1
|
Luna-Carrascal J, Quintana-Sosa M, Olivero-Verbel J. Genotoxicity biomarkers in car repair workers from Barranquilla, a Colombian Caribbean City. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:263-275. [PMID: 34839807 DOI: 10.1080/15287394.2021.2000542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exposure to chemicals and particles generated in automotive repair shops is a common and underestimated problem. The objective of this study was to assess the genotoxic status of auto repair workers with (1) a questionnaire to gather sociodemographic information and self-reported exposure to hazardous chemicals and (2) measurement of various biochemical parameters. Blood and oral mucosa samples were collected from 174 male volunteers from Barranquilla, Colombia, aged 18-55 years: 87 were active car repairmen and 87 were individuals with no known exposure to hazardous chemicals. Peripheral blood lymphocytes were collected for the comet and cytokinesis-blocking micronucleus (CBMN) assays, while oral mucosal epithelium extracted to quantify micronucleated cells (MNC). DNA was extracted to assess polymorphisms in the DNA repair (XRCC1) and metabolism-related genes (GSTT1 and GSTM1) using PCR-RFLP. DNA damage and frequency of micronuclei (MN) in lymphocytes and oral mucosa were significantly higher in exposed compared to control group. In both groups genotypes and allelic variants for XRCC1 and GSTT1 met the Hardy-Weinberg equilibrium (HWE). In contrast, GSTM1 deviated from HWE. In the exposed group genotypic variants were not correlated with DNA damage or MN presence in cells. DNA damage and occurrence of MN in mucosa and lymphocytes correlated with age and time of service (occupational exposure ≥ 3 years). In summary, workers in car repair shops exhibited genotoxic effects depending upon exposure duration in the workplace which occurred independent of DNA repair XRCC1 gene and metabolism genes GSTT1 and GSTM1. Date demonstrate that health authorities improve air quality in auto repair facilities to avoid occupational DNA damage.
Collapse
Affiliation(s)
- Jaime Luna-Carrascal
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - Milton Quintana-Sosa
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
2
|
Li Z, Liang D, Ye D, Chang HH, Ziegler TR, Jones DP, Ebelt ST. Application of high-resolution metabolomics to identify biological pathways perturbed by traffic-related air pollution. ENVIRONMENTAL RESEARCH 2021; 193:110506. [PMID: 33245887 PMCID: PMC7855798 DOI: 10.1016/j.envres.2020.110506] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Substantial research has investigated the adverse effects of traffic-related air pollutants (TRAP) on human health. Convincing associations between TRAP and respiratory and cardiovascular diseases are known, but the underlying biological mechanisms are not well established. High-resolution metabolomics (HRM) is a promising platform for untargeted characterization of molecular mechanisms between TRAP and health indexes. OBJECTIVES We examined metabolic perturbations associated with short-term exposures to TRAP, including carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), fine particulate matter (PM2.5), organic carbon (OC), and elemental carbon (EC) among 180 participants of the Center for Health Discovery and Well-Being (CHDWB), a cohort of Emory University-affiliated employees. METHODS A cross-sectional study was conducted on baseline visits of 180 CHDWB participants enrolled during 2008-2012, in whom HRM profiling was determined in plasma samples using liquid chromatography-high-resolution mass spectrometry with positive and negative electrospray ionization (ESI) modes. Ambient pollution concentrations were measured at an ambient monitor near downtown Atlanta. Metabolic perturbations associated with TRAP exposures were assessed following an untargeted metabolome-wide association study (MWAS) framework using feature-specific Tobit regression models, followed by enriched pathway analysis and chemical annotation. RESULTS Subjects were predominantly white (76.1%) and non-smokers (95.6%), and all had at least a high school education. In total, 7821 and 4123 metabolic features were extracted from the plasma samples by the negative and positive ESI runs, respectively. There are 3421 features significantly associated with at least one air pollutant by negative ion mode, and 1691 features by positive ion mode. Biological pathways enriched by features associated with the pollutants are primarily involved in nucleic acids damage/repair (e.g., pyrimidine metabolism), nutrient metabolism (e.g., fatty acid metabolism), and acute inflammation (e.g., histidine metabolism and tyrosine metabolism). NO2 and EC were associated most consistently with these pathways. We confirmed the chemical identity of 8 metabolic features in negative ESI and 2 features in positive ESI, including metabolites closely linked to oxidative stress and inflammation, such as histamine, tyrosine, tryptophan, and proline. CONCLUSIONS We identified a range of ambient pollutants, including components of TRAP, associated with differences in the metabolic phenotype among the cohort of 180 subjects. We found Tobit models to be a robust approach to handle missing data among the metabolic features. The results were encouraging of further use of HRM and MWAS approaches for characterizing molecular mechanisms underlying exposure to TRAP.
Collapse
Affiliation(s)
- Zhenjiang Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Dongni Ye
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Thomas R Ziegler
- Division of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, United States
| | - Stefanie T Ebelt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA.
| |
Collapse
|
3
|
Drizik E, Corbett S, Zheng Y, Vermeulen R, Dai Y, Hu W, Ren D, Duan H, Niu Y, Xu J, Fu W, Meliefste K, Zhou B, Zhang X, Yang J, Bassig B, Liu H, Ye M, Liu G, Jia X, Meng T, Bin P, Zhang J, Silverman D, Spira A, Rothman N, Lenburg ME, Lan Q. Transcriptomic changes in the nasal epithelium associated with diesel engine exhaust exposure. ENVIRONMENT INTERNATIONAL 2020; 137:105506. [PMID: 32044442 PMCID: PMC8725607 DOI: 10.1016/j.envint.2020.105506] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/19/2019] [Accepted: 01/17/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Diesel engine exhaust (DEE) exposure causes lung cancer, but the molecular mechanisms by which this occurs are not well understood. OBJECTIVES To assess transcriptomic alterations in nasal epithelium of DEE-exposed factory workers to better understand the cellular and molecular effects of DEE. METHODS Nasal epithelial brushings were obtained from 41 diesel engine factory workers exposed to relatively high levels of DEE (17.2-105.4 μg/m3), and 38 unexposed workers from factories without DEE exposure. mRNA was profiled for gene expression using Affymetrix microarrays. Linear modeling was used to identify differentially expressed genes associated with DEE exposure and interaction effects with current smoking status. Pathway enrichment among differentially expressed genes was assessed using EnrichR. Gene Set Enrichment Analysis (GSEA) was used to compare gene expression patterns between datasets. RESULTS 225 genes had expression associated with DEE exposure after adjusting for smoking status (FDR q < 0.25) and were enriched for genes in pathways related to oxidative stress response, cell cycle pathways such as MAPK/ERK, protein modification, and transmembrane transport. Genes up-regulated in DEE-exposed individuals were enriched among the genes most up-regulated by cigarette smoking in a previously reported bronchial airway smoking dataset. We also found that the DEE signature was enriched among the genes most altered in two previous studies of the effects of acute DEE on PBMC gene expression. An exposure-response relationship was demonstrated between air levels of elemental carbon and the first principal component of the DEE signature. CONCLUSIONS A gene expression signature was identified for workers occupationally exposed to DEE that was altered in an exposure-dependent manner and had some overlap with the effects of smoking and the effects of acute DEE exposure. This is the first study of gene expression in nasal epithelial cells of workers heavily exposed to DEE and provides new insights into the molecular alterations that occur with DEE exposure.
Collapse
Affiliation(s)
- E Drizik
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - S Corbett
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Y Zheng
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - R Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Y Dai
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - W Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - D Ren
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - H Duan
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Y Niu
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - J Xu
- Hong Kong University, Hong Kong, China
| | - W Fu
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - K Meliefste
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - B Zhou
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaohui Zhang
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - J Yang
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - Bryan Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Hanqiao Liu
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - M Ye
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Gang Liu
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - X Jia
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - T Meng
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - P Bin
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - J Zhang
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, NC, USA; Global Health Research Center, Duke Kunshan University, Kunshan City, Jiangsu Province, China
| | - D Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - A Spira
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Bioinformatics Program, Boston University, Boston, MA, USA; The Lung Cancer Initiative at Johnson & Johnson, Cambridge, MA, USA
| | - N Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - M E Lenburg
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Bioinformatics Program, Boston University, Boston, MA, USA.
| | - Q Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
4
|
Brucker N, do Nascimento SN, Bernardini L, Charão MF, Garcia SC. Biomarkers of exposure, effect, and susceptibility in occupational exposure to traffic-related air pollution: A review. J Appl Toxicol 2020; 40:722-736. [PMID: 31960485 DOI: 10.1002/jat.3940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 01/05/2023]
Abstract
There is a well-recognized association between environmental air pollution exposure and several human diseases. However, the relationship between diseases related to occupational air pollution exposure on roads and high levels of traffic-related air pollutants (TRAPs) is less substantiated. Biomarkers are essential tools in environmental and occupational toxicology, and studies on new biomarkers are increasingly relevant due to the need to determine early biomarkers to be assessed in exposure conditions. This review aimed to investigate the main advances in the biomonitoring of subjects occupationally exposed to air pollution, as well as to summarize the biomarkers of exposure, effect, and susceptibility. Furthermore, we discuss how biomarkers could be used to complement the current application of methods used to assess occupational exposures to xenobiotics present in air pollution. The databases used in the preparation of this review were PubMed, Scopus, and Science Direct. Considering the significant deleterious effects on health associated with chronic occupational exposure to xenobiotics, this topic deserves attention. As it is difficult to avoid occupational exposure to TRAPs, biomonitoring should be applied as a strategy to reduce the toxic effects of workplace exposure.
Collapse
Affiliation(s)
- Natália Brucker
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.,Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sabrina Nunes do Nascimento
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Bernardini
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Mariele Feiffer Charão
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, RS, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Riggs DW, Zafar N, Krishnasamy S, Yeager R, Rai SN, Bhatnagar A, O'Toole TE. Exposure to airborne fine particulate matter is associated with impaired endothelial function and biomarkers of oxidative stress and inflammation. ENVIRONMENTAL RESEARCH 2020; 180:108890. [PMID: 31718786 PMCID: PMC6899204 DOI: 10.1016/j.envres.2019.108890] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 05/16/2023]
Abstract
Epidemiological evidence suggests that exposure to air pollution is a leading risk factor for cardiovascular disease (CVD). However, there is little direct evidence linking exposure to vascular dysfunction. We conducted a cross-sectional study of 100 participants, recruited from the University of Louisville Clinics. Endothelial function was assessed by calculating the reactive hyperemia index (RHI). Oxidative stress was indexed by measuring urinary levels of isoprostanes (n = 91). Inflammatory biomarkers were measured in the plasma (n = 80). Daily average PM2.5 levels were obtained from regional monitoring stations. Adjusted associations between PM2.5 levels and measured outcomes were tested using generalized linear models. The average age of participants was 48 years (44% male, 62% white); 52% had a diagnosis of hypertension, and 44% had type-2 diabetes. A 12.4% decrease in RHI was associated with 10 μg/m3 increase in PM2.5 (95% CI: 21.0, -2.7). The F-2 isoprostane metabolite showed a positive association of 28.4% (95% CI: 2.7, 60.3) per 10 μg/m3 increase in PM2.5. Positive associations were observed with angiopoietin 1 (17.4%; 95% CI: 2.8, 33.8), vascular endothelial growth factor (10.4%; 95% CI: 0.6, 21.0), placental growth factor (31.7%; 95% CI: 12.2, 54.5), intracellular adhesion molecule-1 (24.6%; 95% CI: 1.6, 52.8), and matrix metalloproteinase-9 (30.3%; 95% CI: 8.0, 57.5) per 10 μg/m3 increase in PM2.5. Additionally, a 10 μg/m3 increase in PM2.5 was associated with 15.9% decrease in vascular cell adhesion molecule-1 (95% CI: 28.3, -1.3). These findings suggest that exposure to PM2.5 is associated with impaired vascular function, which may result from oxidative stress and inflammation, thereby leading to a pro-atherogenic state.
Collapse
Affiliation(s)
- Daniel W Riggs
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA; Department of Bioinformatics and Biostatics, University of Louisville, Louisville, KY, 40292, USA
| | - Nagma Zafar
- Department of Pediatrics, University of Louisville, Louisville, KY, 40292, USA
| | - Sathya Krishnasamy
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Louisville, Louisville, KY, 40292, USA
| | - Ray Yeager
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA
| | - Shesh N Rai
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA; Department of Bioinformatics and Biostatics, University of Louisville, Louisville, KY, 40292, USA; Biostatistics and Bioinformatics Facility, JG Brown Cancer Center, University of Louisville, Louisville, KY, 40292, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA
| | - Timothy E O'Toole
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|
6
|
Puett RC, Yanosky JD, Mittleman MA, Montresor-Lopez J, Bell RA, Crume TL, Dabelea D, Dolan LM, D'Agostino RB, Marcovina SM, Pihoker C, Reynolds K, Urbina E, Liese AD. Inflammation and acute traffic-related air pollution exposures among a cohort of youth with type 1 diabetes. ENVIRONMENT INTERNATIONAL 2019; 132:105064. [PMID: 31419765 PMCID: PMC7717111 DOI: 10.1016/j.envint.2019.105064] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Evidence remains equivocal regarding the association of inflammation, a precursor to cardiovascular disease, and acute exposures to ambient air pollution from traffic-related particulate matter. Though youth with type 1 diabetes are at higher risk for cardiovascular disease, the relationship of inflammation and ambient air pollution exposures in this population has received little attention. OBJECTIVES Using five geographically diverse US sites from the racially- and ethnically-diverse SEARCH for Diabetes in Youth Cohort, we examined the relationship of acute exposures to PM2.5 mass, Atmospheric Dispersion Modeling System (ADMS)-Roads traffic-related PM concentrations near roadways, and elemental carbon (EC) with biomarkers of inflammation including interleukin-6 (IL-6), c-reactive protein (hs-CRP) and fibrinogen. METHODS Baseline questionnaires and blood were obtained at a study visit. Using a spatio-temporal modeling approach, pollutant exposures for 7 days prior to blood draw were assigned to residential addresses. Linear mixed models for each outcome and exposure were adjusted for demographic and lifestyle factors identified a priori. RESULTS Among the 2566 participants with complete data, fully-adjusted models showed positive associations of EC average week exposures with IL-6 and hs-CRP, and PM2.5 mass exposures on lag day 3 with IL-6 levels. Comparing the 25th and 75th percentiles of average week EC exposures resulted in 8.3% higher IL-6 (95%CI: 2.7%,14.3%) and 9.8% higher hs-CRP (95%CI: 2.4%,17.7%). We observed some evidence of effect modification for the relationships of PM2.5 mass exposures with hs-CRP by gender and with IL-6 by race/ethnicity. CONCLUSIONS Indicators of inflammation were associated with estimated traffic-related air pollutant exposures in this study population of youth with type 1 diabetes. Thus youth with type 1 diabetes may be at increased risk of air pollution-related inflammation. These findings and the racial/ethnic and gender differences observed deserve further exploration.
Collapse
Affiliation(s)
- Robin C Puett
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| | - Jeff D Yanosky
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Murray A Mittleman
- Department of Epidemiology, TH Chan Harvard School of Public Health, Boston, MA, USA
| | - Jessica Montresor-Lopez
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Ronny A Bell
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Tessa L Crume
- Department of Epidemiology, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Center, Denver, CO, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Center, Denver, CO, USA
| | - Lawrence M Dolan
- Division of Pediatric Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ralph B D'Agostino
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Santica M Marcovina
- Division of Metabolism, Endocrinology and Nutrition, Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA, USA
| | | | - Kristi Reynolds
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Elaine Urbina
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Angela D Liese
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
7
|
Chau-Etchepare F, Hoerger JL, Kuhn BT, Zeki AA, Haczku A, Louie S, Kenyon NJ, Davis CE, Schivo M. Viruses and non-allergen environmental triggers in asthma. J Investig Med 2019; 67:1029-1041. [PMID: 31352362 PMCID: PMC7428149 DOI: 10.1136/jim-2019-001000] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2019] [Indexed: 12/23/2022]
Abstract
Asthma is a complex inflammatory disease with many triggers. The best understood asthma inflammatory pathways involve signals characterized by peripheral eosinophilia and elevated immunoglobulin E levels (called T2-high or allergic asthma), though other asthma phenotypes exist (eg, T2-low or non-allergic asthma, eosinophilic or neutrophilic-predominant). Common triggers that lead to poor asthma control and exacerbations include respiratory viruses, aeroallergens, house dust, molds, and other organic and inorganic substances. Increasingly recognized non-allergen triggers include tobacco smoke, small particulate matter (eg, PM2.5), and volatile organic compounds. The interaction between respiratory viruses and non-allergen asthma triggers is not well understood, though it is likely a connection exists which may lead to asthma development and/or exacerbations. In this paper we describe common respiratory viruses and non-allergen triggers associated with asthma. In addition, we aim to show the possible interactions, and potential synergy, between viruses and non-allergen triggers. Finally, we introduce a new clinical approach that collects exhaled breath condensates to identify metabolomics associated with viruses and non-allergen triggers that may promote the early management of asthma symptoms.
Collapse
Affiliation(s)
- Florence Chau-Etchepare
- Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, California, USA
| | - Joshua L Hoerger
- Internal Medicine, University of California Davis, Sacramento, California, USA
| | - Brooks T Kuhn
- Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, California, USA
| | - Amir A Zeki
- Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, California, USA
- Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, California, USA
| | - Angela Haczku
- Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, California, USA
- Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, California, USA
| | - Samuel Louie
- Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, California, USA
| | - Nicholas J Kenyon
- Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, California, USA
- Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, California, USA
| | - Cristina E Davis
- Mechanical and Aerospace Engineering, University of California Davis, Davis, California, USA
| | - Michael Schivo
- Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, California, USA
- Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
8
|
Liang D, Ladva CN, Golan R, Yu T, Walker DI, Sarnat SE, Greenwald R, Uppal K, Tran V, Jones DP, Russell AG, Sarnat JA. Perturbations of the arginine metabolome following exposures to traffic-related air pollution in a panel of commuters with and without asthma. ENVIRONMENT INTERNATIONAL 2019; 127:503-513. [PMID: 30981021 PMCID: PMC6513706 DOI: 10.1016/j.envint.2019.04.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Mechanisms underlying the effects of traffic-related air pollution on people with asthma remain largely unknown, despite the abundance of observational and controlled studies reporting associations between traffic sources and asthma exacerbation and hospitalizations. OBJECTIVES To identify molecular pathways perturbed following traffic pollution exposures, we analyzed data as part of the Atlanta Commuters Exposure (ACE-2) study, a crossover panel of commuters with and without asthma. METHODS We measured 27 air pollutants and conducted high-resolution metabolomics profiling on blood samples from 45 commuters before and after each exposure session. We evaluated metabolite and metabolic pathway perturbations using an untargeted metabolome-wide association study framework with pathway analyses and chemical annotation. RESULTS Most of the measured pollutants were elevated in highway commutes (p < 0.05). From both negative and positive ionization modes, 17,586 and 9087 metabolic features were extracted from plasma, respectively. 494 and 220 unique features were associated with at least 3 of the 27 exposures, respectively (p < 0.05), after controlling confounders and false discovery rates. Pathway analysis indicated alteration of several inflammatory and oxidative stress related metabolic pathways, including leukotriene, vitamin E, cytochrome P450, and tryptophan metabolism. We identified and annotated 45 unique metabolites enriched in these pathways, including arginine, histidine, and methionine. Most of these metabolites were not only associated with multiple pollutants, but also differentially expressed between participants with and without asthma. The analysis indicated that these metabolites collectively participated in an interrelated molecular network centering on arginine metabolism, underlying the impact of traffic-related pollutants on individuals with asthma. CONCLUSIONS We detected numerous significant metabolic perturbations associated with in-vehicle exposures during commuting and validated metabolites that were closely linked to several inflammatory and redox pathways, elucidating the potential molecular mechanisms of traffic-related air pollution toxicity. These results support future studies of metabolic markers of traffic exposures and the corresponding molecular mechanisms.
Collapse
Affiliation(s)
- Donghai Liang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA.
| | - Chandresh N Ladva
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Rachel Golan
- Department of Public Health, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Douglas I Walker
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Stefanie E Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Roby Greenwald
- Division of Environmental Health, Georgia State University School of Public Health, Atlanta, USA
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, USA
| | - ViLinh Tran
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Jeremy A Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| |
Collapse
|
9
|
Shukla A, Bunkar N, Kumar R, Bhargava A, Tiwari R, Chaudhury K, Goryacheva IY, Mishra PK. Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:760-777. [PMID: 30530146 DOI: 10.1016/j.scitotenv.2018.11.381] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/23/2018] [Accepted: 11/25/2018] [Indexed: 05/28/2023]
Abstract
Air pollution is one of the leading causes of deaths in Southeast Asian countries including India. Exposure to air pollutants affects vital cellular mechanisms and is intimately linked with the etiology of a number of chronic diseases. Earlier work from our laboratory has shown that airborne particulate matter disturbs the mitochondrial machinery and causes significant damage to the epigenome. Mitochondrial reactive oxygen species possess the ability to trigger redox-sensitive signaling mechanisms and induce irreversible epigenomic changes. The electrophilic nature of reactive metabolites can directly result in deprotonation of cytosine at C-5 position or interfere with the DNA methyltransferases activity to cause alterations in DNA methylation. In addition, it also perturbs level of cellular metabolites critically involved in different epigenetic processes like acetylation and methylation of histone code and DNA hypo or hypermethylation. Interestingly, these modifications may persist through downstream generations and result in the transgenerational epigenomic inheritance. This phenomenon of subsequent transfer of epigenetic modifications is mainly associated with the germ cells and relies on the germline stability of the epigenetic states. Overall, the recent literature supports, and arguably strengthens, the contention that air pollution might contribute to transmission of epimutations from gametes to zygotes by involving mitochondrial DNA, parental allele imprinting, histone withholding and non-coding RNAs. However, larger prospective studies using innovative, integrated epigenome-wide metabolomic strategy are highly warranted to assess the air pollution induced transgenerational epigenetic inheritance and associated human health effects.
Collapse
Affiliation(s)
- Anushi Shukla
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajat Kumar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Irina Y Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
10
|
Shakya KM, Peltier RE, Zhang Y, Pandey BD. Roadside Exposure and Inflammation Biomarkers among a Cohort of Traffic Police in Kathmandu, Nepal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030377. [PMID: 30699969 PMCID: PMC6388290 DOI: 10.3390/ijerph16030377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023]
Abstract
Air pollution is a major environmental problem in the Kathmandu Valley. Specifically, roadside and traffic-related air pollution exposure levels were found at very high levels exceeding Nepal air quality standards for daily PM2.5. In an exposure study involving traffic police officers, we collected 78 blood samples in a highly polluted spring season (16 February 2014–4 April 2014) and 63 blood samples in the less polluted summer season (20 July 2014–22 August 2014). Fourteen biomarkers, i.e., C-reactive protein (CRP), serum amyloid A (SAA), intracellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), interferon gamma (IFN-γ), interleukins (IL1-β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13), and tumor necrosis factor (TNF-α) were analyzed in collected blood samples using proinflammatory panel 1 kits and vascular injury panel 2 kits. All the inflammatory biomarker levels were higher in the summer season than in the spring season, while particulate levels were higher in the spring season than in the summer season. We did not find significant association between 24-hour average PM2.5 or black carbon (BC) exposure levels with most of analyzed biomarkers for the traffic volunteers working and residing near busy roads in Kathmandu, Nepal, during 2014. Inflammation and vascular injury marker concentrations were generally higher in females, suggesting the important role of gender in inflammation biomarkers. Because of the small sample size of female subjects, further investigation with a larger sample size is required to confirm the role of gender in inflammation biomarkers.
Collapse
Affiliation(s)
- Kabindra M Shakya
- Villanova University, Department of Geography and the Environment, Villanova, PA 19085, USA.
| | - Richard E Peltier
- University of Massachusetts, Department of Environmental Health Science, Amherst, MA 01003, USA.
| | - Yimin Zhang
- Villanova University, Department of Mathematics and Statistics, Villanova, PA 19085, USA.
| | - Basu D Pandey
- Kathmandu and Everest International Clinic and Research Center, Sukraraj Tropical and Infectious Disease Hospital, Kathmandu 9045, Nepal.
| |
Collapse
|
11
|
Andersen MHG, Saber AT, Pedersen JE, Pedersen PB, Clausen PA, Løhr M, Kermanizadeh A, Loft S, Ebbehøj NE, Hansen ÅM, Kalevi Koponen I, Nørskov EC, Vogel U, Møller P. Assessment of polycyclic aromatic hydrocarbon exposure, lung function, systemic inflammation, and genotoxicity in peripheral blood mononuclear cells from firefighters before and after a work shift. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:539-548. [PMID: 29761929 DOI: 10.1002/em.22193] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Firefighting is regarded as possibly carcinogenic, although there are few mechanistic studies on genotoxicity in humans. We investigated exposure to polycyclic aromatic hydrocarbons (PAH), lung function, systemic inflammation and genotoxicity in peripheral blood mononuclear cells (PBMC) of 22 professional firefighters before and after a 24-h work shift. Exposure was assessed by measurements of particulate matter (PM), PAH levels on skin, urinary 1-hydroxypyrene (1-OHP) and self-reported participation in fire extinguishing activities. PM measurements indicated that use of personal protective equipment (PPE) effectively prevented inhalation exposure, but exposure to PM occurred when the environment was perceived as safe and the self-contained breathing apparatuses were removed. The level of PAH on skin and urinary 1-OHP concentration were similar before and after the work shift, irrespective of self-reported participation in fire extinction activities. Post-shift, the subjects had reduced levels of oxidatively damaged DNA in PBMC, and increased plasma concentration of vascular cell adhesion molecule 1 (VCAM-1). The subjects reporting participation in fire extinction activities during the work shift had a slightly decreased lung function, increased plasma concentration of VCAM-1, and reduced levels of oxidatively damaged DNA in PBMC. Our results suggest that the firefighters were not exposed to PM while using PPE, but exposure occurred when PPE was not used. The work shift was not associated with increased levels of genotoxicity. Increased levels of VCAM-1 in plasma were observed. Environ. Mol. Mutagen. 59:539-548, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria Helena Guerra Andersen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K, DK-1014, Denmark
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen Ø, DK-2100, Denmark
| | - Anne Thoustrup Saber
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen Ø, DK-2100, Denmark
| | - Julie Elbaek Pedersen
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg University Hospital, Copenhagen, NV, DK-2400, Denmark
| | - Peter Bøgh Pedersen
- Danish Technological Institute, Teknologiparken, Kongsvang Allé 29, Aarhus C, DK-8000, Denmark
| | - Per Axel Clausen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen Ø, DK-2100, Denmark
| | - Mille Løhr
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K, DK-1014, Denmark
| | - Ali Kermanizadeh
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K, DK-1014, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K, DK-1014, Denmark
| | - Niels E Ebbehøj
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg University Hospital, Copenhagen, NV, DK-2400, Denmark
| | - Åse Marie Hansen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen Ø, DK-2100, Denmark
- Department of Public Health, Section of Social Medicine, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K, DK-1014, Denmark
| | - Ismo Kalevi Koponen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen Ø, DK-2100, Denmark
| | - Eva-Carina Nørskov
- Danish Technological Institute, Teknologiparken, Kongsvang Allé 29, Aarhus C, DK-8000, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen Ø, DK-2100, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, DK-2800 Kgs, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K, DK-1014, Denmark
| |
Collapse
|
12
|
Krall JR, Ladva CN, Russell AG, Golan R, Peng X, Shi G, Greenwald R, Raysoni AU, Waller LA, Sarnat JA. Source-specific pollution exposure and associations with pulmonary response in the Atlanta Commuters Exposure Studies. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2018; 28:337-347. [PMID: 29298976 PMCID: PMC6013329 DOI: 10.1038/s41370-017-0016-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 05/19/2023]
Abstract
Concentrations of traffic-related air pollutants are frequently higher within commuting vehicles than in ambient air. Pollutants found within vehicles may include those generated by tailpipe exhaust, brake wear, and road dust sources, as well as pollutants from in-cabin sources. Source-specific pollution, compared to total pollution, may represent regulation targets that can better protect human health. We estimated source-specific pollution exposures and corresponding pulmonary response in a panel study of commuters. We used constrained positive matrix factorization to estimate source-specific pollution factors and, subsequently, mixed effects models to estimate associations between source-specific pollution and pulmonary response. We identified four pollution factors that we named: crustal, primary tailpipe traffic, non-tailpipe traffic, and secondary. Among asthmatic subjects (N = 48), interquartile range increases in crustal and secondary pollution were associated with changes in lung function of -1.33% (95% confidence interval (CI): -2.45, -0.22) and -2.19% (95% CI: -3.46, -0.92) relative to baseline, respectively. Among non-asthmatic subjects (N = 51), non-tailpipe pollution was associated with pulmonary response only at 2.5 h post-commute. We found no significant associations between pulmonary response and primary tailpipe pollution. Health effects associated with traffic-related pollution may vary by source, and therefore some traffic pollution sources may require targeted interventions to protect health.
Collapse
Affiliation(s)
- Jenna R Krall
- Department of Global and Community Health, College of Health and Human Services, George Mason University, 4400 University Drive MS 5B7, Fairfax, VA, 22030, USA.
| | | | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Rachel Golan
- Department of Public Health, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Xing Peng
- College of Environmental Science and Engineering, Nankai University, Nankai Qu, China
| | - Guoliang Shi
- College of Environmental Science and Engineering, Nankai University, Nankai Qu, China
| | - Roby Greenwald
- Department of Environmental Health, Georgia State University, Atlanta, USA
| | - Amit U Raysoni
- Department of Environmental Health, Emory University, Atlanta, USA
| | - Lance A Waller
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, USA
| | - Jeremy A Sarnat
- Department of Environmental Health, Emory University, Atlanta, USA
| |
Collapse
|
13
|
Reis H, Reis C, Sharip A, Reis W, Zhao Y, Sinclair R, Beeson L. Diesel exhaust exposure, its multi-system effects, and the effect of new technology diesel exhaust. ENVIRONMENT INTERNATIONAL 2018; 114:252-265. [PMID: 29524921 DOI: 10.1016/j.envint.2018.02.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/24/2018] [Accepted: 02/24/2018] [Indexed: 11/07/2023]
Abstract
Exposure to diesel exhaust (DE) from vehicles and industry is hazardous and affects proper function of organ systems. DE can interfere with normal physiology after acute and chronic exposure to particulate matter (PM). Exposure leads to potential systemic disease processes in the central nervous, visual, hematopoietic, respiratory, cardiovascular, and renal systems. In this review, we give an overview of the epidemiological evidence supporting the harmful effects of diesel exhaust, and the numerous animal studies conducted to investigate the specific pathophysiological mechanisms behind DE exposure. Additionally, this review includes a summary of studies that used biomarkers as an indication of biological plausibility, and also studies evaluating new technology diesel exhaust (NTDE) and its systemic effects. Lastly, this review includes new approaches to improving DE emissions, and emphasizes the importance of ongoing study in this field of environmental health.
Collapse
Affiliation(s)
- Haley Reis
- Loma Linda University School of Medicine, 11175 Campus Street, Loma Linda, CA 92350, USA
| | - Cesar Reis
- Department of Preventive Medicine, Loma Linda University Medical Center, 24785 Stewart Street, Suite 204, Loma Linda, CA 92354, USA; Loma Linda University School of Medicine, 11175 Campus Street, Loma Linda, CA 92350, USA.
| | - Akbar Sharip
- Department of Occupational Medicine, Loma Linda University Medical Center, 328 East Commercial Road, Suite 101, San Bernardino, CA 92408, USA
| | - Wenes Reis
- Department of Preventive Medicine, Loma Linda University Medical Center, 24785 Stewart Street, Suite 204, Loma Linda, CA 92354, USA
| | - Yong Zhao
- School of Public Health and Management, Chongqing Medical University, Chongqing, China; Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China; The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Ryan Sinclair
- Center for Community Resilience, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lawrence Beeson
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
14
|
Prevalence of Hypertension in Professional Drivers (from the RACER-ABPM Study). Am J Cardiol 2017; 120:1792-1796. [PMID: 28886852 DOI: 10.1016/j.amjcard.2017.07.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 11/24/2022]
Abstract
Professional drivers are a group exposed to many cardiovascular risk factors. Nonsystematic working hours, stress, low physical activity, and unhealthy dietary habits are common among professional drivers. These translate into high risk of cardiovascular disease. The aim of the current analysis was to establish the prevalence of arterial hypertension in a group of continuous professional drivers. The RACER (Risk of Adverse Cardiovascular Events among professional dRivers in Poland) study is a prospective study focused on assessing cardiovascular risk factors in professional drivers. Patients included in the study were screened for the classical and nonclassical cardiovascular risk factors and had an ambulatory blood pressure monitoring (ABPM) performed. Of the RACER study population, 144 drivers were included into the RACER-ABPM study. Of this group 135 (95.7%) were male at mean age of 50.2 ± 9.3 years, with mean body mass index of 32.3 ± 3.0 kg/m2. In 21.3% of patients, family history of cardiovascular disease was noted, 28.1% were current smokers, and 2.9% had diabetes mellitus. Arterial hypertension was previously diagnosed in 39 patients (27.9%). In ABPM, the mean 24-hour blood pressure (BP) values were 130.3 ± 14.3 and 80.9 ± 9.9 for systolic and diastolic BP, respectively, and 46.1% of patients could be categorized as dippers. Based on the ABPM results, arterial hypertension was diagnosed in 104 of patients (73.8%). Patients with hypertension tend to be more often male and have a family history of cardiovascular disease. In conclusion, arterial hypertension is highly prevalent in professional drivers. Also abnormal day-to-night BP value patterns are often seen in this group.
Collapse
|
15
|
Cargnin RS, Nascimento PCD, Ferraz LM, Barichello MM, Brudi LC, Rosa MBD, de Carvalho LM, do Nascimento DB, Cravo MC, do Nascimento LAH. Investigation of Extraction and Collection of Polycyclic Aromatic Hydrocarbons from Aqueous Solutions at Different Temperatures. Polycycl Aromat Compd 2017. [DOI: 10.1080/10406638.2017.1353529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rejane S. Cargnin
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Luis M. Ferraz
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Márcia M. Barichello
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Letícia C. Brudi
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Marcelo B. da Rosa
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | |
Collapse
|