using reference site data. Furthermore, we co-located the DiSCminis at a regulatory monitoring station on three occasions and compared daily means from our reference site to those from seven fixed-site monitoring stations throughout the city. Annual mean PNC at the reference site was 4715 (SD of hourly mean: 3001) pt/cm3, while annual means at 27 residences were slightly higher with a mean of 5201 pt/cm3 (SD: 807), ranging between 3735 and 6588 pt/cm3. The two individual adjusted campaign-specific means at 27 residential sites were weakly correlated (Spearman's correlation 0.11) and had an intra-class correlation coefficient of 0.06 (95%-confidence interval: -0.18, 0.28). Daily PNC at the reference site was highly correlated (R = 0.64-0.84) with PNC monitored at seven fixed-site stations throughout the city. We observed a seasonal trend at the reference site with the highest PNC in spring. Our measurement campaign revealed that façade-level PNC at residences in Copenhagen in 2021-2022 was relatively low with small spatial variability. The large variability in time suggests possibly longer and more frequent measurement campaigns to obtain more stable annual averages. Our study illustrates the challenges of UFP long-term exposure assessment.
Collapse
Affiliation(s)
- Marie L Bergmann
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | | | - Shali Tayebi
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jules Kerckhoffs
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| | - Thomas Cole-Hunter
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Gerard Hoek
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Massling
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Zorana J Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Heresh Amini
- Department of Environmental Medicine and Public Health, and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
5
|
Zheng B, Chen J, Zhang Q. Air pollution control and health economic burdens: Evidence from a megacity in China from 2014 through 2022. ENVIRONMENTAL RESEARCH 2025; 264:120392. [PMID: 39577727 DOI: 10.1016/j.envres.2024.120392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/14/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
The Guangdong-Hong Kong-Macao Greater Bay Area (GBA) stands as China's foremost region in air pollution control. Shenzhen, as a model city, was selected to quantify the health-economic gains brought about by pollution control efforts. The paper showcased the exemplary practices of GBA in safeguarding the blue sky, providing a template for other regions. We assessed the variation of health impacts and economic burdens in Shenzhen from 2014 to 2022 using the proportional hazards model based on Poisson regression, along with the value of a statistical life, the cost of illness, and the willingness-to-pay approach. The results showed that only the premature mortality and economic burdens attributable to PM2.5 exhibited improvement prior to the COVID-19, with a total reduction of 9846.65 (95%Cl: 9846.65-9846.65) premature deaths and a cost saving of 63.93 (95%Cl: 63.93-63.93) million dollars. Short-term public health policies may affect the outcomes of air quality management, most types of health impacts and economic burdens showed a cliff decline during the pandemic. In addition, the study revealed that cardiovascular health economic burdens outweighed respiratory ones at the premature mortality level, while the opposite scenario was observed at the hospitalization level. This paper advocated for the strengthening of pollution control efforts, especially focusing on industrial emission reduction and intelligent transportation. The theoretical study of O3 and the synergistic management of O3 and PM2.5 should be advanced. Additionally, health education should be emphasized, and residents should be encouraged to cultivate personal hygiene habits.
Collapse
Affiliation(s)
- Baifeng Zheng
- Global Health Research Center, Duke Kunshan University, Kunshan, 215316, PR China; School of Pharmaceutical Business, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jiayi Chen
- School of Pharmaceutical Business, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Qiu Zhang
- School of Pharmaceutical Business, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Health Economics and Health Promotion Research Center, Guangzhou, 510006, PR China; Key Laboratory of Technology Research and Evaluation of Pharmacovigilance, National Medical Products Administration, Guangzhou, 510006, PR China.
| |
Collapse
|
6
|
Gualtieri M, Melzi G, Costabile F, Stracquadanio M, La Torretta T, Di Iulio G, Petralia E, Rinaldi M, Paglione M, Decesari S, Mantecca P, Corsini E. On the dose-response association of fine and ultrafine particles in an urban atmosphere: toxicological outcomes on bronchial cells at realistic doses of exposure at the Air Liquid Interface. CHEMOSPHERE 2024; 366:143417. [PMID: 39349072 DOI: 10.1016/j.chemosphere.2024.143417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Air pollution and particulate matter (PM) are the leading environmental cause of death worldwide. Exposure limits have lowered to increase the protection of human health; accordingly, it becomes increasingly important to understand the toxicological mechanisms on cellular models at low airborne PM concentrations which are relevant for actual human exposure. The use of air liquid interface (ALI) models, which mimic the interaction between airborne pollutants and lung epithelia, is also gaining importance in inhalation toxicological studies. This study reports the effects of ALI direct exposure of bronchial epithelial cells BEAS-2B to ambient PM1 (i.e. particles with aerodynamic diameter lower than 1 μm). Gene expression (HMOX, Cxcl-8, ATM, Gadd45-a and NQO1), interleukin (IL)-8 release, and DNA damage (Comet assay) were evaluated after 24 h of exposure. We report the dose-response curves of the selected toxicological outcomes, together with the concentration-response association and we show that the two curves differ for specific responses highlighting that concentration-response association may be not relevant for understanding toxicological outcomes. Noteworthy, we show that pro-oxidant effects may be driven by the deposition of freshly emitted particles, regardless of the airborne PM1 mass concentration. Furthermore, we show that reference airborne PM1 metrics, namely airborne mass concentration, may not always reflect the toxicological process triggered by the aerosol. These findings underscore the importance of considering different aerosol metrics to assess the toxicological potency of fine and ultrafine particles. To better protect human health additional metrics should be defined, than account for the properties of the entire aerosol mixture including specific as particle size (i.e. particles with aerodynamic diameter lower than 20 nm), the relevant aerosol sources (e.g., traffic combustion, secondary organic aerosol …) as well as their atmospheric processing (freshly emitted vs aged ones).
Collapse
Affiliation(s)
- M Gualtieri
- ENEA Research Centre of Bologna Division of Models and Technology for Risk Reduction, Laboratory of Atmospheric Pollution, Via Martiri di Monte Sole 4, 40129, Bologna, Italy; Deptartment of Earth and Environmental Sciences, Polaris Research Centre University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milan, Italy.
| | - G Melzi
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - F Costabile
- Institute of Atmospheric Sciences and Climate, Italian National Research Council, Via Fosso Del Cavaliere, 00133, Rome, Italy.
| | - M Stracquadanio
- ENEA Research Centre of Bologna Division of Models and Technology for Risk Reduction, Laboratory of Atmospheric Pollution, Via Martiri di Monte Sole 4, 40129, Bologna, Italy
| | - T La Torretta
- ENEA Research Centre of Bologna Division of Models and Technology for Risk Reduction, Laboratory of Atmospheric Pollution, Via Martiri di Monte Sole 4, 40129, Bologna, Italy
| | - G Di Iulio
- Institute of Atmospheric Sciences and Climate, Italian National Research Council, Via Fosso Del Cavaliere, 00133, Rome, Italy
| | - E Petralia
- ENEA Research Centre of Bologna Division of Models and Technology for Risk Reduction, Laboratory of Atmospheric Pollution, Via Martiri di Monte Sole 4, 40129, Bologna, Italy
| | - M Rinaldi
- Institute of Atmospheric Sciences and Climate, Italian National Research Council, Via Gobetti 101, 40129, Bologna, Italy
| | - M Paglione
- Institute of Atmospheric Sciences and Climate, Italian National Research Council, Via Gobetti 101, 40129, Bologna, Italy
| | - S Decesari
- Institute of Atmospheric Sciences and Climate, Italian National Research Council, Via Gobetti 101, 40129, Bologna, Italy
| | - P Mantecca
- Deptartment of Earth and Environmental Sciences, Polaris Research Centre University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milan, Italy
| | - E Corsini
- Institute of Atmospheric Sciences and Climate, Italian National Research Council, Via Fosso Del Cavaliere, 00133, Rome, Italy
| |
Collapse
|
7
|
Venuta A, Lloyd M, Ganji A, Xu J, Simon L, Zhang M, Saeedi M, Yamanouchi S, Lavigne E, Hatzopoulou M, Weichenthal S. Predicting within-city spatiotemporal variations in daily median outdoor ultrafine particle number concentrations and size in Montreal and Toronto, Canada. Environ Epidemiol 2024; 8:e323. [PMID: 39045485 PMCID: PMC11265779 DOI: 10.1097/ee9.0000000000000323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Background Epidemiological evidence suggests that long-term exposure to outdoor ultrafine particles (UFPs, <0.1 μm) may have important human health impacts. However, less is known about the acute health impacts of these pollutants as few models are available to estimate daily within-city spatiotemporal variations in outdoor UFPs. Methods Several machine learning approaches (i.e., generalized additive models, random forest models, and extreme gradient boosting) were used to predict daily spatiotemporal variations in outdoor UFPs (number concentration and size) across Montreal and Toronto, Canada using a large database of mobile monitoring measurements. Separate models were developed for each city and all models were evaluated using a 10-fold cross-validation procedure. Results In total, our models were based on measurements from 12,705 road segments in Montreal and 10,929 road segments in Toronto. Daily median outdoor UFP number concentrations varied substantially across both cities with 1st-99th percentiles ranging from 1389 to 181,672 in Montreal and 2472 to 118,544 in Toronto. Outdoor UFP size tended to be smaller in Montreal (mean [SD]: 34 nm [15]) than in Toronto (mean [SD]: 44 nm [25]). Extreme gradient boosting models performed best and explained the majority of spatiotemporal variations in outdoor UFP number concentrations (Montreal, R 2: 0.727; Toronto, R 2: 0.723) and UFP size (Montreal, R 2: 0.823; Toronto, R 2: 0.898) with slopes close to one and intercepts close to zero for relationships between measured and predicted values. Conclusion These new models will be applied in future epidemiological studies examining the acute health impacts of outdoor UFPs in Canada's two largest cities.
Collapse
Affiliation(s)
- Alessya Venuta
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
| | - Marshall Lloyd
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
| | - Arman Ganji
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Junshi Xu
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Leora Simon
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
| | - Mingqian Zhang
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Milad Saeedi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Shoma Yamanouchi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Eric Lavigne
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Canada
| | - Marianne Hatzopoulou
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
- Air Health Science Division, Health Canada, Ottawa, Canada
| |
Collapse
|
8
|
Zhang W, Chen B, Yoda Y, Shima M, Zhao C, Ji X, Wang J, Liao S, Jiang S, Li L, Chen Y, Guo X, Deng F. Ambient ultrafine particles exacerbate oxygen desaturation during sleep in patients with chronic obstructive pulmonary disease: New insights into the effect spectrum of ultrafine particles on susceptible populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174519. [PMID: 38972410 DOI: 10.1016/j.scitotenv.2024.174519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
The health effects of ultrafine particles (UFPs) are of growing global concern, but the epidemiological evidence remains limited. Sleep-disordered breathing (SDB) characterized by hypoxemia is a prevalent condition linked to many debilitating chronic diseases. However, the role of UFPs in the development of SDB is lacking. Therefore, this prospective panel study was performed to specifically investigate the association of short-term exposure to UFPs with SDB parameters in patients with chronic obstructive pulmonary disease (COPD). Ninety-one COPD patients completed 226 clinical visits in Beijing, China. Personal exposure to ambient UFPs of 0-7 days was estimated based on infiltration factor and time-activity pattern. Real-time monitoring of sleep oxygen saturation, spirometry, respiratory questionnaires and airway inflammation detection were performed at each clinical visit. Generalized estimating equation was used to estimate the effects of UFPs. Exposure to UFPs was significantly associated with increased oxygen desaturation index (ODI) and percent of the time with oxygen saturation below 90 % (T90), with estimates of 21.50 % (95%CI: 6.38 %, 38.76 %) and 18.75 % (95%CI: 2.83 %, 37.14 %), respectively, per 3442 particles/cm3 increment of UFPs at lag 0-3 h. Particularly, UFPs' exposure within 0-7 days was positively associated with the concentration of alveolar nitric oxide (CaNO), and alveolar eosinophilic inflammation measured by CaNO exceeding 5 ppb was associated with 29.63 % and 33.48 % increases in ODI and T90, respectively. In addition, amplified effects on oxygen desaturation were observed in current smokers. Notably, individuals with better lung function and activity tolerance were more affected by ambient UFPs due to longer time spent outdoors. To our knowledge, this is the first study to link UFPs to hypoxemia during sleep and uncover the key role of alveolar eosinophilic inflammation. Our findings provide new insights into the effect spectrum of UFPs and potential environmental and behavioral intervention strategies to protect susceptible populations.
Collapse
Affiliation(s)
- Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Baiqi Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yoshiko Yoda
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Masayuki Shima
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Chen Zhao
- Community Health Service Center, Huayuan Road, Haidian District, Beijing 100088, China
| | - Xuezhao Ji
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Junyi Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Sha Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Simin Jiang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Center for Environment and Health, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Zhang Y, Li J, Wu C, Xiao Y, Wang X, Wang Y, Chen L, Ren L, Wang J. Impacts of environmental factors on the aetiological diagnosis and disease severity of community-acquired pneumonia in China: a multicentre, hospital-based, observational study. Epidemiol Infect 2024; 152:e80. [PMID: 38721832 PMCID: PMC11131030 DOI: 10.1017/s0950268824000700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Environmental exposures are known to be associated with pathogen transmission and immune impairment, but the association of exposures with aetiology and severity of community-acquired pneumonia (CAP) are unclear. A retrospective observational study was conducted at nine hospitals in eight provinces in China from 2014 to 2019. CAP patients were recruited according to inclusion criteria, and respiratory samples were screened for 33 respiratory pathogens using molecular test methods. Sociodemographic, environmental and clinical factors were used to analyze the association with pathogen detection and disease severity by logistic regression models combined with distributed lag nonlinear models. A total of 3323 CAP patients were included, with 709 (21.3%) having severe illness. 2064 (62.1%) patients were positive for at least one pathogen. More severe patients were found in positive group. After adjusting for confounders, particulate matter (PM) 2.5 and 8-h ozone (O3-8h) were significant association at specific lag periods with detection of influenza viruses and Klebsiella pneumoniae respectively. PM10 and carbon monoxide (CO) showed cumulative effect with severe CAP. Pollutants exposures, especially PM, O3-8h, and CO should be considered in pathogen detection and severity of CAP to improve the clinical aetiological and disease severity diagnosis.
Collapse
Affiliation(s)
- Yichunzi Zhang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Wu
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xiao
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinming Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lan Chen
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Ren
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Wang J, Wang J, Liu Z, Yan R. Concentration, speciation and risk effects of multiple environmentally sensitive trace elements in respirable fine-grained fly ash. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133387. [PMID: 38198872 DOI: 10.1016/j.jhazmat.2023.133387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
Respirable fine-grained fly ash (RFA) is captured very inefficiently by existing air purification devices of power plant, leading to increasing concerns regarding their migration and subsequent interaction with body due to fine particle size and its complex toxic composition. Trace elements of RFA in three groups with five different sizes between 8-13 µm were analyzed in terms of available concentration, speciation and risk effects. The concentration, pollution level and ecological risk level of elements in RFA were related to particle sizes. Chronic non-carcinogenic effect risk (NER) and carcinogenic effect risk (CER) were negatively correlated with particle size. The individual weight of exposed subjects, corresponding trace elements concentration and ingestion rate in RFA were three significant variables influencing CER. NER and CER had a tenfold exaggerated effect when calculated using total element concentration of RFA. In addition to individual differences and exposure conditions, trace element properties, speciation and available concentration were the dominant factor responsible for ecological and environmental effects of trace elements in RFA, following the order As>Ni, Mn>Cr>Pb>Cu>Zn. Results of this work highlight the effects and differences of trace elements in RFA on ecology and health, and provide a basis for further pollution control and human health warning.
Collapse
Affiliation(s)
- Jiao Wang
- Environment and Resources College, Shanxi University, No. 92 Wucheng Rd., Taiyuan 030006, China; Shanxi Laboratory for Yellow River, No. 92 Wucheng Rd, Taiyuan 030006, China.
| | - Junxiu Wang
- Environment and Resources College, Shanxi University, No. 92 Wucheng Rd., Taiyuan 030006, China
| | - Zhiyi Liu
- Shanxi Open University, No. 109 Qianfeng North Rd, Taiyuan 030006, China
| | - Ran Yan
- Environment and Resources College, Shanxi University, No. 92 Wucheng Rd., Taiyuan 030006, China
| |
Collapse
|
11
|
Fiter RJ, Murphy LJ, Gong MN, Cleven KL. The impact of air pollution on asthma: clinical outcomes, current epidemiology, and health disparities. Expert Rev Respir Med 2023; 17:1237-1247. [PMID: 38247719 DOI: 10.1080/17476348.2024.2307545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Air pollution has been shown to have a significant impact on morbidity and mortality of respiratory illnesses including asthma. AREAS COVERED Outdoor air pollution consists of a mixture of individual pollutants including vehicle traffic and industrial pollution. Studies have implicated an array of individual components of air pollution, with PM2.5, NO2, SO2, and ozone being the most classically described, and newer literature implicating other pollutants such as black carbon and volatile organic compounds. Epidemiological and cohort studies have described incidence and prevalence of pollution-related asthma and investigated both acute and chronic air pollution exposure as they relate to asthma outcomes. There is an increasing body of literature tying disparities in pollution exposure to clinical outcomes. In this narrative review, we assessed the published research investigating the association of pollution with asthma outcomes, focusing on the adult population and health care disparities. EXPERT OPINION Pollution has multiple deleterious effects on respiratory health but there is a lack of data on individualized pollution monitoring, making it difficult to establish a temporal relationship between exposure and symptoms, thereby limiting our understanding of safe exposure levels. Future research should focus on more personalized monitoring and treatment plans for mitigating exposure.
Collapse
Affiliation(s)
- Ryan J Fiter
- Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Lila J Murphy
- Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Michelle N Gong
- Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Krystal L Cleven
- Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|