1
|
Park J, Yun H, Choi S, Kim MK, Zoh KD. Target and suspect screening of per- and polyfluoroalkyl substances (PFASs) in consumer products using ion mobility separation high resolution mass spectrometry (IMS-HRMS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126400. [PMID: 40345370 DOI: 10.1016/j.envpol.2025.126400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
This study aims to investigate the distribution of per- and polyfluoroalkyl substances (PFAS) and their precursors in 55 consumer products, including 27 personal care products (PCPs) from 7 categories and 28 household products (HPs) from 6 categories and analyze the correlation between them, by measuring PFASs using target analysis with LC-MS/MS and suspect screening using high-resolution mass spectrometry (HRMS) combined with ion mobility separation (IMS). In most products, perfluorocarboxylic acid (PFCA) concentrations (0.036-25.2 ng/g) exceeded perfluorosulfonic acid concentrations (n.d.-0.566 ng/g). In PCPs, the median concentrations of 12 PFASs and two fluorinated precursors (0.053-139 ng/g) were significantly higher than in HPs (0.012-76.0 ng/g) (p < 0.05). Across all PCP and HP types, short-chain PFASs (PFCAs ≤ C7; PFSAs ≤ C6) (1.68-46.9 ng/g) were also significantly higher than long-chain PFASs (0.071-6.86 ng/g) (p < 0.05). Suspect screening identified a total of 9 candidate PFASs, including the four PFCA precursors, all of which were assigned a confidence level of 3 or higher. The observed positive correlation between precursors and PFCAs (p < 0.05) suggests that precursors may be converted into PFCAs, thereby increasing PFCA concentrations, although the specific transformation pathways require further investigation. This study provides insights into the distribution of PFAS and their precursors in consumer products and demonstrates that IMS-HRMS-based suspect screening can be useful for distinguishing false positives in PFAS identification.
Collapse
Affiliation(s)
- Jeonghoon Park
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Hyejin Yun
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Soobin Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Moon-Kyung Kim
- Institute of Health & Environment, Seoul National University, Seoul, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health & Environment, Seoul National University, Seoul, South Korea.
| |
Collapse
|
2
|
Espartero LJL, Ishaq Z, Bradley S, Moore M, Yamada M, Wang X, Prow T, Juhasz A, Thai PK. Dermal permeation of perfluoroalkyl substances in human skin - An in-vitro study. CHEMOSPHERE 2025; 378:144408. [PMID: 40239480 DOI: 10.1016/j.chemosphere.2025.144408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/03/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous, persistent environmental contaminants, posing significant health risks to animals and humans. While dermal exposure to PFAS through daily contact with consumer products such as school uniforms and personal care items is common, the mechanisms and extent of skin uptake remain poorly understood. This study investigated the dermal penetration of 30 PFAS, both as mixtures and individual compounds, using in vitro human skin models in a Franz Diffusion Cell system. Results showed that in a mixture, short-chain PFAS, including FBSA, PFBA, PFPrS, and PFPeA, demonstrated permeation rates of 4.8 ± 2.5 %, 3.7 ± 0.3 %, 2.0 ± 0.1 %, and 1.1 ± 0.1 %, respectively, over 24 h. In contrast, none of the long-chain PFAS penetrated the skin in the same period. When tested individually in water, FBSA exhibited the highest permeation, achieving 7.0 ± 0.9 % (p < 0.05), underscoring its ability to cross the stratum corneum under simulated environmental conditions. These findings highlight that while permeation of long-chain PFAS could be slowed down by the skin barrier, certain short-chain PFAS, such as FBSA, can penetrate human skin in vitro. This study provides crucial preliminary data on PFAS dermal absorption, emphasizing the need for standardized experimental conditions that account for the chemical properties of PFAS and the physiological properties of human skin. Our findings suggest that further research is needed to elucidate the mechanisms of PFAS dermal absorption and better assess the risk of dermal exposure to PFAS.
Collapse
Affiliation(s)
- Lore Jane L Espartero
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Zubaria Ishaq
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Australia
| | - Samuel Bradley
- Skin Research Center, York Biomedical Research Institute, Hull York Medical School, University of York, UK
| | - Mark Moore
- Cleft & Craniofacial Unit, Women's & Children's Hospital, Adelaide, SA, Australia
| | - Miko Yamada
- Skin Research Center, York Biomedical Research Institute, Hull York Medical School, University of York, UK
| | - Xianyu Wang
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Australia
| | - Tarl Prow
- Skin Research Center, York Biomedical Research Institute, Hull York Medical School, University of York, UK
| | - Albert Juhasz
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
3
|
Qiu SQ, Tang YJ, Hu LX, Pei CL, Hong DC, Lin DY, Kang G, Zhou SZ, Liang BL, Chen SJ, Bai H, Ying GG. Unveiling airborne threats: Vertical profiles of multiple emerging pollutants in PM 2.5 across the urban atmosphere of Southern China. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137056. [PMID: 39752836 DOI: 10.1016/j.jhazmat.2024.137056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/28/2024] [Accepted: 12/30/2024] [Indexed: 03/12/2025]
Abstract
PM2.5 has a detrimental impact on human health and has become a focus of widespread concern. The tempo-spatial distribution of emerging pollutants has been extensively studied, while there is a scarcity of understanding their vertical distribution in atmospheric environment. Here we investigated the vertical profiles of phthalate esters (PAEs), organophosphate esters (OPEs), neonicotinoids (NEOs), and per-and polyfluorinated substances (PFASs) in PM2.5 at ground level (4.5 m), 118 m, and 488 m in an urban environment. Results reveal that the PAEs in PM2.5 had higher concentrations than OPEs, NEOs, and PFASs. Vertical pollutant distribution generally exhibits a decline in concentration with increasing altitude. However, the opposite pattern also occurs, especially for NEOs and PFASs. The underlying mechanisms are multifaceted, encompassing the physicochemical characteristics of pollutants, meteorological parameters, and air-mass trajectories, each contributing to the vertical profile in varying degree. Additionally, the indoor health risks posed by outdoor pollutants at 118 m and 488 m were evaluated and found to be comparable to the outdoor risks at the ground. To our knowledge, this is the first exploration of the vertical characteristics of emerging pollutants at heights exceeding 100 meters, which provides a crucial reference for the prevention and control of emerging pollutants.
Collapse
Affiliation(s)
- Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yan-Jun Tang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Cheng-Lei Pei
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510308, China
| | - Da-Chi Hong
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510308, China
| | - Da-Ying Lin
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Geng Kang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Sheng-Zhen Zhou
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Bao-Ling Liang
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510308, China
| | - She-Jun Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
4
|
Xing WY, Liu FH, Wang DD, Liu JM, Zheng WR, Liu JX, Wu L, Zhao YY, Xu HL, Li YZ, Wei YF, Huang DH, Li XY, Gao S, Ma QP, Gong TT, Wu QJ. Association between plasma perfluoroalkyl substances and high-grade serous ovarian cancer overall survival: A nested case-control study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117825. [PMID: 39884014 DOI: 10.1016/j.ecoenv.2025.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Although evidence suggests that perfluoroalkyl and polyfluoroalkyl substances (PFASs) are positively correlated to several disease risks, no studies have proven if plasma PFASs are related to ovarian cancer survival. OBJECTIVE To explore the association between plasma PFASs and high-grade serous ovarian cancer (HGSOC) overall survival (OS) in the population who did not smoke. METHODS We conducted a nested case-control study within the Ovarian Cancer Follow-Up Study, matching 159 dead patients and 159 survival ones based on body mass index, sample date, and age at diagnosis. Nine plasma PFASs were extracted by solid phase extraction and measured using a liquid chromatography system coupled with tandem mass spectrometry. Baseline plasma concentrations of perfluorinated carboxylic acids (PFCAs) [perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroheptanoic acid (PFHpA)] and perfluorinated sulfonic acids (PFSAs) [perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS)] were calculated. Odds ratios (ORs) and corresponding 95 % confidence intervals (CIs) were calculated via conditional logistic regression models. To elucidate the combined effects, Bayesian kernel machine (BKMR), and regression quantile g-computation (QGC) models were utilized. RESULT In full-adjusted model, significant differences were observed between HGSOC survival and perfluorobutane sulfonic acid, PFHpA, PFHxS, PFOS, PFCA, and PFSA. ORs and 95 %CIs were 2.74 (1.41-5.31), 1.97 (1.03-3.76), 2.13 (1.15-3.95), 2.28 (1.16-4.47), 3.74 (1.78-7.85), and 2.56 (1.31-5.01), respectively for the highest tertile compared with the lowest tertile. The QGC and BKMR models indicated that elevated concentrations of PFAS mixtures were associated with poor OS in HGSOC. CONCLUSIONS Both individual and mixed plasma PFASs may relate to poor OS of HGSOC. Further research is necessary to establish causality, and it is recommended to reinforce environmental risk mitigation strategies to minimize PFAS exposure.
Collapse
Affiliation(s)
- Wei-Yi Xing
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Dong Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Ming Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Wen-Rui Zheng
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Xin Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Yue-Yang Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Hui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Peng Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
5
|
Katsenovich Y, Tansel B, Soares Quinete N, Nasir Z, Ocheje JO, Manzano MM. Leaching profile of per- and polyfluoroalkyl substances (PFAS) from biosolids after thickening, anaerobic digestion, and dewatering processes, and significance of protein, phosphorus, and selected ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177777. [PMID: 39626423 DOI: 10.1016/j.scitotenv.2024.177777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
Batch leaching experiments were conducted to evaluate the release of forty per- and polyfluoroalkyl substances (PFAS) from sludge samples collected after thickening, anaerobic digestion, and dewatering processes at two wastewater treatment plants. The South District wastewater treatment plant (SDWWTP), which receives domestic wastewater and landfill leachate from a nearby landfill, and the Central District wastewater treatment plant (CDWWTP), which receives only domestic wastewater, were selected for this study. PFAS released into the aqueous phase were analyzed by sacrificial sampling after 1, 3, 7, 14, and 30 days. Results demonstrated rapid PFAS leaching, with the highest levels detected in biosolid leachates after just one day. Distinct differences were observed in PFAS composition and concentrations between the two treatment plants. Of the forty PFAS measured, nineteen were detected, with higher concentrations identified at SDWWTP. The input of landfill leachate to SDWWTP appears to have significantly contributed to the elevated levels of specific PFAS, particularly long-chain compounds, compared to the emerging short-chain PFAS found in biosolids. In addition to PFAS analysis, the compositions of the sludge samples, including total and volatile solids, protein, phosphorus (P), iron, aluminum, calcium, and magnesium, were also assessed. Spearman correlation analyses revealed moderate to strong relationships between PFAS levels in leachate and certain sludge components. For instance, correlations between P content and PFCAs and FTCAs were moderate (R2 = 0.45-0.76). In thickener sludge leachate, strong correlations were observed for FPrPA (3:3 FTCA), PFDA, and PFTrDA with P, with R2 values of 0.60, 0.53, and 0.54, respectively. In the digested sludge, correlations were found for PFHpA, PFDA, and PFNA (R2 = 0.45-0.76). Also, for digested sludge leachate, strong correlations were found between the individual compounds PFHpA, PFHxA, PFNA, PFOA, and PFPeA (R2 = 0.60-0.88). Predominant PFAS in leachate from biosolids were identified, including PFOS, FPePA (5:3 FTCA), PFPeA, PFBA, PFHxA, N-EtFOSAA, and 6-2 FTS.
Collapse
Affiliation(s)
- Yelena Katsenovich
- Applied Research Center, Florida International University, 10555 W Flagler St, Miami, FL, 33174, USA.
| | - Berrin Tansel
- Department of Civil & Environmental Engineering, 10555 W Flagler St, Miami, FL, 33174, USA
| | - Natalia Soares Quinete
- Department of Chemistry and Biochemistry, Florida International University, 11960 SW 11th St, Miami, FL, 33199, USA; Institute of Environment, Florida International University, 11960 SW 11th St, Miami, FL, 33199, USA
| | - Zariah Nasir
- Applied Research Center, Florida International University, 10555 W Flagler St, Miami, FL, 33174, USA
| | - Joshua Omaojo Ocheje
- Department of Chemistry and Biochemistry, Florida International University, 11960 SW 11th St, Miami, FL, 33199, USA; Institute of Environment, Florida International University, 11960 SW 11th St, Miami, FL, 33199, USA
| | - Maria Mendoza Manzano
- Department of Chemistry and Biochemistry, Florida International University, 11960 SW 11th St, Miami, FL, 33199, USA
| |
Collapse
|
6
|
Kuc J, Grochowalska I, Thomas M, Zalewska T, Rybka-Murat M. Assessment of the Variability in the Occurrence of PFAS in Fish Tissues from Selected Fisheries in the Baltic Sea. Molecules 2024; 29:6029. [PMID: 39770117 PMCID: PMC11679852 DOI: 10.3390/molecules29246029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, the results of a comprehensive assessment of the variability in the occurrence of ten perfluorinated compounds (PFAS) in fish tissues originating from 2014 to 2019 from six fisheries in the Baltic Sea are presented. A total of 360 fish samples of three species (perch, herring and flatfish) were analysed. For the determination of PFAS, both linear and branched stereoisomers, LC-ESI-MS/MS technique preceded by simultaneous SPE isolation was validated and applied. The total concentration of all determined PFAS compounds shows that the highest levels were observed in the Szczecin Lagoon (4.8 ± 0.7 µg/kg) and the lowest in the Pomeranian Bay (1.9 ± 0.1 µg/kg). In most samples, the dominant compound was perfluorooctane sulfonic acid (PFOS). The present research enabled the assessment of the variability in the occurrence of PFAS stereoisomers in marine fish.
Collapse
Affiliation(s)
- Joanna Kuc
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Iwona Grochowalska
- Faculty of Natural Sciences, Jan Kochanowski University in Kielce, Stefana Żeromskiego 5, 25-369 Kielce, Poland;
| | - Maciej Thomas
- Faculty of Environmental Engineering and Energy, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
| | - Tamara Zalewska
- Institute of Meteorology and Water Management, National Research Institute, Waszyngtona 42, 81-342 Gdynia, Poland; (T.Z.); (M.R.-M.)
| | - Marta Rybka-Murat
- Institute of Meteorology and Water Management, National Research Institute, Waszyngtona 42, 81-342 Gdynia, Poland; (T.Z.); (M.R.-M.)
| |
Collapse
|
7
|
Kim J, Xin X, Hawkins GL, Huang Q, Huang CH. Occurrence, Fate, and Removal of Per- and Polyfluoroalkyl Substances (PFAS) in Small- and Large-Scale Municipal Wastewater Treatment Facilities in the United States. ACS ES&T WATER 2024; 4:5428-5436. [PMID: 39698553 PMCID: PMC11650586 DOI: 10.1021/acsestwater.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 12/20/2024]
Abstract
Wastewater treatment plants (WWTPs) could be conduits of polyfluoroalkyl substances (PFAS) contaminants in the environment. This study investigated the fate of 40 PFAS compounds across nine municipal WWTPs with varying treatment capacity and processes. High concentrations of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) were detected in wastewater, with the ratio of their total concentrations (∑PFCAs/∑PFSAs) always greater than one. Transformation of precursors by activated sludge processes significantly increased the concentrations of short-chain PFCAs (e.g., perfluoropentanoic acid (PFPeA) and perfluorohexanoic acid (PFHxA)), while further advanced treatment processes offered minimal removal of perfluoroalkyl acids. Treatment capacity and PFAS removal efficiency showed no apparent correlation. The maximum possible PFAS loads discharged from WWTPs were 340-9645 g·year-1, similar to those entering the WWTPs. Among six regulated PFAS compounds, detection frequency was 100% for five (perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), perfluorobutanesulfonic acid (PFBS), and perfluorohexanesulfonic acid (PFHxS)) and 67% for hexafluoropropylene oxide dimer acid (HFPO-DA) (Gen-X). Concentrations of PFOA and PFOS in WWTP discharges consistently exceeded 4 ng·L-1. The hazard index (HI) for mixtures containing two or more of the four PFAS (PFNA, PFBS, PFHxS, and HFPO-DA) ranged from 0.2 to 6.1. These findings indicate that wastewater discharges may pose a risk, emphasizing the need for enhanced PFAS removal strategies in wastewater treatment processes.
Collapse
Affiliation(s)
- Juhee Kim
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Civil, Environmental and Construction Engineering, University of Hawai′i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Xiaoyue Xin
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Gary L. Hawkins
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30223, United States
| | - Qingguo Huang
- Department
of Crop and Soil Sciences, University of
Georgia, Griffin, Georgia 30223, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Zhang Y, Tu L, Chen J, Zhou L. Interference Mechanisms of Endocrine System and Other Systems of Endocrine-Disrupting Chemicals in Cosmetics-In Vitro Studies. Int J Endocrinol 2024; 2024:2564389. [PMID: 39659890 PMCID: PMC11631346 DOI: 10.1155/ije/2564389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/07/2024] [Accepted: 11/02/2024] [Indexed: 12/12/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs), found in various cosmetic products, interfere with the normal functioning of the endocrine system, impacting hormone regulation and posing risks to human health. Common cosmetic EDCs, such as ultraviolet (UV) filters, parabens, and triclosan, can enter the human body through different routes, including skin absorption. Their presence has been linked to adverse effects on reproduction, immune function, and development. High-throughput in vitro assays, using various human cell lines, were employed to assess the effects of common cosmetic EDCs such as ethylhexyl methoxycinnamate (EHMC), benzophenone-3 (BP-3), homosalate, and parabens. Despite ongoing regulatory efforts, gaps persist in understanding their long-term impacts, particularly when they are present as mixtures or degradation products in the environment. This study focuses on recent in vitro research to investigate the mechanisms through which cosmetic-related EDCs disrupt the endocrine system and other physiological systems. The in vitro findings highlight the broader systemic impact of these chemicals, extending beyond the endocrine system to include immune, reproductive, and cardiovascular effects. This research underscores the importance of developing safer cosmetic formulations and enhancing public health protection, emphasizing the need for stricter regulations.
Collapse
Affiliation(s)
- Yixuan Zhang
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Innovation R&D, Testing and Evaluation Technical Service Platform of Cosmetics (22DZ2292100), Department of Evaluation of Cosmetics, Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Lihong Tu
- Division of Public Health Service and Safety Assessment, Shanghai Institute of Preventive Medicine, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Jian Chen
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Innovation R&D, Testing and Evaluation Technical Service Platform of Cosmetics (22DZ2292100), Department of Evaluation of Cosmetics, Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Lihong Zhou
- Division of Public Health Service and Safety Assessment, Shanghai Institute of Preventive Medicine, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| |
Collapse
|
9
|
Weatherly LM, Shane HL, Jackson LG, Lukomska E, Baur R, Cooper MP, Anderson SE. Systemic and immunotoxicity induced by topical application of perfluoroheptane sulfonic acid (PFHpS) or perfluorooctane sulfonic acid (PFOS) in a murine model. J Immunotoxicol 2024; 21:2371868. [PMID: 39066581 PMCID: PMC11590111 DOI: 10.1080/1547691x.2024.2371868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic surfactants of over 12,000 compounds that are incorporated into numerous products for their chemical and physical properties. Studies have associated PFAS with adverse health effects. Although there is a high potential for dermal exposure, these studies are lacking. The present study evaluated the systemic and immunotoxicity of subchronic 28- or 10-days of dermal exposure, respectively, to PFHpS (0.3125-2.5% or 7.82-62.5 mg/kg/dose) or PFOS (0.5% or 12.5 mg/kg/dose) in a murine model. Elevated levels of PFHpS were detected in the serum and urine, suggesting that absorption is occurring through the dermal route. PFHpS induced significantly increased relative liver weight, significantly decreased relative spleen and thymus weight, altered serum chemistries, and altered histopathology. Additionally, PFHpS significantly reduced the humoral immune response and altered immune subsets in the spleen, suggesting immunosuppression. Gene expression changes were observed in the liver, skin, and spleen of genes involved in fatty acid metabolism, necrosis, and inflammation. Immune-cell phenotyping identified significant decreases in B-cells and CD11b+ monocyte and/or macrophages in the spleen along with decreases in eosinophils and dendritic cells in the skin. These findings support PFHpS absorption through the skin leading to liver damage and immune suppression.
Collapse
Affiliation(s)
- Lisa M Weatherly
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Hillary L Shane
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Laurel G Jackson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Ewa Lukomska
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Rachel Baur
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Madison P Cooper
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey E Anderson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
10
|
Zhao X, Fu M, Zhou S, Han Y, Zhang W, Peng C, Li Q, Zhu Q, Yang J. Targeted investigation of per- and polyfluoroalkyl substances from domestic cosmetics and personal care products in China and its implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176207. [PMID: 39276996 DOI: 10.1016/j.scitotenv.2024.176207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are synthetic chemicals reported in daily supplies, and skin absorption is one of the routes for human exposure to PFASs. This study aims to evaluate the potential risk of PFASs exposure from cosmetics and personal care products in China. A random sampling of 44 domestic cosmetics and personal care products, summarized into 6 categories, was conducted to investigate the concentrations of 24 target PFASs. PFASs concentrations of 86.4 % products were lower than 100 ng/g, and 34.2 % products were lower than 10 ng/g. PFCAs and PAPs were dominant. Keywords of "wear-resistant" and "long-lasting" may indicate the presence of PFASs in products. Disabled PFOA, PFOS, and PFHxS were not detected. Notably, the presence of PFHxA should be of concern, and its detection frequency reached 59.1 %, with the maximum concentration of 1274.77 ng/g. Further, the daily exposure dose (DED) of ∑PFASs from skin exposure through cosmetics and personal care products was evaluated to be 3.01 ng/kg-bw/day, which wasn't negligible compared to the prescribed acceptable intake value. Conclusively, this study emphasizes that cosmetics and personal care products are important sources leading to the PFASs skin exposure and provides a basis for future regulation of PFASs as product additive.
Collapse
Affiliation(s)
- Xuan Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qingqing Li
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Qinghe Zhu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
11
|
Mao X, Liu Y, Wei Y, Li X, Liu Y, Su G, Wang X, Jia J, Yan B. Threats of per- and poly-fluoroalkyl pollutants to susceptible populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171188. [PMID: 38395163 DOI: 10.1016/j.scitotenv.2024.171188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Environmental exposure to per- and poly-fluoroalkyl substances (PFAS) has raised significant global health concerns due to potential hazards in healthy adults. However, the impact of PFAS on susceptible populations, including pregnant individuals, newborns, the older people, and those with underlying health conditions, has been overlooked. These susceptible groups often have physiological changes that make them less resilient to the same exposures. Consequently, there is an urgent need for a comprehensive understanding of the health risks posed by PFAS exposure to these populations. In this review, we delve into the potential health risks of PFAS exposure in these susceptible populations. Equally important, we also examine and discuss the molecular mechanisms that underlie this susceptibility. These mechanisms include the induction of oxidative stress, disruption of the immune system, impairment of cellular metabolism, and alterations in gut microbiota, all of which contribute to the enhanced toxicity of PFAS in susceptible populations. Finally, we address the primary research challenges and unresolved issues that require further investigation. This discussion aims to foster research for a better understanding of how PFAS affect susceptible populations and to pave the way for strategies to minimize their adverse effects.
Collapse
Affiliation(s)
- Xuan Mao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yujiao Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yongyi Wei
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaodi Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|