1
|
Hyman S, Acevedo J, Giannarelli C, Trasande L. Phthalate exposure from plastics and cardiovascular disease: global estimates of attributable mortality and years life lost. EBioMedicine 2025:105730. [PMID: 40307157 DOI: 10.1016/j.ebiom.2025.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/07/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND New evidence has emerged that plastic polymers and their chemical additives, particularly di-2-ethylhexylphthalate (DEHP), contribute to cardiovascular disease (CVD). Phthalates are commonly used in the production of plastic materials and have been linked to increased oxidative stress, metabolic dysfunction, and cardiovascular disease. Estimates of phthalate-attributable cardiovascular mortality have been made for the US, but global estimates are needed to inform ongoing negotiations of a Global Plastics Treaty. METHODS Cardiovascular mortality data from the Institute for Health Metrics and Evaluation (IHME) and regional DEHP exposure estimates from several sources were used to estimate burden. Hazard ratios of CV mortality were calculated using published exposure estimates, and country-level cardiovascular mortality rates were used to calculate excess deaths and years of life lost (YLL) due to DEHP exposure. FINDINGS In 2018, an estimated 356,238 deaths globally were attributed to DEHP exposure, representing 13.497% of all cardiovascular deaths among individuals aged 55-64. Of these, 349,113 were attributed to the use of plastics. Geographic disparities were evident, with South Asia and the Middle East suffering the greatest percentage of cardiovascular deaths attributable to DEHP exposure (16.807%). The Middle East, South Asia, East Asia, and the Pacific accounted for the largest shares of DEHP-attributable CVD deaths (73.163%). Globally, DEHP resulted in 10.473 million YLL. INTERPRETATION Plastics pose a significant risk to increased cardiovascular mortality, disproportionately impacting regions which have developing plastic production sectors. The findings underscore the need for urgent global and local regulatory interventions to kerb mortality from DEHP exposure. FUNDING Bloomberg Philanthropies and the National Institutes of Health.
Collapse
Affiliation(s)
- Sara Hyman
- Department of Paediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Jonathan Acevedo
- Department of Paediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Chiara Giannarelli
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Leonardo Trasande
- Department of Paediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Wagner School of Public Service, New York University, New York, NY, USA.
| |
Collapse
|
2
|
Hasan MM, Tama RT, Dona HA, Hoque NS, Rahaman MA, Alam MA. Comprehensive review of phthalate exposure: Health implications, biomarker detection and regulatory standards. J Steroid Biochem Mol Biol 2025; 247:106671. [PMID: 39746525 DOI: 10.1016/j.jsbmb.2024.106671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Phthalates are a wide family of chemicals that are used in many different industrial applications used in many different industrial applications, including the production of plastics, toys, food packaging particularly for kids, and medical equipment. Due to their various chemical and physical properties, phthalates may negatively impact humans, animals, and the environment. Thus the potential for phthalate exposure and harm to humans, animals, and the environment is high because its presence is alarming. Phthalates can be ingested, inhaled, absorbed topically, or via iatrogenic exposure in animals and humans. This article aimed to ascertain the modes of exposure, fate and detection techniques, and harmful effects of phthalates on humans, animals, and the environment. This review also shows that the intake of phthalate above the established daily limit from sources such as food, toys, and air causes serious harm, including impaired immune function, difficulties in pregnancy, loss of reproduction, and damage to the kidneys, lungs, heart, and brain in humans. Children and pregnant women are the most impacted groups and phthalates also negatively affect the environment and wildlife. A few methods to determine phthalate exposure, such as the LC and the HPLC-MS/MS methods, which employ human fluid or dust air as a biomarker, are also addressed here. Consequently, this comprehensive review aims to provide a detailed analysis of the existing evidence regarding explicit links between exposure to phthalates and subsequent health outcomes that may be directly related to this exposure. Additionally, we reviewed the developed and validated analytical methods and supplemented the literature with partial biomonitoring data on their metabolites.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhanmondi, Dhaka 1205, Bangladesh.
| | - Rahima Tanbin Tama
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh.
| | - Humayra Afroz Dona
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, Jagannath University, Dhaka 1100, Bangladesh
| | - Naeema Salatia Hoque
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Md Ashikur Rahaman
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Md Ashraful Alam
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh; Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| |
Collapse
|
3
|
Liu L, Li X, Hao X, Xu Z, Wang Q, Ren C, Li M, Liu X. Endocrine disruptors and bladder function: the role of phthalates in overactive bladder. Front Public Health 2024; 12:1493794. [PMID: 39722714 PMCID: PMC11668814 DOI: 10.3389/fpubh.2024.1493794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background Phthalates, widely used as plasticizers, are pervasive environmental contaminants and endocrine disruptors. Their potential role in overactive bladder (OAB) pathogenesis is underexplored, necessitating further investigation into their impact on OAB using large-scale epidemiological data. Methods This study utilized data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2011 to 2018. A weighted multivariable logistic regression model was employed to examine the relationship between urinary phthalate concentrations and OAB. Subgroup analyses were conducted to explore differences in associations across various subgroups. Restricted cubic spline (RCS) analysis was used to investigate the potential non-linear relationship between urinary phthalate concentrations and OAB. Additionally, Bayesian Kernel Machine Regression (BKMR) analysis was performed to explore the overall effects and interactions of phthalate mixtures. Results In the multivariable logistic regression model fully adjusted for confounding variables, higher concentrations of MBzP and MiBP were associated with an increased risk of OAB, particularly in the highest tertiles (MBzP: OR = 1.401, 95% CI: 1.108-1.771; MiBP: OR = 1.050, 95% CI: 1.045-1.056). Subgroup analysis found that subgroup characteristics did not have a significant moderating effect on the association between phthalates and OAB. RCS analysis revealed a linear relationship between both MBzP and MiBP and OAB. BKMR analysis confirmed a positive overall effect of phthalate mixtures on OAB risk, with MBzP identified as the major contributing factor. Conclusion In our study cohort, a positive correlation between urinary phthalate concentrations and OAB was observed, necessitating further research to validate and refine this conclusion.
Collapse
|
4
|
Stanic B, Kokai D, Opacic M, Pogrmic-Majkic K, Andric N. Transcriptome-centric approach to the derivation of adverse outcome pathway networks of vascular dysfunction after long-term low-level exposure of human endothelial cells to dibutyl phthalate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174918. [PMID: 39038667 DOI: 10.1016/j.scitotenv.2024.174918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Dibutyl phthalate (DBP) is an endocrine disruptor that adversely affects reproduction; however, evidence suggests it can also impact other systems, including vascular function. The mechanisms underlying DBP-induced vascular dysfunction, particularly after long-term low-level exposure of endothelial cells to this phthalate, remain largely unknown. To address this gap, we used experimentally derived data on differentially expressed genes (DEGs) obtained after 12 weeks of exposure of human vascular endothelial cells EA.hy926 to the concentrations of DBP to which humans are routinely exposed (10-9 M, 10-8 M, and 10-7 M) and various computational tools and manual data curation to build the first adverse outcome pathway (AOP) network relevant to DBP-induced vascular toxicity. DEGs were used to infer transcription factors (molecular initiating events) and molecular functions and biological processes (key events, KEs) using the Enrichr database. The AOP-helpFinder 2.0, an artificial intelligence-based web tool, was used to link genes and KEs and assign confidence scores to co-occurred terms. We constructed the AOP networks using Cytoscape and then manually arranged KEs to depict the flow of mechanistic information across different levels of network organization. An AOP network was created for each DBP concentration, revealing several distinct high-confidence subnetworks that could be involved in DBP-induced vascular toxicity: the insulin-like growth factor subnetwork for 10-7 M DBP, the CXCL8-dependent chemokine subnetwork for 10-8 M DBP, and the fatty acid subnetwork for 10-9 M DBP. We also developed an AOP network providing a mechanistic insight into the dose-dependent effects of DBP in endothelial cells leading to vascular dysfunction. In summary, we present novel putative AOP networks describing the mechanistic flow of information involved in DBP-induced vascular dysfunction in a long-term low-level exposure scenario.
Collapse
Affiliation(s)
- Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Dunja Kokai
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Marija Opacic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia.
| |
Collapse
|
5
|
Mérida DM, Acosta-Reyes J, Bayán-Bravo A, Moreno-Franco B, Laclaustra M, Guallar-Castillón P. Phthalate exposure and subclinical carotid atherosclerosis: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124044. [PMID: 38677462 DOI: 10.1016/j.envpol.2024.124044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/13/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Phthalates may be associated with an increased risk of cardiometabolic diseases by interfering with glucose and lipid metabolism and by promoting adipogenesis. This study aimed to perform a systematic review and meta-analysis of the association between phthalate exposure and subclinical carotid atherosclerosis, using surrogate markers such as carotid intima-media thickness (IMT) and carotid plaques. The literature search was performed using four databases (Web of Science, Medline, PubMed, and Scopus), and this systematic review includes all available observational studies until July 6th, 2023. The Joanna Briggs Institute critical appraisal tool was used to assess the risk of bias. Meta-analyses were performed, and random effects models were used. Six high-quality cross-sectional studies and 2570 participants aged 12 to 70 were included. Six phthalate metabolites showed significant associations with subclinical carotid atherosclerosis. Exposure to MBzP, ΣDEHP, and MnBP was associated with increased carotid IMT. Exposure to MEP was associated with a higher prevalence of carotid plaques, and MiBP was associated with a lower prevalence. Mixed results were observed for MMP in older adults. The meta-analyses showed a high degree of heterogeneity, and the results are based on single studies. This study accurately describes the evidence of this association to date, suggesting that phthalates are associated with increased carotid IMT and a higher prevalence of carotid plaques. Further research is needed to elucidate this association, as phthalates are still used in the manufacture of everyday products, humans continue to be exposed to them, and atherosclerosis is a public health concern.
Collapse
Affiliation(s)
- Diana María Mérida
- Department of Preventive Medicine and Public Health. School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
| | - Jorge Acosta-Reyes
- Department of Public Health, Division of Health Sciences, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla, Colombia.
| | - Ana Bayán-Bravo
- Clinical Nutrition and Dietetics Unit, Department of Endocrinology and Nutrition, 12 de Octubre Hospital, 28041 Madrid, Spain.
| | - Belén Moreno-Franco
- Instituto de Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; Department of Preventive Medicine and Public Health, Universidad de Zaragoza, 50009 Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), 28029 Madrid, Spain.
| | - Martín Laclaustra
- Instituto de Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), 28029 Madrid, Spain; Department of Medicine, Psychiatry and Dermatology, Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - Pilar Guallar-Castillón
- Department of Preventive Medicine and Public Health. School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), 28029 Madrid, Spain; IMDEA-Food Institute. CEI UAM+CSIC, Carretera de Cantoblanco 8, 28049 Madrid, Spain.
| |
Collapse
|
6
|
Frigerio B, Coggi D, Bonomi A, Amato M, Capra N, Colombo GI, Sansaro D, Ravani A, Savonen K, Giral P, Gallo A, Pirro M, Gigante B, Eriksson P, Strawbridge RJ, Mulder DJ, Tremoli E, Veglia F, Baldassarre D. Determinants of Carotid Wall Echolucency in a Cohort of European High Cardiovascular Risk Subjects: A Cross-Sectional Analysis of IMPROVE Baseline Data. Biomedicines 2024; 12:737. [PMID: 38672093 PMCID: PMC11154292 DOI: 10.3390/biomedicines12040737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Echolucency, a measure of plaque instability associated with increased cardiovascular risk, can be assessed in both the carotid plaque and the plaque-free common carotid intima-media (IM) complex as a gray-scale median (plaque-GSM and IM-GSM, respectively). The impact of specific vascular risk factors on these two phenotypes remains uncertain, including the nature and extent of their influence. This study aims to seek the determinants of plaque-GSM and IM-GSM. Plaque-GSM and IM-GSM were measured in subjects from the IMPROVE study cohort (aged 54-79, 46% men) recruited in five European countries. Plaque-GSM was measured in subjects who had at least one IMTmax ≥ 1.5 mm (n = 2138), whereas IM-GSM was measured in all subjects included in the study (n = 3188). Multiple regression with internal cross-validation was used to find independent predictors of plaque-GSM and IM-GSM. Plaque-GSM determinants were plaque-size (IMTmax), and diastolic blood pressure. IM-GSM determinants were the thickness of plaque-free common carotid intima-media complex (PF CC-IMTmean), height, systolic blood pressure, waist/hip ratio, treatment with fibrates, mean corpuscular volume, treatment with alpha-2 inhibitors (sartans), educational level, and creatinine. Latitude, and pack-yearscode were determinants of both plaque-GSM and IM-GSM. The overall models explain 12.0% of plaque-GSM variability and 19.7% of IM-GSM variability. A significant correlation (r = 0.51) was found between plaque-GSM and IM-GSM. Our results indicate that IM-GSM is a weighty risk marker alternative to plaque-GSM, offering the advantage of being readily measurable in all subjects, including those in the early phases of atherosclerosis where plaque occurrence is relatively infrequent.
Collapse
Affiliation(s)
- Beatrice Frigerio
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (B.F.); (D.C.); (A.B.); (M.A.); (N.C.); (G.I.C.); (D.S.); (A.R.)
| | - Daniela Coggi
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (B.F.); (D.C.); (A.B.); (M.A.); (N.C.); (G.I.C.); (D.S.); (A.R.)
| | - Alice Bonomi
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (B.F.); (D.C.); (A.B.); (M.A.); (N.C.); (G.I.C.); (D.S.); (A.R.)
| | - Mauro Amato
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (B.F.); (D.C.); (A.B.); (M.A.); (N.C.); (G.I.C.); (D.S.); (A.R.)
| | - Nicolò Capra
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (B.F.); (D.C.); (A.B.); (M.A.); (N.C.); (G.I.C.); (D.S.); (A.R.)
| | - Gualtiero I. Colombo
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (B.F.); (D.C.); (A.B.); (M.A.); (N.C.); (G.I.C.); (D.S.); (A.R.)
| | - Daniela Sansaro
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (B.F.); (D.C.); (A.B.); (M.A.); (N.C.); (G.I.C.); (D.S.); (A.R.)
| | - Alessio Ravani
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (B.F.); (D.C.); (A.B.); (M.A.); (N.C.); (G.I.C.); (D.S.); (A.R.)
| | - Kai Savonen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, 70100 Kuopio, Finland;
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Philippe Giral
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, ICAN, Sorbonne Université, F-75013 Paris, France; (P.G.); (A.G.)
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Sorbonne Université, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Antonio Gallo
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, ICAN, Sorbonne Université, F-75013 Paris, France; (P.G.); (A.G.)
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Sorbonne Université, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Matteo Pirro
- Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Bruna Gigante
- Department of Medicine Solna, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, 17177 Solna, Sweden; (B.G.); (P.E.); (R.J.S.)
| | - Per Eriksson
- Department of Medicine Solna, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, 17177 Solna, Sweden; (B.G.); (P.E.); (R.J.S.)
| | - Rona J. Strawbridge
- Department of Medicine Solna, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, 17177 Solna, Sweden; (B.G.); (P.E.); (R.J.S.)
- School of Health and Wellbeing, University of Glasgow, Glasgow G12 8TB, UK
- Health Data Research UK, Glasgow G12 8TA, UK
| | - Douwe J. Mulder
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (E.T.); (F.V.)
| | - Fabrizio Veglia
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (E.T.); (F.V.)
| | - Damiano Baldassarre
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (B.F.); (D.C.); (A.B.); (M.A.); (N.C.); (G.I.C.); (D.S.); (A.R.)
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy
| |
Collapse
|
7
|
Mariana M, Cairrao E. The Relationship between Phthalates and Diabetes: A Review. Metabolites 2023; 13:746. [PMID: 37367903 DOI: 10.3390/metabo13060746] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Since the beginning of their production, in the 1930s, phthalates have been widely used in the plastics industry to provide durability and elasticity to polymers that would otherwise be rigid, or as solvents in hygiene and cosmetic products. Taking into account their wide range of applications, it is easy to understand why their use has been increasing over the years, making them ubiquitous in the environment. This way, all living organisms are easily exposed to these compounds, which have already been classified as endocrine disruptor compounds (EDC), affecting hormone homeostasis. Along with this increase in phthalate-containing products, the incidence of several metabolic diseases has also been rising, namely diabetes. That said, and considering that factors such as obesity and genetics are not enough to explain this substantial increase, it has been proposed that the exposure to environmental contaminants may also be a risk factor for diabetes. Thus, the aim of this work is to review whether there is an association between the exposure to phthalates and the development of the several forms of diabetes mellitus, during pregnancy, childhood, and adulthood.
Collapse
Affiliation(s)
- Melissa Mariana
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique s/n, 6200-506 Covilhã, Portugal
- FCS-UBI-Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique s/n, 6200-506 Covilhã, Portugal
- FCS-UBI-Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
8
|
Mariana M, Castelo-Branco M, Soares AM, Cairrao E. Phthalates' exposure leads to an increasing concern on cardiovascular health. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131680. [PMID: 37269565 DOI: 10.1016/j.jhazmat.2023.131680] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
Being an essential component in the plastics industry, phthalates are ubiquitous in the environment and in everyday life. They are considered environmental contaminants that have been classified as endocrine-disrupting compounds. Despite di-2-ethylhexyl phthalate (DEHP) being the most common plasticizer and the most studied to date, there are many others that, in addition to being widely used in the plastic, are also applied in the medical and pharmaceutical industries and cosmetics. Due to their wide use, phthalates are easily absorbed by the human body where they can disrupt the endocrine system by binding to molecular targets and interfering with hormonal homeostasis. Thus, phthalates exposure has been implicated in the development of several diseases in different age groups. Collecting information from the most recent available literature, this review aims to relate human phthalates' exposure with the development of cardiovascular diseases throughout all ages. Overall, most of the studies presented demonstrated an association between phthalates and several cardiovascular diseases, either from prenatal or postnatal exposure, affecting foetuses, infants, children, young and older adults. However, the mechanisms underlying these effects remain poorly explored. Thus, considering the cardiovascular diseases incidence worldwide and the constant human exposure to phthalates, this topic should be extensively studied to understand the mechanisms involved.
Collapse
Affiliation(s)
- Melissa Mariana
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Miguel Castelo-Branco
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; FCS-UBI - Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Amadeu M Soares
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Elisa Cairrao
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; FCS-UBI - Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
9
|
Beyer A, Schorgg P, Karavasiloglou N, Sarwar S, Rohrmann S, Bärnighausen T, Cassidy A, Connolly L, Kühn T. Urinary phthalate concentrations and mortality risk: A population-based study. ENVIRONMENTAL RESEARCH 2022; 214:113927. [PMID: 35868575 DOI: 10.1016/j.envres.2022.113927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are widely used as plasticizers. Laboratory-based mechanistic and epidemiological studies suggest that phthalates are detrimental to human health. Here, we present prospective analyses on phthalate exposure and all-cause, as well as cause-specific, mortality from the National Health and Nutrition Examination Survey (NHANES), a population-based cohort. Between 1999 and 2018, urinary concentrations of 12 phthalate metabolites were measured by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry in spot urine samples of 10,881 adults aged 40-85 years, of which 2382 died over a median duration of 8.9 years after sample provision. Multivariable Cox regression analyses adjusted for a wide range of lifestyle factors and comorbidities showed that higher concentrations of mono-benzyl phthalate (MBzP) and Mono-n-butyl phthalate (MnBP) were associated with increased mortality. The hazard ratios for participants in the highest quartiles of MBzP and MnBP concentrations were at 1.27 [95% confidence interval: 1.08, 1.49; p linear trend = 0.002] and 1.35 [1.13, 1.62; p linear trend = 0.005). These findings reinforce the need for monitoring of phthalate exposure in relation to health outcomes.
Collapse
Affiliation(s)
- Anika Beyer
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg, Germany; Medical Faculty of the University of Heidelberg, Heidelberg, Germany
| | - Paula Schorgg
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg, Germany; Medical Faculty of the University of Heidelberg, Heidelberg, Germany
| | - Nena Karavasiloglou
- Division of Chronic Disease Epidemiology, Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Switzerland
| | - Sneha Sarwar
- Institute of Nutrition and Food Science, University of Dhaka, Bangladesh
| | - Sabine Rohrmann
- Division of Chronic Disease Epidemiology, Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Switzerland
| | - Till Bärnighausen
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg, Germany; Harvard Center for Population and Development Studies, Cambridge, MA, USA; Africa Health Research Institute, Somkhele and Durban, South Africa
| | - Aedin Cassidy
- The Institute for Global Food Security, Queen's University Belfast, UK
| | - Lisa Connolly
- The Institute for Global Food Security, Queen's University Belfast, UK
| | - Tilman Kühn
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg, Germany; The Institute for Global Food Security, Queen's University Belfast, UK.
| |
Collapse
|
10
|
Bai C, Yang H, Zhao L, Liu L, Guo W, Yu J, Li M, Liu M, Lai X, Zhang X, Zhu R, Yang L. The mediating role of plasma microRNAs in the association of phthalates exposure with arterial stiffness: A panel study. ENVIRONMENTAL RESEARCH 2022; 212:113469. [PMID: 35588772 DOI: 10.1016/j.envres.2022.113469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Phthalates exposure has been reported to be linked with arterial stiffness. However, the biological mechanisms underlying this association remain unclear. We conducted a panel study using 338 paired urine-blood samples by repeated measurements of 123 adults across 3 seasons to assess the potential mediating role of plasma microRNAs (miRNAs) in the association of phthalates exposure with arterial stiffness. We measured 10 urinary phthalate metabolites by gas chromatography-tandem mass spectrometry (GC-MS/MS) and 5 candidate arterial stiffness-related miRNAs (miR-146a, miR-222, miR-125b, miR-126, and miR-21) in plasma by real-time PCR. Arterial stiffness parameters including brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI) were determined in health examinations during each visit. Linear mixed-effect (LME) models revealed that mono-methyl phthalate (MMP), mono-iso-butyl phthalate (MiBP), mono-n-butyl phthalate (MBP), mono-n-octyl phthalate (MOP), and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) were significantly associated with one or more of the 5 plasma miRNAs (all PFDR < 0.05). Based on weighted quantile sum (WQS) regression, we found positive associations of phthalate metabolites mixture with miR-146a, miR-125b, and miR-222, and individual MMP and MBP were the major contributors. Additionally, miR-146a was inversely related to ABI. Mediation analysis further indicated that miR-146a mediated 31.6% and 21.3% of the relationships of MMP and MiBP with ABI, respectively. Our findings suggested that certain phthalates exposure was related to plasma miRNAs alterations in a dose-response manner and miR-146a might partly mediate phthalate-associated ABI reduction.
Collapse
Affiliation(s)
- Conghua Bai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Zhu
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Liangle Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Yan S, Hu C, Wang Y, Gao J, Wang Z, Han T, Sun C, Jiang W. Association of phthalate exposure with all-cause and cause-specific mortality among people with hypertension: The U.S. National Health and Nutrition Examination Survey, 2003-2014. CHEMOSPHERE 2022; 303:135190. [PMID: 35660055 DOI: 10.1016/j.chemosphere.2022.135190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
There is growing evidence that phthalate exposure results in a deteriorated effect on human health, while very few studies directly investigate the relationship of phthalate metabolites with mortality among people with hypertension. We aimed to explore whether exposure to phthalates is associated with all-cause and cause-specific mortality among people with hypertension. This study included 4012 people with hypertension from the National Health and Nutrition Examination Survey from 2003 to 2014. Death information was obtained from the National Death Index until 2015. A total of 577 deaths including 196 deaths due to cardiovascular disease (CVD) and 119 deaths due to cancer were documented. Cox proportional hazards regression models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI). After adjustment for potential covariates, participants exposed to mono-ethyl phthalate (MEP) had a higher risk of cancer mortality (HR, 2.06; 95% CI, 1.07-3.95). Participants exposed to mono-n-butyl phthalate (MnBP) had higher risks of all-cause (HR, 1.83; 95% CI, 1.28-2.60), CVD (HR, 2.19; 95% CI, 1.21-3.95), and cancer (HR, 2.35; 95% CI, 1.07-5.17) mortality. Participants exposed to mono-benzyl phthalate (MBzP) had higher risks of all-cause (HR, 2.19; 95% CI, 1.58-3.05) and CVD (HR, 2.36; 95% CI, 1.35-4.13) mortality. Participants exposed to di-2-ethylhexylphthalate (DEHP) had a higher risk of all-cause mortality (HR, 1.69; 95% CI, 1.19-2.39). Our findings suggested that higher levels of specific phthalates were significantly associated with increased risks of all-cause, CVD, and cancer mortality among people with hypertension. Further studies are needed to confirm these findings and identify the underlying mechanisms.
Collapse
Affiliation(s)
- Shiwei Yan
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China
| | - Cong Hu
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China
| | - Yu Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China
| | - Jian Gao
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China
| | - Ziqi Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China
| | - Tianshu Han
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China.
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China.
| | - Wenbo Jiang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China.
| |
Collapse
|
12
|
Li Z, Wu D, Guo Y, Mao W, Zhao N, Zhao M, Jin H. Phthalate metabolites in paired human serum and whole blood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153792. [PMID: 35150672 DOI: 10.1016/j.scitotenv.2022.153792] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/06/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Presence of phthalate metabolites (PMs) in human serum has been well documented. However, the distribution pattern of PMs in different human blood matrixes remains not well known. To investigate this, paired serum and whole blood samples were collected from 145 adults (76 males and 69 females) in Quzhou, China, and analyzed for nine PMs in this study. All PMs had high detection frequencies (> 70%) in human serum and whole blood, except mono benzyl phthalate. Total concentrations of detected PMs in serum and whole blood were 0.70-61 ng/mL (mean 12 ng/mL) and 1.6-33 ng/mL (7.5 ng/mL), respectively. Mono methyl phthalate (MMP), mono (2-ethylhexyl) phthalate, and mono butyl phthalate were consistently the predominant PMs in human serum and whole blood, with the mean concentrations of 3.4 and 2.0 ng/mL, 3.3 and 2.1 ng/mL, and 2.8 and 1.8 ng/mL, respectively. Females had higher mean serum concentrations of PMs, except MBP, than males. Youngest age group (20-30 years) consistently had the lowest mean whole blood levels of all PMs. For the first time, the distribution pattern of PMs in human blood was evaluated based on the calculated partitioning coefficient (Kp) between serum and whole blood. MMP had the highest mean Kp value (1.6; 10th-90th percentile: 1.0-2.2), while mono (2-ethyl-5-oxohexyl) phthalate had the lowest mean Kp value (0.63; 10th-90th percentile: 0.25-1.3). These results help better understand the occurrence of PMs in human blood.
Collapse
Affiliation(s)
- Zhenming Li
- College of Chemical and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dexin Wu
- Hangzhou Xinjing Environmental Technology Co., Ltd., Hangzhou 310007, PR China
| | - Yu Guo
- Focused Photonics (Hangzhou) Inc., 459 Qianmo Road, Hangzhou 311000, PR China
| | - Weili Mao
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, PR China
| | - Nan Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hangbiao Jin
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
13
|
Bai C, Liu L, Chen S, Zhao L, Yang H, Guo W, Li M, Liu M, Lai X, Zhang X, Yang L. Urinary phthalate metabolites and arterial stiffness: A panel study. ENVIRONMENTAL RESEARCH 2022; 207:112657. [PMID: 34979126 DOI: 10.1016/j.envres.2021.112657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The link between phthalates exposure and arterial stiffness in adults remains unclear. We aimed to investigate the associations of urinary phthalate metabolites with arterial stiffness in a longitudinal panel study involving 3 repeated visits among 127 Chinese adults. Urine samples were collected once a day for 4 consecutive days and 10 urinary phthalate metabolites were measured by gas chromatography-tandem mass spectrometry (GC-MS/MS). Brachial ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI) were determined using an oscillometric device (BP-203RPEIII; Omron) in physical examinations during each visit. Linear mixed-effect (LME) models with the adaptive Least Absolute Shrinkage and Selection Operator (LASSO) method were applied to assess the associations between urinary phthalate metabolites and arterial stiffness parameters. The odds ratio (OR) for peripheral arterial disease (PAD) was estimated using generalized estimating equations. For ABI, mono-methyl phthalate (MMP) and mono-n-butyl phthalate (MBP) at lag 0 day were selected by the adaptive LASSO, whereas no phthalates were selected for baPWV. After adjusting for potential covariates and other metabolites, we found ABI reduction was associated with one-unit increase of ln-transformed urinary MBP at lag 0 day [β = 0.013 (SE = 0.006), P = 0.003)]. Stratified analysis revealed that the inverse association was more evident in males (Pinteraction = 0.025). In addition, we observed a borderline risk of PAD in relation to MBP exposure at lag 0 day (P = 0.06). Our data suggested that environmental exposure to MBP may contribute to arterial stiffness, and the effect seems to be sex-specific.
Collapse
Affiliation(s)
- Conghua Bai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuang Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Zhang H, Chen J, Chen C, Wan H, Chen Y, Wang Y, Zhang W, Chen B, Wang N, Lu Y. Exposure to phthalates and cardiovascular diseases in Chinese with type 2 diabetes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58113-58122. [PMID: 34109519 DOI: 10.1007/s11356-021-14807-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Cardiovascular disease (CVD) results in more than half of the mortality and the majority of morbidity in patients with type 2 diabetes. We aim to evaluate the associations of urinary concentrations of phthalate metabolites with CVD in diabetic patients and explore whether CVD risk factors mediate or interact with these associations. A total of 675 type 2 diabetic participants were enrolled from Shanghai, China, in 2018. CVD was defined as a self-reported diagnosis by a physician including coronary heart disease, myocardial infarction, or stroke; it was further reconfirmed in the records from the registration platform. Ten phthalate metabolites were measured in urine. We found positive associations were found among the level of monoethyl phthalate and monoisobutyl phthalate and CVD (OR 1.138, 95% CI 1.032, 1.254; OR 1.369, 95% CI 1.049, 1.786, respectively). Monoisobutyl phthalate and monobenzyl phthalate were marginally and positively associated with carotid intima-media thickness and common carotid artery diameter, respectively. None of the CVD risk factors, including HOMA-IR, body mass index, lipid profile, or blood pressure, significantly mediated the association between the metabolites and CVD. The conditional indirect effect on CVD was significantly stronger for current smoking and dyslipidemia for monoethyl phthalate and for no statin usage and men for monoisobutyl phthalate. In conclusion, phthalate exposure was positively associated with CVD in Chinese with type 2 diabetes. Type 2 diabetic men who are currently smoking, have an uncontrolled lipid profile, and are not using statins might be more susceptible to CVD when exposed to phthalates.
Collapse
Affiliation(s)
- Haojie Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Jingsi Chen
- Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Heng Wan
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Wen Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Bo Chen
- Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, China.
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
15
|
Zhu X, Yin T, Yue X, Liao S, Cheang I, Zhu Q, Yao W, Lu X, Shi S, Tang Y, Zhou Y, Li X, Zhang H. Association of urinary phthalate metabolites with cardiovascular disease among the general adult population. ENVIRONMENTAL RESEARCH 2021; 202:111764. [PMID: 34329633 DOI: 10.1016/j.envres.2021.111764] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/06/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE This study aims to explore the relationship between urinary phthalate metabolites and total and specific cardiovascular disease (CVD) among the general adult population. METHODS This cross-sectional study analyzed 11 urinary phthalates in the general population from the 2005-2016 National Health and Nutrition Examination Survey (NHANES) (n = 10,427). Multivariate logistic regression and weighted quantile sum (WQS) regression were applied to examine the relationship between phthalate metabolites and mixtures and the prevalence rates of total and specific CVD. RESULTS Compared to the lowest quartile, mono-isobutyl phthalate (MiBP) (OR 1.37; 95% CI 1.03-1.83, P for trend = 0.032) and mono-benzyl phthalate (MBzP) (OR 1.44; 95% CI 1.10-1.88, P for trend = 0.013) in the highest quartile were independently associated with increased total CVD. The WQS index of phthalate mixtures was independently correlated with total CVD (adjusted OR 1.17; 95% CI 1.01-1.36, P = 0.039), and MBzP (weight = 0.392) was the most heavily weighted component. In addition, restricted cubic spline regression demonstrated that the MBzP level had a positive correlation and linear association with total CVD (P for nonlinearity = 0.182). CONCLUSIONS Our findings suggest that high phthalate mixture levels are associated with an increased prevalence of CVD, with the greatest influence coming from MBzP.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Ting Yin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xin Yue
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Qingqing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Wenming Yao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xinyi Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Shi Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Yuan Tang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China; Department of Cardiology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China.
| |
Collapse
|
16
|
Li Y, Li N, Chen F, Yang X, Lei Y, Liu Y, Tuo X. Evaluation of binding properties of human serum albumin and mono-benzyl phthalate (MBZP): Multi-spectroscopic analysis and computer simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Chang WH, Herianto S, Lee CC, Hung H, Chen HL. The effects of phthalate ester exposure on human health: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147371. [PMID: 33965815 DOI: 10.1016/j.scitotenv.2021.147371] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 05/26/2023]
Abstract
Phthalate esters (PAEs) are one of the most widely used plasticizers in polymer products and humans are increasingly exposed to them. The constant exposure to PAEs-contained products has raised some concerns against human health. Thus, the impacts of PAEs and their metabolites on human health require a comprehensive study for a better understanding of the associated risks. Here, we attempt to review eight main health effects of PAE exposure according to the most up-to-date studies. We found that epidemiological studies demonstrated a consistent association between PAE exposure (especially DEHP and its metabolites) and a decrease in sperm quality in males and symptom development of ADHD in children. Overall, we found insufficient evidence and lack of consistency of the association between PAE exposure and cardiovascular diseases (hypertension, atherosclerosis, and CHD), thyroid diseases, respiratory diseases, diabetes, obesity, kidney diseases, intelligence performance in children, and other reproductive system-related diseases (anogenital distance, girl precocious puberty, and endometriosis). Future studies (longitudinal and follow-up investigations) need to thoroughly perform in large-scale populations to yield more consistent and powerful results and increase the precision of the association as well as enhance the overall understanding of potential human health risks of PAEs in long-term exposure.
Collapse
Affiliation(s)
- Wei-Hsiang Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Research Center of Environmental Trace Toxic Substances, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Samuel Herianto
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Department of Chemistry (Chemical Biology Division), College of Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Chang Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Research Center of Environmental Trace Toxic Substances, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsin Hung
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsiu-Ling Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Research Center of Environmental Trace Toxic Substances, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
18
|
The association between maternal urinary phthalate metabolites concentrations and pregnancy induced hypertension: Results from the EDEN Mother-Child Cohort. J Gynecol Obstet Hum Reprod 2021; 50:102216. [PMID: 34482002 DOI: 10.1016/j.jogoh.2021.102216] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Studies have suggested that exposure to endocrine disruptors such as phthalates that are widely used in our daily life (food wrapping, cosmetics, toys, medical devices, polyvinyl chloride flooring, and building materials) might be related to raised blood pressure and increased risk of cardiovascular diseases. Phthalates might induce a pro-inflammatory response and increased oxidative stress and may be a cause of pregnancy induced hypertension. METHODS We evaluated the association between maternal exposure to phthalates during pregnancy and pregnancy induced hypertension. 604 pregnant women were included and eleven phthalate metabolites were quantified in spot maternal urine samples collected between the 23rd and 28th week of gestation in a French EDEN mother-child cohort. The associations were assessed by applying multiple logistic regression analysis. RESULTS Twenty nine (4,8%) mothers developed pregnancy induced hypertension. Two low molecular weight phthalate metabolites: Monoethyl phthalate (MEP) and Mono-n‑butyl phthalate (MBP) were positively associated with pregnancy induced hypertension in crude (Odds Ratio: 1.43, 95% Confidence Interval: 1.04-1.96, p-value = 0.02 and 1.48, 1.10-2.01, p-value =0.01) and in adjusted (1.47, 1.01-2.14, p-value = 0.04 and 1.66, 1.11-2.47, p-value = 0.01) models respectively. CONCLUSION Our data suggest that prenatal exposure to some phthalates, including MEP and MBP, might play a role in pregnancy induced hypertension.
Collapse
|
19
|
Lin CY, Lee HL, Hwang YT, Wang C, Hsieh CJ, Wu C, Sung FC, Su TC. The association between urine di-(2-ethylhexyl) phthalate metabolites, global DNA methylation, and subclinical atherosclerosis in a young Taiwanese population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114912. [PMID: 32540595 DOI: 10.1016/j.envpol.2020.114912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/04/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) has been utilized in many products for years. DEHP exposure has been linked to cardiovascular diseases (CVD) and its risk factors. Recent evidence has found a crucial role for epigenetics, including DNA methylation, in CVD. Moreover, DEHP exposure has proved to alter DNA methylation in epidemiological studies. However, the interplay between DEHP exposure, global DNA methylation, and atherosclerosis has never been reported. In this current study, we enrolled 793 participants (12-30 years) from a Taiwanese population to investigate the association between concentrations of DEHP metabolites, 5mdC/dG (global DNA methylation marker) and the carotid intima-media thickness (CIMT). The results showed urine mono-2-ethylhexyl phthalate (MEHP) level was positively correlated with 5mdC/dG and CIMT, respectively. In logistic regression models, the odds ratios (OR) of thicker CIMT (greater than 75th percentile) with one unit increase in ln-MEHP level was higher when levels of 5mdC/dG were above 50%. In structural equation model, the result showed urine MEHP levels are directly associated with CIMT. Moreover, MEHP had an indirect association with CIMT through the 5mdC/dG after adjusting other confounding effects. In the current study, urine DEHP metabolite levels were positively correlated with 5mdC/dG, and CIMT. Our results showed DEHP had a direct and indirect association with CIMT through the 5mdC/dG. The finding implies that DNA methylation may mediate the association between DEHP exposures and subclinical atherosclerosis in this young population. Future effort is needed to elucidate the causal relationship between DEHP exposure, DNA methylation and CVD.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Yi-Ting Hwang
- Department of Statistics, National Taipei University, New Taipei City, 237, Taiwan
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Chia-Jung Hsieh
- Department of Public Health, Tzu Chi University, Hualian County, 970, Taiwan
| | - Charlene Wu
- Global Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, College of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan; Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
20
|
Phthalates Implications in the Cardiovascular System. J Cardiovasc Dev Dis 2020; 7:jcdd7030026. [PMID: 32707888 PMCID: PMC7570088 DOI: 10.3390/jcdd7030026] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Today’s sedentary lifestyle and eating habits have been implicated as some of the causes of the increased incidence of several diseases, including cancer and cardiovascular diseases. However, environmental pollutants have also been identified as another possible cause for this increase in recent decades. The constant human exposure to plastics has been raising attention regarding human health, particularly when it comes to phthalates. These are plasticizers used in the manufacture of industrial and consumer products, such as PVC (Polyvinyl Chloride) plastics and personal care products, with endocrine-disrupting properties, as they can bind molecular targets in the body and interfere with hormonal function. Since these compounds are not covalently bound to the plastic, they are easily released into the environment during their manufacture, use, or disposal, leading to increased human exposure and enhancing health risks. In fact, some studies have related phthalate exposure with cardiovascular health, having already shown a positive association with the development of hypertension and atherosclerosis in adults and some cardiometabolic risk factors in children and adolescents. Therefore, the main purpose of this review is to present and relate the most recent studies concerning the implications of phthalates effects on the cardiovascular system.
Collapse
|
21
|
Su TC, Hwang JS, Torng PL, Wu C, Lin CY, Sung FC. Phthalate exposure increases subclinical atherosclerosis in young population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:586-593. [PMID: 31026707 DOI: 10.1016/j.envpol.2019.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/17/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The link between phthalate exposure and the risk of subclinical atherosclerosis in young population remains unclear. This study investigated the association between phthalate exposure and subclinical atherosclerosis, in terms of carotid intima-media thickness (CIMT), in young population. From a nationwide mass urine screening for renal health, conducted in 1992-2000 among school children 6-18 years of age in Taiwan, we recruited 789 subjects to participate in the cardiovascular health examination in 2006-2008. Among them, 787 received measurements of 7 urinary phthalate metabolites and CIMT. Results showed both mean and maximal values of CIMT at all segments of carotid arteries significantly increased with the urinary mono-2-ethylhexyl phthalate (MEHP), ∑ di-(2-ethylhexyl) phthalate (DEHP), and mono-n-butyl phthalate (MnBP) in a dose-response relationship after adjustment for multiple linear regression models. Multivariate logistic regression analysis showed that higher quartiles of urinary concentrations of MEHP, ∑DEHP, and MnBP were associated with a higher risk of thicker CIMT. Compared to subjects with the lowest quartile (Q1) of urinary MEHP, the adjusted odds ratios (95% confidence interval) for thicker CIMT among subjects with higher urinary MEHP were 2.13 (1.18-3.84) at Q2, 4.02 (2.26-7.15) at Q3 and 7.39 (4.16-13.12) at the highest Q4. In conclusion, urinary phthalate metabolites of MEHP, ∑DEHP, and MnBP are strongly associated with CIMT in adolescents and young adults in Taiwan.
Collapse
Affiliation(s)
- Ta-Chen Su
- Departments of Environmental and Occupational Medicine, and Internal Medicine, National Taiwan University Hospital, Taipei, 10002, Taiwan; Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, 10002, Taiwan.
| | | | - Pao-Ling Torng
- Department of Obstetrics and Gynecology, Hsin-Chu Branch, National Taiwan University Hospital, Taiwan
| | - Charlene Wu
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, 10002, Taiwan
| | - Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, College of Public Health, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
22
|
Huang CF, Wang IJ. Changes in Urinary Phthalate Metabolite Levels Before and After the Phthalate Contamination Event and Identification of Exposure Sources in a Cohort of Taiwanese Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14080935. [PMID: 28825610 PMCID: PMC5580637 DOI: 10.3390/ijerph14080935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022]
Abstract
In 2011, the Taiwan Food and Drug Administration inadvertently discovered that, for decades, manufacturers had replaced expensive natural emulsifiers in food products with diethylhexyl phthalate (DEHP). We wanted to compare urinary phthalate metabolite levels of children before and after the DEHP food contamination event and identify source(s) of phthalate exposure in addition to the illegal food additives. In the present study, morning urine samples were collected from a cohort of 453 children in 2010 in Taipei. After the DEHP food contamination event, there were 200 cohort children left at follow-up in 2013. The geometric means (GMs) of urinary mono(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP) levels before and after the event were 9.39 and 13.34 µg/g of creatinine, respectively, with no significant difference (p = 0.093). After the DEHP food contamination event, we found that urinary phthalate metabolite levels were significantly higher in people who frequently consumed microwave-heated food and used fragrance-containing products (p < 0.05). In addition, children who did not frequently wash hands before eating had significantly higher urinary phthalate metabolite levels than those who did (p < 0.05). These results demonstrate that urinary phthalate metabolite levels did not decrease after the DEHP food contamination event, thus, other sources must contribute to phthalate exposure in daily life. Public awareness of approaches to reducing phthalate exposure is necessary.
Collapse
Affiliation(s)
- Chian-Feng Huang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10055, Taiwan.
- Taoyuan Psychiatric Center, Ministry of Health and Welfare, Taoyuan 33058, Taiwan.
| | - I-Jen Wang
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, Taipei 11267, Taiwan.
- Institute of Environmental & Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei 100044, Taiwan.
- Department of Health Risk Management, China Medical University, Taichung 110001, Taiwan.
| |
Collapse
|
23
|
Choi YJ, Ha KH, Kim DJ. Exposure to bisphenol A is directly associated with inflammation in healthy Korean adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:284-290. [PMID: 27714659 DOI: 10.1007/s11356-016-7806-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
It was recently discovered that bisphenol A (BPA) and phthalates are cardiovascular disruptors. Inflammation is central to the initiation and progression of cardiovascular disease (CVD). This study evaluated whether BPA and different phthalate metabolites are associated with the inflammation marker high-sensitivity C-reactive protein (hs-CRP) in healthy Korean adults. This research is part of an ongoing, population-based study of Korean adults (30-64 years of age) conducted at the Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC). The study enrolled 200 healthy volunteers (96 men, 104 women). Plasma hs-CRP was measured as an inflammation marker. BPA and five phthalate metabolites in urine were analyzed by using liquid chromatography/tandem mass spectrometry. BPA and monobenzyl phthalate (MBzP) differed significantly between the low-hs-CRP (<2 mg/L) and high-hs-CRP (≥2 mg/L) groups. BPA and MBzP were related to hs-CRP in an inverted L-shaped manner. High BPA levels (≥75th percentile) had significant odd ratios (ORs) for high hs-CRP even after adjusting for confounding factors related to obesity and insulin resistance, such as visceral fat volume, body mass index (BMI), adiponectin, high-density lipoprotein (HDL) cholesterol, hemoglobin A1c (HbA1c), and homeostasis model assessment of insulin resistance (HOMA-IR) (OR = 2.85; 95 % CI, 1.16-6.97). However, there was no significant association for MBzP ≥75th percentile. BPA was significantly related to high hs-CRP, even after adjusting for factors related to obesity and insulin resistance. Therefore, BPA could have a direct relationship with systemic inflammation regardless of obesity or insulin resistance.
Collapse
Affiliation(s)
- Yong Jun Choi
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
- Cardiovascular and Metabolic Disease Etiology Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Kyoung Hwa Ha
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
- Cardiovascular and Metabolic Disease Etiology Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.
- Cardiovascular and Metabolic Disease Etiology Research Center, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
24
|
Werner EF, Braun JM, Yolton K, Khoury JC, Lanphear BP. The association between maternal urinary phthalate concentrations and blood pressure in pregnancy: The HOME Study. Environ Health 2015; 14:75. [PMID: 26380974 PMCID: PMC4574131 DOI: 10.1186/s12940-015-0062-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/08/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Exposure to phthalates, a class of endocrine disrupting chemicals, is ubiquitous. We examined the association of urinary phthalate metabolite concentrations during pregnancy with maternal blood pressure and risk of pregnancy-induced hypertensive diseases. METHODS We used data from the Health Outcomes and Measures of the Environment Study, a prospective birth cohort of low-risk pregnant women recruited between March 2003 and January 2006. We analyzed maternal urine samples collected at 16 and 26 weeks gestation for 9 phthalate monoester metabolites reflecting exposure to 6 phthalate diesters. Outcomes included maternal blood pressure at <20 and ≥ 20 weeks gestation and pregnancy induced hypertensive diseases (gestational hypertension, preeclampsia, eclampsia, and HELLP syndrome). RESULTS Data were available for 369 women who gave birth to singleton, live-born infants without congenital anomalies. Of the phthalate metabolites evaluated, only mono-benzyl phthalate (MBzP) concentrations were significantly associated with maternal diastolic blood pressure at <20 weeks gestation. Women in the third MBzP tercile at 16 weeks gestation had diastolic blood pressure 2.2 (95% CI: 0.5-3.9) mm Hg higher at <20 weeks gestation and 2.8 (95% CI: 0.9-4.7) mm Hg higher at ≥ 20 weeks gestation compared to women in the first tercile. Compared to women in the first tercile, women in the top MBzP tercile at 16 weeks had an increased risk of developing pregnancy-induced hypertensive diseases (RR = 2.92, 95 % CI 1.15-7.41, p-value for trend = 0.01). MBzP concentrations at 26 weeks gestation were not as strongly associated with blood pressure at ≥ 20 weeks gestation or risk of pregnancy-induced hypertensive diseases. CONCLUSION This study suggests that maternal urinary MBzP concentrations may be associated with increased diastolic blood pressure and risk of pregnancy-induced hypertensive diseases.
Collapse
Affiliation(s)
- Erika F Werner
- Women & Infants' Hospital, Warren Alpert Medical School at Brown University, 101 Dudley St., Providence, RI, 02906, USA.
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA.
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Jane C Khoury
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Bruce P Lanphear
- Department of Health Sciences, Simon Fraser University, Vancouver, BC, Canada.
| |
Collapse
|