1
|
Ren CG, Kong CC, Li SM, Wang XJ, Yu X, Wang YC, Qin S, Cui HL. Symbiotic microalgae and microbes: a new frontier in saline agriculture. Front Microbiol 2025; 16:1540274. [PMID: 40330728 PMCID: PMC12052889 DOI: 10.3389/fmicb.2025.1540274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
With the growing human population worldwide, innovative agricultural development is needed to meet food security needs. However, this has inadvertently led to problematic irrigation practices and overuse of agrochemicals. Such practices can exacerbate soil salinization, which prevents plant growth. As a progressively widespread and escalating problem, soil salinization poses a major threat to global food security. Compared with the traditional use of microalgae or microorganisms that act on plant growth, microalgae-microorganism symbiosis has significant advantages in promoting plant growth. Microalgae and microorganisms can work together to provide a wide range of nutrients required by plants, and they exhibit nutrient complementarity, which supports plant growth. Here, the development potential of microalgae-microbial symbiosis for enhancing plant salt tolerance was investigated. Our review demonstrated that the metabolic complementarity between microalgae and microorganisms can enhance plant salt tolerance. The diversity of a microalgae-microorganism symbiotic system can improve ecosystem stability and resistance and reduce the incidence of plant disease under salt stress. These systems produce bioactive substances (e.g., phytohormones) that promote plant growth, which can improve crop yield, and they can improve soil structure by increasing organic matter and improving water storage capacity and soil fertility. Exploiting the synergistic effects between microalgae and beneficial microorganisms has biotechnological applications that offer novel solutions for saline agriculture to mitigate the deleterious effects of soil salinity on plant health and yield. However, there are several implementation challenges, such as allelopathic interactions and autotoxicity. To make microalgae-bacteria consortia economically viable for agricultural applications, optimal strains and species need to be identified and strategies need to be employed to obtain sufficient biomass in a cost-effective manner. By elucidating the synergistic mechanisms, ecological stability, and resource utilization potential of microalgae-microbial symbiotic systems, this review clarifies salt stress responses and promotes the shift of saline-alkali agriculture from single bioremediation to systematic ecological engineering.
Collapse
Affiliation(s)
- Cheng-Gang Ren
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Cun-Cui Kong
- College of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Si-Ming Li
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Xiao-Jing Wang
- College of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Xiao Yu
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Yin-Chu Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- National Basic Science Data Center, Beijing, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Hong-Li Cui
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
2
|
Oeum K, Suong M, Uon K, Jobert L, Bellafiore S, Comte A, Thomas E, Kuok F, Moulin L. Comparison of plant microbiota in diseased and healthy rice reveals methylobacteria as health signatures with biocontrol capabilities. FRONTIERS IN PLANT SCIENCE 2024; 15:1468192. [PMID: 39534110 PMCID: PMC11554501 DOI: 10.3389/fpls.2024.1468192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Introduction Rice (Oryza sativa) is a staple food worldwide, but its production is under constant pressure from both abiotic and biotic stresses, resulting in high use of agrochemicals. The plant microbiome harbours microorganisms that can benefit plant health and provide alternatives to the use of agrochemicals. The composition of plant microbiomes depends on many factors (soil composition, age, and health) and is considered a primary driver of future plant health. To identify plant microbiomes that protect against disease, we hypothesised that asymptomatic rice plants in fields under high pathogen pressure (i.e., healthy islands of plants among predominantly diseased plants) might harbour a microbiota that protects them from disease. Material and Methods We sampled healthy and leaf-diseased plants in rice fields with high disease incidence in Cambodia and profiled their microbiota at leaf, root, and rhizosphere levels using 16S V3V4 and 18S V4 amplicon barcoding sequencing. Results Comparison of amplicon sequence variants (ASV) of the microbiota of healthy and diseased samples revealed both disease and healthy signatures (significant enrichment or depletion at ASV/species/genus level) in both fields. The genera Methylobacterium and Methylorubrum were identified health taxa signatures with several species significantly enriched in healthy leaf samples (Methylobacterium indicum, Methylobacterium komagatae, Methylobacterium aerolatum, and Methylorubrum rhodinum). A cultivation approach on rice samples led to the isolation of bacterial strains of these two genera, which were further tested as bioinoculants on rice leaves under controlled conditions, showing for some of them a significant reduction (up to 77%) in symptoms induced by Xanthomonas oryzae pv. oryzae infection. Discussion We validated the hypothesis that healthy plants in fields under high disease occurrence can host specific microbiota with biocontrol capacities. This strategy could help identify new microbes with biocontrol potential for sustainable rice production.
Collapse
Affiliation(s)
- Kakada Oeum
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
- Plant Health Institute of Montpellier (PHIM), IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Malyna Suong
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Kimsrong Uon
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Léa Jobert
- Plant Health Institute of Montpellier (PHIM), IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Stéphane Bellafiore
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
- Plant Health Institute of Montpellier (PHIM), IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Aurore Comte
- Plant Health Institute of Montpellier (PHIM), IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Emilie Thomas
- Plant Health Institute of Montpellier (PHIM), IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Fidero Kuok
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Lionel Moulin
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
- Plant Health Institute of Montpellier (PHIM), IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| |
Collapse
|
3
|
Liao K, Chen C, Ye W, Zhu J, Li Y, She S, Wang P, Tao Y, Lv A, Wang X, Chen L. The adaptability, distribution, ecological function and restoration application of biological soil crusts on metal tailings: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172169. [PMID: 38582126 DOI: 10.1016/j.scitotenv.2024.172169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
A large amount of metal tailings causes many environmental issues. Thus, the techniques for their ecological restoration have garnered extensive attention. However, they are still in the exploratory stage. Biological soil crusts (BSCs) are a coherent layer comprising photoautotrophic organisms, heterotrophic organisms and soil particles. They are crucial in global terrestrial ecosystems and play an equal importance in metal tailings. We summarized the existing knowledge on BSCs growing on metal tailings. The main photosynthetic organisms (cyanobacteria, eukaryotic algae, lichens, and mosses) of BSCs exhibit a high heavy metal(loid) (HM) tolerance. BSCs also have a strong adaptability to other adverse conditions in tailings, such as poor structure, acidification, and infertility. The literature about tailing BSCs has been rapidly increasing, particularly after 2022. The extensive literature confirms that the BSCs distributed on metal tailings, including all major types of metal tailings in different climatic regisions, are common. BSCs perform various ecological functions in tailings, including HM stress reduction, soil structure improvement, soil nutrient increase, biogeochemical cycle enhancement, and microbial community restoration. They interact and accelerate revegetation of tailings (at least in the temperate zone) and soil formation. Restoring tailings by accelerating/inducing BSC formation (e.g., resource augmentation and inoculation) has also attracted attention and achieved small-scale on-site application. However, some knowledge gaps still exist. The potential areas for further research include the relation between BSCs and HMs, large-scale quantification of tailing BSCs, application of emerging biological techniques, controlled laboratory experiments, and other restoration applications.
Collapse
Affiliation(s)
- Kejun Liao
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Chaoqi Chen
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Wenyan Ye
- Lin'an Branch of Hangzhou Bureau of Planning and Natural Resources, Hangzhou, Zhejiang, PR China
| | - Jing Zhu
- Lin'an Branch of Hangzhou Bureau of Planning and Natural Resources, Hangzhou, Zhejiang, PR China
| | - Yan Li
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Sijia She
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Panpan Wang
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Yue Tao
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Ang Lv
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Xinyue Wang
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Lanzhou Chen
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China.
| |
Collapse
|
4
|
Gracia-Rodriguez C, Lopez-Ortiz C, Flores-Iga G, Ibarra-Muñoz L, Nimmakayala P, Reddy UK, Balagurusamy N. From genes to ecosystems: Decoding plant tolerance mechanisms to arsenic stress. Heliyon 2024; 10:e29140. [PMID: 38601600 PMCID: PMC11004893 DOI: 10.1016/j.heliyon.2024.e29140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Arsenic (As), a metalloid of considerable toxicity, has become increasingly bioavailable through anthropogenic activities, raising As contamination levels in groundwater and agricultural soils worldwide. This bioavailability has profound implications for plant biology and farming systems. As can detrimentally affect crop yield and pose risks of bioaccumulation and subsequent entry into the food chain. Upon exposure to As, plants initiate a multifaceted molecular response involving crucial signaling pathways, such as those mediated by calcium, mitogen-activated protein kinases, and various phytohormones (e.g., auxin, methyl jasmonate, cytokinin). These pathways, in turn, activate enzymes within the antioxidant system, which combat the reactive oxygen/nitrogen species (ROS and RNS) generated by As-induced stress. Plants exhibit a sophisticated genomic response to As, involving the upregulation of genes associated with uptake, chelation, and sequestration. Specific gene families, such as those coding for aquaglyceroporins and ABC transporters, are key in mediating As uptake and translocation within plant tissues. Moreover, we explore the gene regulatory networks that orchestrate the synthesis of phytochelatins and metallothioneins, which are crucial for As chelation and detoxification. Transcription factors, particularly those belonging to the MYB, NAC, and WRKY families, emerge as central regulators in activating As-responsive genes. On a post-translational level, we examine how ubiquitination pathways modulate the stability and function of proteins involved in As metabolism. By integrating omics findings, this review provides a comprehensive overview of the complex genomic landscape that defines plant responses to As. Knowledge gained from these genomic and epigenetic insights is pivotal for developing biotechnological strategies to enhance crop As tolerance.
Collapse
Affiliation(s)
- Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Gerardo Flores-Iga
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Lizbeth Ibarra-Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Umesh K. Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| |
Collapse
|
5
|
Zhou X, Liang B, Zhang T, Xiong Q, Ma X, Chen L. Co-inoculation of fungi and desert cyanobacteria facilitates biological soil crust formation and soil fertility. Front Microbiol 2024; 15:1377732. [PMID: 38650889 PMCID: PMC11033444 DOI: 10.3389/fmicb.2024.1377732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
The inoculation of cyanobacteria for enriching soil nutrients and forming biological soil crusts (BSCs) is considered an effective means to restore degraded soil. However, there are limited studies on the application of co-inoculation of fungi and cyanobacteria for degraded soil remediation. In this study, a high exopolysaccharide-secreting fungi Zh2 was isolated from lichen BSCs in Hobq Desert, and co-inoculated with a cyanobacterial strain identified as Phormidium tenue in different proportions to form BSCs on sand during a 35 days incubation period. Results revealed significant differences in crust biomass and soil properties among crusts with different cyanobacterial/fungal inoculation ratios. Microbial biomass, soil nutrient content and enzyme activities in crusts co-inoculated with cyanobacteria and fungi were higher than those inoculated with cyanobacteria and fungi alone. The inoculation of cyanobacteria contributed to the fulvic-like accumulation, and the inoculated fungi significantly increased the humic-like content and soil humification. Redundancy analysis showed that the inoculation of cyanobacteria was positively correlated with the activities of urease and phosphatase, and the content of fulvic-like. Meanwhile, the inoculation of fungi was positively correlated with the contents of total carbon, total nitrogen and humic-like, the activities of catalase and sucrase. Cyanobacteria and fungi play distinct roles in improving soil fertility and accumulating dissolved organic matter. This study provides new insights into the effects of cyanobacteria and fungi inoculations on the formation and development of cyanobacterial-fungus complex crusts, offering a novel method for accelerating induced crust formation on the surface of sand.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution, College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, China
- Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
| | - Bin Liang
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution, College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, China
| | - Tian Zhang
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution, College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, China
| | - Qiao Xiong
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution, College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, China
| | - Xiao Ma
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution, College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, China
| | - Lanzhou Chen
- Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
| |
Collapse
|