1
|
Barrett ES, Skrill D, Zhou E, Thurston SW, Girardi T, Brunner J, Liang HW, Miller RK, Salafia CM, O'Connor TG, Adibi JJ. Prenatal exposure to phthalates and phthalate replacements in relation to chorionic plate surface vasculature at delivery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178116. [PMID: 39693655 DOI: 10.1016/j.scitotenv.2024.178116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Pregnant people are ubiquitously exposed to endocrine-disrupting phthalates through consumer products and food. The placenta may be particularly vulnerable to the adverse effects of phthalates, with evidence from animal models suggesting impacts on placental development and vascularization. We translate this research to humans, examining gestational exposure to phthalates and phthalate replacements in relation to novel markers of chorionic plate surface vascularization. Phthalate and phthalate replacement metabolites were measured in first trimester urine from pregnant participants in the Understanding Pregnancy Signals and Infant Development (UPSIDE) cohort (n = 154). At delivery, placentae underwent specialized 2D and 3D digital imaging to quantify chorionic plate surface vasculature. Using weighted quantile g-computation mixtures methods as well as multivariable linear regression models examining individual metabolites, we evaluated associations with overall chorionic plate surface area and five chorionic plate surface vascular measures, adjusting for covariates. We additionally examined interactions with placental sex. Exposure to a phthalate mixture was associated with longer total arterial arc length (β = 9.64 cm; 95%CI: 1.68, 17.59), shorter mean arterial arc length (β = -0.07 cm; 95%CI: -0.14, -0.01), and more arterial branch points (β = 5.77; 95%CI: 1.56, 9.98), but not chorionic plate surface area. In models considering individual metabolites and their molar sums, results were strongest for the metabolites of Di-isobutyl phthalate (DiBP), Di-isononyl phthalate (DiNP), and Di(2-ethylhexyl) phthalate (DEHP). Associations with metabolites of phthalate replacements tended to be in the same direction but weaker. Few sex differences were observed. Gestational phthalate exposure may be associated with alterations in placental chorionic plate surface vasculature characterized by more branching and shorter segments. These alterations may have implications for placental perfusion and suggest a placental mechanism by which phthalates may impact fetal development.
Collapse
Affiliation(s)
- Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - David Skrill
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Elaine Zhou
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Hai-Wei Liang
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Carolyn M Salafia
- Placental Analytics LLC, New Rochelle, NY, USA; Institute for Basic Research, Staten Island, NY, USA; New York Presbyterian - Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Wynne Family Center University of Rochester, Rochester, NY, USA
| | - Jennifer J Adibi
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Pande A, Kinkade CW, Prout N, Chowdhury SF, Rivera-Núñez Z, Barrett ES. Prenatal exposure to synthetic chemicals in relation to HPA axis activity: A systematic review of the epidemiological literature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177300. [PMID: 39488279 DOI: 10.1016/j.scitotenv.2024.177300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Pregnant people are widely exposed to numerous synthetic chemicals with known endocrine-disrupting properties (e.g., phthalates, phenols, per- and poly-fluoroalkyl substances (PFAS)). To date, most epidemiological research on how endocrine-disrupting chemicals (EDCs) disrupt hormone pathways has focused on estrogens, androgens, and thyroid hormones. Far less research has examined the impact of EDCs on the hypothalamic-pituitary-adrenal (HPA) axis, despite its central role in the physiologic stress response and metabolic function. OBJECTIVE To systematically review the epidemiological literature on prenatal synthetic EDC exposures in relation to HPA axis hormones (e.g., corticotropin-releasing hormone, adrenocorticotropic hormone, cortisol, cortisone) in pregnant people and their offspring. METHODS A literature search of PubMed, Scopus, and Embase was conducted. Primary research studies were selected for inclusion by two independent reviewers and risk of bias was assessed using the Office of Health Assessment and Translation guidelines established by the National Toxicology Program with customization for the specific research topic. Data were extracted from each study and included in a qualitative synthesis. RESULTS 22 published studies met the inclusion criteria. Phthalates were the most prevalent EDC studied, followed by PFAS, phenols, and parabens, with fewer studies considering other synthetic chemicals. Offspring glucocorticoids were the most commonly considered outcome, followed by maternal glucocorticoids and placental corticotropin-releasing hormone. There was considerable heterogeneity in methods across studies, particularly in HPA axis outcome measures and matrices, making cross-study comparisons challenging. Numerous studies suggested disruption of HPA axis hormones and sex differences in association, but results varied considerably across studies and EDC classes. CONCLUSIONS The limited literature to date suggests the HPA axis may be vulnerable to disruption by synthetic EDCs. Carefully designed studies that prioritize biospecimen collection specific to HPA axis hormones are needed along with greater standardization of biospecimen collection and analysis protocols to facilitate cross-study comparisons and interpretation.
Collapse
Affiliation(s)
- Anushka Pande
- Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Nashae Prout
- Wynne Center for Family Research, University of Rochester, Rochester, NY 14642, USA; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, USA
| | - Sadia F Chowdhury
- Wynne Center for Family Research, University of Rochester, Rochester, NY 14642, USA; Translational Biomedical Sciences Program, University of Rochester, Rochester, NY 14642, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA.
| |
Collapse
|
3
|
Tricotteaux-Zarqaoui S, Lahimer M, Abou Diwan M, Corona A, Candela P, Cabry R, Bach V, Khorsi-Cauet H, Benkhalifa M. Endocrine disruptor chemicals exposure and female fertility declining: from pathophysiology to epigenetic risks. Front Public Health 2024; 12:1466967. [PMID: 39735741 PMCID: PMC11672798 DOI: 10.3389/fpubh.2024.1466967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024] Open
Abstract
Over the last decades, human infertility has become a major concern in public health, with severe societal and health consequences. Growing evidence shows that endocrine disruptors chemicals (EDCs) have been considered as risk factors of infertility. Their presence in our everyday life has become ubiquitous because of their universal use in food and beverage containers, personal care products, cosmetics, phytosanitary products. Exposure to these products has an impact on human reproductive health. Recent studies suggest that women are more exposed to EDCs than men due to higher chemical products use. The aim of this review is to understand the possible link between reproductive disorders and EDCs such as phthalates, bisphenol, dioxins, and pesticides. In women, the loss of endocrine balance leads to altered oocyte maturation, competency, anovulation and uterine disorders, endometriosis, premature ovarian insufficiency (POI) or embryonic defect and decreases the in vitro fertilization outcomes. In this review, we consider EDCs effects on the women's reproductive system, embryogenesis, with a focus on associated reproductive pathologies.
Collapse
Affiliation(s)
- Sophian Tricotteaux-Zarqaoui
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| | - Marwa Lahimer
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| | - Maria Abou Diwan
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, Lens, France
| | - Aurélie Corona
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
| | - Pietra Candela
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, Lens, France
| | - Rosalie Cabry
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| | - Véronique Bach
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
| | - Hafida Khorsi-Cauet
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| | - Moncef Benkhalifa
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| |
Collapse
|
4
|
Al-Saleh I, Elkhatib R, Alghamdi R, Alrushud N, Alnuwaysir H, Alnemer M, Aldhalaan H, Shoukri M. Assessment of maternal phthalate exposure in urine across three trimesters and at delivery (umbilical cord blood and placenta) and its influence on birth anthropometric measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174910. [PMID: 39053554 DOI: 10.1016/j.scitotenv.2024.174910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Phthalates, commonly used in plastic manufacturing, have been linked to adverse reproductive effects. Our research from the Saudi Early Autism and Environment Study (2019-2022), involving 672 participants, focused on the impacts of maternal phthalate exposure on birth anthropometric measures. We measured urinary phthalate metabolites in 390 maternal samples collected during each of the three trimesters of pregnancy and in cord serum and placental samples obtained at delivery. We employed various statistical methods to analyze our data. Intraclass correlation coefficients were used to assess the consistency of phthalate measurements, generalized estimating equations were used to explore temporal variations across the trimesters, and linear regression models, adjusted for significant confounders and Bonferroni correction, were used for each birth outcome. Exposure to six phthalates was consistently high across trimesters, with 82 %-100 % of samples containing significant levels of all metabolites, except for mono-benzyl phthalate. We found a 3.15 %-3.73 % reduction in birth weight (BWT), 1.39 %-1.69 % reduction in head circumference (HC), and 3.63 %-5.45 % reduction in placental weight (PWT) associated with a one-unit increase in certain urinary di(2-ethylhexyl) phthalate (DEHP) metabolites during the first trimester. In the second trimester, exposure to MEP, ∑7PAE, and ∑LMW correlated with a 3.15 %-4.5 % increase in the APGAR 5-min score and increases in PWT by 8.98 % for ∑7PAE and 9.09 % for ∑LMW. Our study also highlighted the maternal-to-fetal transfer of DEHP metabolites, indicating diverse impacts on birth outcomes and potential effects on developmental processes. Our study further confirmed the transfer of DEHP metabolites from mothers to fetuses, evidenced by variable rates in the placenta and cord serum, with an inverse relationship suggesting a passive transfer mechanism. Additionally, we observed distinct phthalate profiles across these matrices, adversely impacting birth outcomes. In serum, we noticed increases associated with DEHP metabolites, with birth gestational age rising by 1.01 % to 1.11 %, HC by 2.84 % to 3.67 %, and APGAR 5-min scores by 3.77 % to 3.87 %. Conversely, placental analysis revealed a different impact: BWT decreased by 3.54 % to 4.69 %, HC reductions ranged from 2.57 % to 4.69 %, and chest circumference decreased by 7.13 %. However, the cephalization index increased by 3.67 %-5.87 %. These results highlight the complex effects of phthalates on fetal development, indicating their potential influence on crucial developmental processes like sexual maturation and brain development.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Reem Alghamdi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nujud Alrushud
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hissah Alnuwaysir
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maha Alnemer
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hesham Aldhalaan
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed Shoukri
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Huang K, Tong J, Tao S, Wu X, Yan S, Gao G, Cao H, Xie L, Gao H, Geng M, Liang C, Gan H, Han Y, Lu M, Teng Y, Tong S, Tao F. Cohort profile: The Ma'anshan birth cohort (MABC) study. Int J Epidemiol 2024; 53:dyae142. [PMID: 39487721 DOI: 10.1093/ije/dyae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 10/08/2024] [Indexed: 11/04/2024] Open
Affiliation(s)
- Kun Huang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University (AHMU), Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Juan Tong
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University (AHMU), Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Shuman Tao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University (AHMU), Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Xiaoyan Wu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University (AHMU), Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Shuangqin Yan
- Department of Child Healthcare, Ma'anshan Maternal and Child Healthcare Center (MCHC), Ma'anshan, China
| | - Guopeng Gao
- Department of Child Healthcare, Ma'anshan Maternal and Child Healthcare Center (MCHC), Ma'anshan, China
| | - Hui Cao
- Department of Child Healthcare, Ma'anshan Maternal and Child Healthcare Center (MCHC), Ma'anshan, China
| | - Liangliang Xie
- Department of Child Healthcare, Ma'anshan Maternal and Child Healthcare Center (MCHC), Ma'anshan, China
| | - Hui Gao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University (AHMU), Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Menglong Geng
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University (AHMU), Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Chunmei Liang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University (AHMU), Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Hong Gan
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University (AHMU), Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Yan Han
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University (AHMU), Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Mengjuan Lu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University (AHMU), Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Yuzhu Teng
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University (AHMU), Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Shilu Tong
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fangbiao Tao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University (AHMU), Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Rousseau-Ralliard D, Bozec J, Ouidir M, Jovanovic N, Gayrard V, Mellouk N, Dieudonné MN, Picard-Hagen N, Flores-Sanabria MJ, Jammes H, Philippat C, Couturier-Tarrade A. Short-Half-Life Chemicals: Maternal Exposure and Offspring Health Consequences-The Case of Synthetic Phenols, Parabens, and Phthalates. TOXICS 2024; 12:710. [PMID: 39453131 PMCID: PMC11511413 DOI: 10.3390/toxics12100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Phenols, parabens, and phthalates (PPPs) are suspected or known endocrine disruptors. They are used in consumer products that pregnant women and their progeny are exposed to daily through the placenta, which could affect offspring health. This review aims to compile data from cohort studies and in vitro and in vivo models to provide a summary regarding placental transfer, fetoplacental development, and the predisposition to adult diseases resulting from maternal exposure to PPPs during the gestational period. In humans, using the concentration of pollutants in maternal urine, and taking the offspring sex into account, positive or negative associations have been observed concerning placental or newborn weight, children's BMI, blood pressure, gonadal function, or age at puberty. In animal models, without taking sex into account, alterations of placental structure and gene expression linked to hormones or DNA methylation were related to phenol exposure. At the postnatal stage, pollutants affect the bodyweight, the carbohydrate metabolism, the cardiovascular system, gonadal development, the age of puberty, sex/thyroid hormones, and gamete quality, but these effects depend on the age and sex. Future challenges will be to explore the effects of pollutants in mixtures using models and to identify the early signatures of in utero exposure capable of predicting the health trajectory of the offspring.
Collapse
Affiliation(s)
- Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Jeanne Bozec
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marion Ouidir
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Nicolas Jovanovic
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Véronique Gayrard
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marie-Noëlle Dieudonné
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Nicole Picard-Hagen
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | - Maria-José Flores-Sanabria
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Hélène Jammes
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| |
Collapse
|
7
|
Rosen EM, Stevens DR, McNell EE, Wood ME, Engel SM, Keil AP, Calafat AM, Botelho JC, Sinkovskaya E, Przybylska A, Saade G, Abuhamad A, Ferguson KK. Longitudinal associations between urinary biomarkers of phthalates and replacements with novel in vivo measures of placental health. Hum Reprod 2024; 39:2104-2114. [PMID: 38970902 PMCID: PMC11373341 DOI: 10.1093/humrep/deae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/10/2024] [Indexed: 07/08/2024] Open
Abstract
STUDY QUESTION What is the longitudinal association between gestational phthalate exposure and in vivo placental outcomes? SUMMARY ANSWER Phthalates were adversely associated with placental microvasculature, stiffness, and presence of calcification, with different metabolites associated with different outcomes. WHAT IS KNOWN ALREADY Phthalate exposure is ubiquitous and implicated as a contributor to adverse pregnancy outcomes, possibly through impacts on the placenta. STUDY DESIGN, SIZE, DURATION A total of 303 women were recruited in early pregnancy and prospectively followed for up to eight visits across gestation in the Human Placenta and Phthalates study. PARTICIPANTS/MATERIALS, SETTING, METHODS At each visit, women provided urine samples and underwent placental ultrasounds. Urine was analyzed for 18 metabolites of phthalates and replacements. We took the geometric mean of repeated measurements to reflect pregnancy-averaged phthalate or replacement exposure for each participant (n = 303). Placental microvasculature, stiffness, and microcalcification presence were quantified from ultrasounds at each visit. Higher scores reflected worse placental function for all measures. Generalized linear mixed models were created to estimate the association between pregnancy-averaged exposure biomarker concentrations and repeated outcome measurements for microvasculature and stiffness. Gestational age at the time of calcification detection was modeled using Cox proportional hazards models. MAIN RESULTS AND THE ROLE OF CHANCE Monocarboxyisononyl phthalate and summed di(2-ethylhexyl) phthalate metabolites were associated with impaired microvasculature development, such that an interquartile range increase in concentration was associated with 0.11 standard deviation increase in the microvasculature ratio, indicating poorer vascularization (95% CI: 0.00, 0.22); 0.11 [95% CI: -0.01, 0.22], respectively. Monoethyl phthalate was associated with increased placental stiffness (0.09 [95% CI: -0.01, 0.19]) while summed di-iso-butyl phthalate metabolites and monobenzyl phthalate were associated with increased hazard of calcification detection (hazard ratios: 1.18 [95% CI: 0.98, 1.42]; 1.13 [95% CI: 0.96, 1.34]). LIMITATIONS, REASONS FOR CAUTION Outcomes used in this study are novel and further investigation is needed to provide clinical context and relevance. WIDER IMPLICATIONS OF THE FINDINGS We found evidence of associations between select phthalate biomarkers and various aspects of in vivo placental health, although we did not observe consistency across placental outcomes. These findings could illustrate heterogeneous effects of phthalate exposure on placental function. STUDY FUNDING/COMPETING INTEREST(S) This research was supported in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (ZIA ES103344), and NIEHS T32ES007018. The authors declare that they have no competing interests to disclose. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention. Use of trade names is for identification only and does not imply endorsement by the CDC, the Public Health Service, or the US Department of Health and Human Services. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Emma M Rosen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Erin E McNell
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Mollie E Wood
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie M Engel
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Keil
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elena Sinkovskaya
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ann Przybylska
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - George Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfred Abuhamad
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
8
|
Wen HJ, Su PH, Sun CW, Tsai SF, Wang SL. Maternal phthalate exposure and BMI trajectory in children-an 18-year birth cohort follow-up study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:601-609. [PMID: 38898267 DOI: 10.1038/s41370-024-00696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Obesity is a major health concern worldwide. Previous studies have suggested that phthalate plasticizers are obesogens. However, the relationship between early-life phthalate exposure and long-term obesity development remains unknown. OBJECTIVE We investigated the association between prenatal phthalate exposure and children's body mass index (BMI) patterns in an 18-year birth cohort follow-up study in Taiwan. METHODS Our analytical lab quantified seven phthalate metabolites in maternal urine during pregnancy using quantitative liquid chromatography-tandem mass spectrometry. In addition, we calculated BMI z scores for participated children at each follow-up, utilized trajectory analysis to describe children's BMI z-score patterns at 2-18 years of age, and adopted generalized estimating equations (GEE) and multivariate logistic regression models to assess the association between prenatal phthalate exposure and BMI z scores in children. RESULTS A total of 208 mother-child pairs were included in the analysis. Maternal urinary diethyl phthalate (DEP) metabolites were associated with the increase of BMI z scores in children aged 2-18 years in the GEE model. Doubled maternal urinary ∑mDEHP (3 mono hexyl-metabolites of di-ethyl-hexyl phthalate (DEHP) increased the risk of children being in the stable-high BMI trajectory group until the age of eighteen. IMPACT STATEMENT We observed that BMI trajectories of children remained stable after the age of 5 years. During each follow-up, a higher frequency of overweight or obese was observed in children, ranging from 15.9% to 35.6% for girls and 15.2-32.0% for boys, respectively. Prenatal phthalate exposure was associated with increasing BMI z scores in children. Prenatal DEHP exposure was associated with a stable-high BMI trajectory in children up to the age of 18 years.
Collapse
Affiliation(s)
- Hui-Ju Wen
- Institute of Earth Science, Academia Sinica, Taipei, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Pen-Hua Su
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Shin-Fen Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan.
- Department of Public Health, National Defence Medical Centre, Taipei, Taiwan.
- Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan.
| |
Collapse
|
9
|
Wang JQ, Li ZJ, Gao H, Sheng J, Liang CM, Hu YB, Xia X, Huang K, Wang SF, Zhu P, Hao JH, Tao FB. Gender associations between phthalate exposure and biomarkers of oxidative stress: A prospective cohort study. Toxicol Ind Health 2024; 40:312-322. [PMID: 38590048 DOI: 10.1177/07482337241245453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Previous epidemiologic research has shown that phthalate exposure in pregnant women is related to adverse birth outcomes in a sex-specific manner. However, the biological mechanism of phthalate exposure that causes these birth outcomes remains poorly defined. In this research, we investigated the association between phthalate exposure and placental oxidative stress in a large population-based cohort study, aiming to initially explore the relationship between phthalate exposure and gene expression in placental oxidative stress in a sex-specific manner. Quantitative PCR was performed to measure the expression of placental inflammatory mRNAs (HO-1, HIF1α, and GRP78) in 2469 placentae. The multiple linear regression models were used to investigate the associations between mRNA and urinary phthalate monoesters. Phthalate metabolites monomethyl phthalate (MMP) and mono-n-butyl phthalate (MBP) were positively correlated with higher HIF1α expression in placentae of male fetuses (p < .05). Mono-benzyl phthalate (MBzP) increased the expression of HO-1, HIF1α, and GRP78 in placentae of male fetuses, and mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) up-regulated the expression of HIF1α and GRP78. Additionally, mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) was negatively correlated with HO-1, HIF1α, and GRP78 in placentae of female fetuses. Maternal phthalate exposure was associated with oxidative stress variations in placental tissues. The associations were closer in the placentas of male fetuses than in that of female ones. The placenta oxidative stress is worth further investigation as a potential mediator of maternal exposure-induced disease risk in children.
Collapse
Affiliation(s)
- Jian-Qing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Zhi-Juan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Hui Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Sheng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Chun-Mei Liang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Ya-Bin Hu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Xun Xia
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Su-Fang Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Huang B, Zhang N, Wang J, Gao Y, Wu W, Jiang M, Han M. Maternal Di-(2-ethylhexyl)-Phthalate exposure during pregnancy altered energy metabolism in immature offspring and caused hyperglycemia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116494. [PMID: 38820878 DOI: 10.1016/j.ecoenv.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
Di-(2-ethylhexyl)-phthalate (DEHP), as distinctive endocrine disrupting chemicals, has become a global environmental pollutant harmful to human and animal health. However, the impacts on offspring and mothers with maternal DEHP exposure are largely unknown and the mechanism remains elusive. We established DEHP-exposed maternal mice to investigate the impacts on mother and offspring and illustrate the mechanism from multiple perspectives. Pregnant mice were administered with different doses of DEHP, respectively. Metagenomic sequencing used fecal and transcriptome sequencing using placentas and livers from offspring have been performed, respectively. The results of the histopathology perspective demonstrated that DEHP exposure could disrupt the function of islets impact placentas and fetus development for maternal mice, and cause the disorder of glucose and lipid metabolism for immature offspring mice, resulting in hyperglycemia. The results of the metagenome of gut microbial communities indicated that the dysbiosis of gut microbiota in mother and offspring mice and the dominant phyla transformed through vertical transmission. Transcriptome analysis found DEHP exposure induced mutations of Ahcy and Gstp3, which can damage liver cells and affect the metabolism of the host. DEHP exposure harms pregnant mice and offspring by affecting gene expression and altering metabolism. Our results suggested that exposure of pregnant mice to DEHP during pregnancy and lactation increased the risk of metabolic disorders by altering key genes in liver and gut microbiota, and these results provided new insights into the potential long-term harms of DEHP.
Collapse
Affiliation(s)
- Binbin Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui 230032, China.
| | - Na Zhang
- College of Life Science, Anhui Medical University, Hefei, Anhui 230032, China
| | - Juan Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui 230032, China
| | - Yue Gao
- College of Life Science, Anhui Medical University, Hefei, Anhui 230032, China
| | - Wanxin Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui 230032, China
| | - Minmin Jiang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui 230032, China.
| | - Maozhen Han
- College of Life Science, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
11
|
Jovanovic N, Mustieles V, Althuser M, Lyon-Caen S, Alfaidy N, Thomsen C, Sakhi AK, Sabaredzovic A, Bayat S, Couturier-Tarrade A, Slama R, Philippat C. Associations between synthetic phenols, phthalates, and placental growth/function: a longitudinal cohort with exposure assessment in early pregnancy. Hum Reprod Open 2024; 2024:hoae018. [PMID: 38689737 PMCID: PMC11057944 DOI: 10.1093/hropen/hoae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/26/2024] [Indexed: 05/02/2024] Open
Abstract
STUDY QUESTION Is exposure to environmental chemicals associated with modifications of placental morphology and function? SUMMARY ANSWER Phthalates, a class of ubiquitous chemicals, showed an association with altered placental weight, placental vascular resistance (PVR), and placental efficiency. WHAT IS KNOWN ALREADY Only a few epidemiological studies have assessed the effects of phenols and phthalates on placental health. Their results were affected by exposure measurement errors linked to the rapid excretion of these compounds and the reliance on a limited number of spot urine samples to assess exposure. STUDY DESIGN SIZE DURATION A prospective mother-child cohort, with improved exposure assessment for non-persistent chemicals, recruited participants between 2014 and 2017. Sample size ranged between 355 (placental parameters measured at birth: placental weight and placental-to-fetal weight ratio (PFR): a proxy for placental efficiency) and 426 (placental parameters measured during pregnancy: placental thickness and vascular resistance). PARTICIPANTS/MATERIALS SETTING METHODS Phenols (four parabens, two bisphenols, triclosan, and benzophenone-3), 13 phthalate metabolites, and two non-phthalate plasticizer metabolites were measured in within-subject pools of repeated urine samples collected during the second and third trimesters of pregnancy (median = 21 samples/trimester/woman). Placental thickness and PVR were measured during pregnancy. The placenta was weighed at birth and the PFR was computed. Both adjusted linear regression and Bayesian Kernel Machine Regression were used to evaluate associations between phenols and phthalates (alone or as a mixture) and placental parameters. Effect modification by child sex was also investigated. MAIN RESULTS AND THE ROLE OF CHANCE Several phthalate metabolites were negatively associated with placental outcomes. Monobenzyl phthalate (MBzP) concentrations, during the second and third trimesters of pregnancy, were associated with a decrease in both placental weight at birth (β = -20.1 g [95% CI: -37.8; -2.5] and β = -17.4 g [95% CI: -33.2; -1.6], for second and third trimester, respectively) and PFR (β = -0.5 [95% CI: -1, -0.1] and β = -0.5 [95% CI: -0.9, -0.1], for the second and third trimester, respectively). Additionally, MBzP was negatively associated with PVR during the third trimester (β= -0.9 [95% CI: -1.8; 0.1]). Mono-n-butyl phthalate (MnBP), was negatively associated with PVR in both trimesters (β = -1.3, 95% CI: [-2.3, -0.2], and β = -1.2, 95% CI: [-2.4, -0.03], for the second and third trimester, respectively). After stratification for child sex, Σ diisononyl phthalate (DiNP) (either second or third-trimester exposures, depending on the outcomes considered) was associated with decreased PVR in the third trimester, as well as decreased placental weight and PFR in males. No associations were observed for phenol biomarkers. LIMITATIONS REASONS FOR CAUTION False positives cannot be ruled out. Therefore, chemicals that were associated with multiple outcomes (MnBP and DiNP) or reported in existing literature as associated with placental outcomes (MBzP) should be considered as the main results. WIDER IMPLICATIONS OF THE FINDINGS Our results are consistent with in vitro studies showing that phthalates target peroxisome proliferator-activated receptor γ, in the family of nuclear receptors involved in key placental development processes such as trophoblast proliferation, migration, and invasion. In addition to placental weight at birth, we studied placental parameters during pregnancy, which could provide a broader view of how environmental chemicals affect maternal-fetal exchanges over the course of pregnancy. Our findings contribute to the increasing evidence indicating adverse impacts of phthalate exposure on placental health. STUDY FUNDING/COMPETING INTERESTS This work was supported by the French Research Agency-ANR (MEMORI project ANR-21-CE34-0022). The SEPAGES cohort was supported by the European Research Council (N°311765-E-DOHaD), the European Community's Seventh Framework Programme (FP7/2007-206-N°308333-892 HELIX), the European Union's Horizon 2020 research and innovation programme (N° 874583 ATHLETE Project, N°825712 OBERON Project), the French Research Agency-ANR (PAPER project ANR-12-PDOC-0029-01, SHALCOH project ANR-14-CE21-0007, ANR-15-IDEX-02 and ANR-15-IDEX5, GUMME project ANR-18-CE36-005, ETAPE project ANR-18-CE36-0005-EDeN project ANR-19-CE36-0003-01), the French Agency for Food, Environmental and Occupational Health & Safety-ANSES (CNAP project EST-2016-121, PENDORE project EST-2016-121, HyPAxE project EST-2019/1/039, PENDALIRE project EST-2022-169), the Plan Cancer (Canc'Air project), the French Cancer Research Foundation Association de Recherche sur le Cancer-ARC, the French Endowment Fund AGIR for chronic diseases-APMC (projects PRENAPAR, LCI-FOT, DysCard), the French Endowment Fund for Respiratory Health, the French Fund-Fondation de France (CLIMATHES-00081169, SEPAGES 5-00099903, ELEMENTUM-00124527). N.J. was supported by a doctoral fellowship from the University Grenoble Alpes. V.M. was supported by a Sara Borrell postdoctoral research contract (CD22/00176), granted by Instituto de Salud Carlos III (Spain) and NextGenerationEU funds. The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT02852499.
Collapse
Affiliation(s)
- Nicolas Jovanovic
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Vicente Mustieles
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
- Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
- Department of Radiology and Physical Medicine, University of Granada, Biomedical Research Center (CIBM), Granada, Spain
| | - Marc Althuser
- Department of Obstetrics/Gynecology and Fetal Medicine, Grenoble University Hospital, Grenoble, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Nadia Alfaidy
- Commissariat à l'Energie Atomique (CEA), IRIG department, INSERM U1292, and Grenoble Alpes University (UGA), Grenoble, France
| | | | | | | | - Sam Bayat
- Department of Obstetrics/Gynecology and Fetal Medicine, Grenoble University Hospital, Grenoble, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
12
|
Sears CG, Liu Y, Lanphear BP, Buckley JP, Meyer J, Xu Y, Chen A, Yolton K, Braun JM. Evaluating Mixtures of Urinary Phthalate Metabolites and Serum Per-/Polyfluoroalkyl Substances in Relation to Adolescent Hair Cortisol: The HOME Study. Am J Epidemiol 2024; 193:454-468. [PMID: 37846096 PMCID: PMC11484647 DOI: 10.1093/aje/kwad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 08/08/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
Results of toxicological studies indicate that phthalates and per-/polyfluoroalkyl substances (PFAS), 2 classes of endocrine-disrupting chemicals, may alter the functioning of the hypothalamic-pituitary-adrenocortical (HPA) axis. We evaluated the associations of urinary phthalate metabolites and serum PFAS during gestation and childhood with adolescent hair cortisol concentrations (pg/mg hair) at age 12 years, an integrative marker of HPA axis activity (n = 205 mother-child pairs; Cincinnati, Ohio; enrolled 2003-2006). We used quantile-based g-computation to estimate associations between mixtures of urinary phthalate metabolites or serum PFAS and hair cortisol. We also examined whether associations of individual phthalate metabolites or PFAS with cortisol varied by the timing of exposure. We found that a 1-quartile increase in all childhood phthalate metabolites was associated with 35% higher adolescent hair cortisol (phthalate mixture ψ = 0.13; 95% confidence interval: 0.03, 0.22); these associations were driven by monoethyl phthalate, monoisobutyl phthalate, and monobenzyl phthalate. We did not find evidence that phthalate metabolites during gestation or serum PFAS mixtures were related to adolescent hair cortisol concentrations. We found suggestive evidence that higher childhood concentrations of individual PFAS were related to higher and lower adolescent hair cortisol concentrations. Our results suggest that phthalate exposure during childhood may contribute to higher levels of chronic HPA axis activity.
Collapse
Affiliation(s)
- Clara G Sears
- Correspondence to Dr. Clara G. Sears, Christina Lee Brown Envirome Institute, University of Louisville, 302 E. Muhammad Ali Boulevard Louisville, KY 40202 (e-mail: )
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Puche-Juarez M, Toledano JM, Moreno-Fernandez J, Gálvez-Ontiveros Y, Rivas A, Diaz-Castro J, Ochoa JJ. The Role of Endocrine Disrupting Chemicals in Gestation and Pregnancy Outcomes. Nutrients 2023; 15:4657. [PMID: 37960310 PMCID: PMC10648368 DOI: 10.3390/nu15214657] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances widely disseminated both in the environment and in daily-life products which can interfere with the regulation and function of the endocrine system. These substances have gradually entered the food chain, being frequently found in human blood and urine samples. This becomes a particularly serious issue when they reach vulnerable populations such as pregnant women, whose hormones are more unstable and vulnerable to EDCs. The proper formation and activity of the placenta, and therefore embryonic development, may get seriously affected by the presence of these chemicals, augmenting the risk of several pregnancy complications, including intrauterine growth restriction, preterm birth, preeclampsia, and gestational diabetes mellitus, among others. Additionally, some of them also exert a detrimental impact on fertility, thus hindering the reproductive process from the beginning. In several cases, EDCs even induce cross-generational effects, inherited by future generations through epigenetic mechanisms. These are the reasons why a proper understanding of the reproductive and gestational alterations derived from these substances is needed, along with efforts to establish regulations and preventive measures in order to avoid exposition (especially during this particular stage of life).
Collapse
Affiliation(s)
- Maria Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Yolanda Gálvez-Ontiveros
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Ana Rivas
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| |
Collapse
|
14
|
Martín-Carrasco I, Carbonero-Aguilar P, Dahiri B, Moreno IM, Hinojosa M. Comparison between pollutants found in breast milk and infant formula in the last decade: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162461. [PMID: 36868281 DOI: 10.1016/j.scitotenv.2023.162461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Since ancient times, breastfeeding has been the fundamental way of nurturing the newborn. The benefits of breast milk are widely known, as it is a source of essential nutrients and provides immunological protection, as well as developmental benefits, among others. However, when breastfeeding is not possible, infant formula is the most appropriate alternative. Its composition meets the nutritional requirements of the infant, and its quality is subject to strict control by the authorities. Nonetheless, the presence of different pollutants has been detected in both matrices. Thus, the aim of the present review is to make a comparison between the findings in both breast milk and infant formula in terms of contaminants in the last decade, in order to choose the most convenient option depending on the environmental conditions. For that, the emerging pollutants including metals, chemical compounds derived from heat treatment, pharmaceutical drugs, mycotoxins, pesticides, packaging materials, and other contaminants were described. While in breast milk the most concerning contaminants found were metals and pesticides, in infant formula pollutants such as metals, mycotoxins, and packaging materials were the most outstanding. In conclusion, the convenience of using a feeding diet based on breast milk or either infant formula depends on the maternal environmental circumstances. However, it is important to take into account the immunological benefits of the breast milk compared to the infant formula, and the possibility of using breast milk in combination with infant formula when the nutritional requirements are not fulfilled only with the intake of breast milk. Therefore, more attention should be paid in terms of analyzing these conditions in each case to be able to make a proper decision, as it will vary depending on the maternal and newborn environment.
Collapse
Affiliation(s)
- I Martín-Carrasco
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - P Carbonero-Aguilar
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - B Dahiri
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - I M Moreno
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain.
| | - M Hinojosa
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain; Department of Biochemistry and Biophysics, Stockholm University, Institutionen för biokemi och biofysik, 106 91 Stockholm, Sweden
| |
Collapse
|
15
|
Weng X, Zhu Q, Liao C, Jiang G. Cumulative Exposure to Phthalates and Their Alternatives and Associated Female Reproductive Health: Body Burdens, Adverse Outcomes, and Underlying Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37196176 DOI: 10.1021/acs.est.3c00823] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The global birth rate has recently shown a decreasing trend, and exposure to environmental pollutants has been identified as a potential factor affecting female reproductive health. Phthalates have been widely used as plasticizers in plastic containers, children's toys, and medical devices, and their ubiquitous presence and endocrine-disrupting potential have already raised particular concerns. Phthalate exposure has been linked to various adverse health outcomes, including reproductive diseases. Given that many phthalates are gradually being banned, a growing number of phthalate alternatives are becoming popular, such as di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH), di(2-ethylhexyl) adipate (DEHA), and di(2-ethylhexyl) terephthalate (DEHTP), and they are beginning to have a wide range of environmental effects. Studies have shown that many phthalate alternatives may disrupt female reproductive function by altering the estrous cycle, causing ovarian follicular atresia, and prolonging the gestational cycle, which raises growing concerns about their potential health risks. Herein, we summarize the effects of phthalates and their common alternatives in different female models, the exposure levels that influence the reproductive system, and the effects on female reproductive impairment, adverse pregnancy outcomes, and offspring development. Additionally, we scrutinize the effects of phthalates and their alternatives on hormone signaling, oxidative stress, and intracellular signaling to explore the underlying mechanisms of action on female reproductive health, because these chemicals may affect reproductive tissues directly or indirectly through endocrine disruption. Given the declining global trends of female reproductive capacity and the potential ability of phthalates and their alternatives to negatively impact female reproductive health, a more comprehensive study is needed to understand their effects on the human body and their underlying mechanisms. These findings may have an important role in improving female reproductive health and in turn decreasing the number of complications during pregnancy.
Collapse
Affiliation(s)
- Xueyu Weng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Wang JQ, Liang CM, Hu YB, Xia X, Li ZJ, Gao H, Sheng J, Huang K, Wang SF, Zhu P, Hao JH, Tao FB. The effect of phthalates exposure during pregnancy on asthma in infants aged 0 to 36 months: a birth cohort study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1951-1974. [PMID: 35751763 DOI: 10.1007/s10653-022-01320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
This cohort study sought to investigate the effects of phthalates exposure during pregnancy on offspring asthma and its association with placental stress and inflammatory factor mRNA expression levels. A total of 3474 pregnant women from the China Ma'anshan birth cohort participated in this study. Seven phthalate metabolites were detected in urine samples during pregnancy by solid phase extraction-high-performance liquid chromatography tandem mass spectrometry. Placenta stress and inflammation mRNA expression were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). Early pregnancy may be the critical period when phthalates exposure increases the risk of asthma in infants and young children, and there is a certain gender difference in the risk of asthma in infants and young children. Moreover, through the placenta stress and inflammatory factor associated with infant asthma found anti-inflammatory factor of interleukin-10 (IL-10) mRNA expression will reduce the risk of 36-month-old male infant asthma. The expression of interleukin-4(IL-4) and macrophage (M2) biomarker cluster of differentiation 206(CD206) mRNA reduced the risk of asthma in 18-month-old female infants. Placental stress and inflammatory response were analyzed using mediating effects. Tumor necrosis factor-α (TNFα) showed a complete mediating effect between mono-benzyl phthalate (MBzP) exposure in early pregnancy and asthma in 12-month-old males, and IL-10 also showed a complete mediating effect between mono-n-butyl phthalate (MBP) exposure in early and late pregnancy and asthma in 36-month-old males. In summary, exposure to phthalates during pregnancy may contribute to the development of asthma in infants, which may be associated with placental stress and inflammation.
Collapse
Affiliation(s)
- Jian-Qing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Chun-Mei Liang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ya-Bin Hu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xun Xia
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Zhi-Juan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jie Sheng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Su-Fang Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
17
|
Yan Y, Guo F, Liu K, Ding R, Wang Y. The effect of endocrine-disrupting chemicals on placental development. Front Endocrinol (Lausanne) 2023; 14:1059854. [PMID: 36896182 PMCID: PMC9989293 DOI: 10.3389/fendo.2023.1059854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) or endocrine disruptors are substances that are either naturally occurring or artificial and are released into the natural environment. Humans are exposed to EDCs through ingestion, inhalation, and skin contact. Many everyday household items, such as plastic bottles and containers, the liners of metal food cans, detergents, flame retardants, food, gadgets, cosmetics, and pesticides, contain endocrine disruptors. Each hormone has a unique chemical makeup and structural attributes. The way that endocrine hormones connect to receptors is described as a "lock and key" mechanism, with each hormone serving as the key (lock). This mechanism is enabled by the complementary shape of receptors to their hormone, which allows the hormone to activate the receptors. EDCs are described as exogenous chemicals or compounds that have a negative impact on organisms' health by interacting with the functioning of the endocrine system. EDCs are associated with cancer, cardiovascular risk, behavioural disorders, autoimmune abnormalities, and reproductive disorders. EDCs exposure in humans is highly harmful during critical life stages. Nonetheless, the effect of EDCs on the placenta is often underestimated. The placenta is especially sensitive to EDCs due to its abundance of hormone receptors. In this review, we evaluated the most recent data on the effects of EDCs on placental development and function, including heavy metals, plasticizers, pesticides, flame retardants, UV filters and preservatives. The EDCs under evaluation have evidence from human biomonitoring and are found in nature. Additionally, this study indicates important knowledge gaps that will direct future research on the topic.
Collapse
Affiliation(s)
- Yan Yan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, China
| | - Fengjun Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Kexin Liu
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rixin Ding
- Department of Cardiovascular Medicine, Changchun Central Hospital, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Yichao Wang,
| |
Collapse
|
18
|
Gao H, Geng ML, Huang K, Zhu BB, Zhang C, Gan H, Tong J, Wu XL, Hu CY, Zhang SY, Zhu P, Wang QN, Tao FB. Relationship of individual and mixed prenatal phthalate exposure with placental structure and efficiency in the prospective Ma'anshan Birth Cohort Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156498. [PMID: 35667428 DOI: 10.1016/j.scitotenv.2022.156498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Few studies have investigated the associations between prenatal phthalate exposure and placental structure and function with inconsistent conclusions. METHODS Nested on the Ma'anshan Birth Cohort study, 2723 women provided spot urine samples during the first, second and third trimesters of pregnancy to analyze six phthalate metabolites. The outcomes of interest were placental weight, efficiency (birth weight/placental weight), chorionic disc area and disc eccentricity. The relationships of prenatal exposure to a single phthalate with placental measures were analyzed. The associations between prenatal phthalate mixture exposure and placental measures were also evaluated. RESULTS Most phthalate metabolites were significantly associated with placental weight, efficiency and chorionic disc area during the whole gestation and in each trimester of pregnancy, with different directions of relationships. Sensitivity analyses revealed similar findings, indicating the robustness of the statistical results. Furthermore, inverted U-shaped nonlinear relationships of prenatal exposure to some phthalate metabolites with placental weight, efficiency and chorionic plate area were observed. However, quantile g-computation mixture models did not reveal any association between maternal combined exposure to the total phthalate metabolites and placental measures. CONCLUSIONS Maternal exposure to most phthalates and their metabolites was associated with placental weight, efficiency and chorionic plate area in both a linear manner and an inverted U-shaped nonlinear manner. However, the mixture of multiple phthalate metabolites was not observed to be associated with any placental measure.
Collapse
Affiliation(s)
- Hui Gao
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Meng-Long Geng
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kun Huang
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Bei-Bei Zhu
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Cheng Zhang
- Anhui Provincial Cancer Institute, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Juan Tong
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiu-Long Wu
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Si-Ying Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peng Zhu
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Qu-Nan Wang
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fang-Biao Tao
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
19
|
Parenti M, Schmidt RJ, Ozonoff S, Shin HM, Tancredi DJ, Krakowiak P, Hertz-Picciotto I, Walker CK, Slupsky CM. Maternal Serum and Placental Metabolomes in Association with Prenatal Phthalate Exposure and Neurodevelopmental Outcomes in the MARBLES Cohort. Metabolites 2022; 12:829. [PMID: 36144233 PMCID: PMC9500898 DOI: 10.3390/metabo12090829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 01/16/2023] Open
Abstract
Prenatal exposure to phthalates, a family of endocrine-disrupting plasticizers, is associated with disruption of maternal metabolism and impaired neurodevelopment. We investigated associations between prenatal phthalate exposure and alterations of both the maternal third trimester serum metabolome and the placental metabolome at birth, and associations of these with child neurodevelopmental outcomes using data and samples from the Markers of Autism Risk in Babies Learning Early Signs (MARBLES) cohort. The third trimester serum (n = 106) and placental (n = 132) metabolomes were investigated using 1H nuclear magnetic resonance spectroscopy. Children were assessed clinically for autism spectrum disorder (ASD) and cognitive development. Although none of the urinary phthalate metabolite concentrations were associated with maternal serum metabolites after adjustment for covariates, mixture analysis using quantile g-computation revealed alterations in placental metabolites with increasing concentrations of phthalate metabolites that included reduced concentrations of 2-hydoxybutyrate, carnitine, O-acetylcarnitine, glucitol, and N-acetylneuraminate. Child neurodevelopmental outcome was not associated with the third trimester serum metabolome, but it was correlated with the placental metabolome in male children only. Maternal phthalate exposure during pregnancy is associated with differences in the placental metabolome at delivery, and the placental metabolome is associated with neurodevelopmental outcomes in males in a cohort with high familial ASD risk.
Collapse
Affiliation(s)
- Mariana Parenti
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, CA 95616, USA
| | - Sally Ozonoff
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, CA 95616, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95616, USA
| | - Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Daniel J. Tancredi
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95616, USA
| | - Paula Krakowiak
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, CA 95616, USA
| | - Cheryl K. Walker
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, CA 95616, USA
- Department of Obstetrics & Gynecology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Carolyn M. Slupsky
- Department of Nutrition, University of California, Davis, CA 95616, USA
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| |
Collapse
|
20
|
Seymore TN, Rivera-Núñez Z, Stapleton PA, Adibi JJ, Barrett ES. Phthalate Exposures and Placental Health in Animal Models and Humans: A Systematic Review. Toxicol Sci 2022; 188:153-179. [PMID: 35686923 PMCID: PMC9333406 DOI: 10.1093/toxsci/kfac060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phthalates are ubiquitous compounds known to leach from the plastic products that contain them. Due to their endocrine-disrupting properties, a wide range of studies have elucidated their effects on reproduction, metabolism, neurodevelopment, and growth. Additionally, their impacts during pregnancy and on the developing fetus have been extensively studied. Most recently, there has been interest in the impacts of phthalates on the placenta, a transient major endocrine organ critical to maintenance of the uterine environment and fetal development. Phthalate-induced changes in placental structure and function may have significant impacts on the course of pregnancy and ultimately, child health. Prior reviews have described the literature on phthalates and placental health; however to date, there has been no comprehensive, systematic review on this topic. Here, we review 35 papers (24 human and 11 animal studies) and summarize phthalate exposures in relation to an extensive set of placental measures. Phthalate-related alterations were reported for placental morphology, hormone production, vascularization, histopathology, and gene/protein expression. The most consistent changes were observed in vascular and morphologic endpoints, including cell composition. These changes have implications for pregnancy complications such as preterm birth and intrauterine growth restriction as well as potential ramifications for children's health. This comprehensive review of the literature, including common sources of bias, will inform the future work in this rapidly expanding field.
Collapse
Affiliation(s)
- Talia N Seymore
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey 08854, USA
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jennifer J Adibi
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey 08854, USA
| |
Collapse
|
21
|
Plante I, Winn LM, Vaillancourt C, Grigorova P, Parent L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. ENVIRONMENTAL RESEARCH 2022; 205:112435. [PMID: 34843719 DOI: 10.1016/j.envres.2021.112435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Pregnancy is a complex process requiring tremendous physiological changes in the mother in order to fulfill the needs of the growing fetus, and to give birth, expel the placenta and nurse the newborn. These physiological modifications are accompanied with psychological changes, as well as with variations in habits and behaviors. As a result, this period of life is considered as a sensitive window as impaired functional and physiological changes in the mother can have short- and long-term impacts on her health. In addition, dysregulation of the placenta and of mechanisms governing placentation have been linked to chronic diseases later-on in life for the fetus, in a concept known as the Developmental Origin of Health and Diseases (DOHaD). This concept stipulates that any change in the environment during the pre-conception and perinatal (in utero life and neonatal) period to puberty, can be "imprinted" in the organism, thereby impacting the health and risk of chronic diseases later in life. Pregnancy is a succession of events that is regulated, in large part, by hormones and growth factors. Therefore, small changes in hormonal balance can have important effects on both the mother and the developing fetus. An increasing number of studies demonstrate that exposure to endocrine disrupting compounds (EDCs) affect both the mother and the fetus giving rise to growing concerns surrounding these exposures. This review will give an overview of changes that happen during pregnancy with respect to the mother, the placenta, and the fetus, and of the current literature regarding the effects of EDCs during this specific sensitive window of exposure.
Collapse
Affiliation(s)
- Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
| | - Louise M Winn
- Queen's University, School of Environmental Studies, Department of Biomedical and Molecular Sciences, Kingston, ON, Canada
| | | | - Petya Grigorova
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| | - Lise Parent
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| |
Collapse
|
22
|
Zhu YD, Han X, Wang XQ, Ge TX, Liu H, Fan L, Li L, Su LQ, Wang XL. Effect of the phthalates exposure on sex steroid hormones in the US population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113203. [PMID: 35051761 DOI: 10.1016/j.ecoenv.2022.113203] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/26/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND New alternative phthalates have been increasingly substituted for certain phthalates in some consumer products due to safety concerns. However, research on the steroidal effect of exposure to the newer replacement phthalates in the general adult population is lacking. OBJECTIVES This study aimed to examine the associations of exposure to the older generation and newer replacement phthalates with sex hormone levels in the U.S. general population. METHODS The current cross-sectional study was based on the National Health and Nutrition Examination Survey (NHANES) 2015-2016. Sixteen urinary phthalates metabolites and three serum sex hormones were measured in 1768 adults. Gender-specific associations between urinary phthalate concentrations and sex hormones were estimated by using adjusted multiple linear regression. Logistic regression was performed to calculate the risk of phthalates exposure on hormones dysfunction. RESULTS Most phthalates metabolites concentrations were lower than 50 ng/mL. MEP, MBP, MiBP, MECPP, MCOP, MEHHP, MEOHP were higher than others, suggesting that new alternative DEP, DBP, and DiNP were exposed at high levels in daily life while DINCH was at a low level. Phthalates exposure was associated with decreased testosterone levels and increased estradiol and SHBG in total samples. Testosterone level was negatively associated with MnBP (β: -0.05, 95% CI: -0.09, 0), MEOHP (β:-0.05, 95% CI:-0.09,-0.01), MEHHP (β:-0.04, 95% CI:-0.08,0), MECPP (β:-0.07, 95% CI:-0.11,-0.03), MEP (β: -0.03, 95% CI: -0.06, 0), MiBP (β: -0.05, 95% CI: -0.10, -0.01) in males; ln-transformed estradiol were increased by 0.18 pg/mL (95% CI: 0.05,0.31), 0.15 pg/mL (95% CI: 0.01,0.29) with each 1 ln-concentration increase in MEHP and MNP, respectively, in females. CONCLUSIONS Our results suggest that phthalates exposure may disturb the hormone homeostasis in adults. The safe alternative should be used with caution in industrial production in the future and the need for further research into the safety of the new alternative replacements is necessary.
Collapse
Affiliation(s)
- Yuan-Duo Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xin-Qi Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tan-Xi Ge
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hang Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Lin Fan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Li Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Li-Qin Su
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Xian-Liang Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
23
|
Chang CH, Tsai YA, Huang YF, Tsai MS, Hou JW, Lin CL, Wang PW, Huang LW, Chen CY, Wu CF, Hsieh CJ, Wu MT, Wang SL, Chen ML. The sex-specific association of prenatal phthalate exposure with low birth weight and small for gestational age: A nationwide survey by the Taiwan Maternal and Infant Cohort Study (TMICS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151261. [PMID: 34715222 DOI: 10.1016/j.scitotenv.2021.151261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 05/16/2023]
Abstract
The Taiwan Maternal and Infant Cohort Study (TMICS) was launched with the aim to assess the effects of prenatal exposure to phthalic acid esters (PAEs) on infant health. A total of 1102 pregnant women were enrolled in this study from 2012 to 2015. All participants completed a structured questionnaire, and provided urine specimens. The urinary concentrations of PAE metabolites in the third trimester were measured using liquid chromatography-electrospray ionization tandem mass spectrometry. Generalized additive model-penalized regression splines and logistic regression models were employed to determine the risk for low birth weight (LBW) or small for gestational age (SGA) among pregnant women exposed to PAEs. After adjustments for other covariates, each incremental unit of ln-transformed mono-n-butyl phthalate (MnBP) for pregnant women increased the odds of SGA in male neonates by 1.44 (95% CI: 0.92-2.23). An inverse association between SGA and maternal MnBP exposure level was observed in female neonates. An increase in one ln-transformed MnBP concentration unit decreased the risk of female SGA to 0.50 (95% CI: 0.24-0.97). In the penalized regression splines, increased risks of LBW/SGA in male neonates were presented while pregnant women exposed to increased MnBP levels. However, an association in the opposite direction was observed between maternal MnBP and LBW or SGA for male and female neonates. This study indicated that high maternal MnBP exposure in the third trimester was associated with LBW or SGA for male infants. Adverse effects on susceptible populations exposed to high levels of PAEs should be of concern.
Collapse
Affiliation(s)
- Chia-Huang Chang
- School of Public Health, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Global Health and Health Security, Taipei Medical University, Taipei, Taiwan
| | - Yen-An Tsai
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Fang Huang
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Ming-Song Tsai
- Department of OBS & GYN, Cathay General Hospital, Taipei, Taiwan
| | - Jia-Woei Hou
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Ching-Ling Lin
- Department of Endocrinology and Metabolism, Cathay General Hospital, Taipei, Taiwan
| | - Pei-Wei Wang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Pediatrics, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Li-Wei Huang
- Department of Obstetrics & Gynecology, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Chih-Yao Chen
- Division of Obstetrics and High Risk Pregnancy, Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Fang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; International Master Program of Translational Medicine, National United University, Miaoli, Taiwan
| | - Chia-Jung Hsieh
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Li Wang
- Division of Environmental Health & Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan.
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
24
|
Warner GR, Dettogni RS, Bagchi IC, Flaws JA, Graceli JB. Placental outcomes of phthalate exposure. Reprod Toxicol 2021; 103:1-17. [PMID: 34015474 PMCID: PMC8260441 DOI: 10.1016/j.reprotox.2021.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022]
Abstract
Proper placental development and function relies on hormone receptors and signaling pathways that make the placenta susceptible to disruption by endocrine disrupting chemicals, such as phthalates. Here, we review relevant research on the associations between phthalate exposures and dysfunctions of the development and function of the placenta, including morphology, physiology, and genetic and epigenetic effects. This review covers in vitro studies, in vivo studies in mammals, and studies in humans. We also discuss important gaps in the literature. Overall, the evidence indicates that toxicity to the placental and maternal-fetal interface is associated with exposure to phthalates. Further studies are needed to better elucidate the mechanisms through which phthalates act in the placenta as well as additional human studies that assess placental disruption through pregnancy with larger sample sizes.
Collapse
Affiliation(s)
- Genoa R Warner
- Dept of Comparative Biosciences, University of Illinois, Urbana, IL, USA
| | | | - Indrani C Bagchi
- Dept of Comparative Biosciences, University of Illinois, Urbana, IL, USA
| | - Jodi A Flaws
- Dept of Comparative Biosciences, University of Illinois, Urbana, IL, USA.
| | - Jones B Graceli
- Dept of Morphology, Federal University of Espirito Santo, Brazil
| |
Collapse
|
25
|
Andescavage N, Kapse K, Lu YC, Barnett SD, Jacobs M, Gimovsky AC, Ahmadzia H, Quistorff J, Lopez C, Andersen NR, Bulas D, Limperopoulos C. Normative placental structure in pregnancy using quantitative Magnetic Resonance Imaging. Placenta 2021; 112:172-179. [PMID: 34365206 DOI: 10.1016/j.placenta.2021.07.296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION To characterize normative morphometric, textural and microstructural placental development by applying advanced and quantitative magnetic resonance imaging (qMRI) techniques to the in-vivo placenta. METHODS We enrolled 195 women with uncomplicated, healthy singleton pregnancies in a prospective observational study. Women underwent MRI between 16- and 40-weeks' gestation. Morphometric and textural metrics of placental growth were calculated from T2-weighted (T2W) images, while measures of microstructural development were calculated from diffusion-weighted images (DWI). Normative tables and reference curves were constructed for each measured index across gestation and according to fetal sex. RESULTS Data from 269 MRI studies from 169 pregnant women were included in the analyses. During the study period, placentas undergo significant increases in morphometric measures of volume, thickness, and elongation. Placental texture reveals increasing variability with advancing gestation as measured by grey level non uniformity, run length non uniformity and long run high grey level emphasis. Placental microstructure did not vary with gestational age. Placental elongation was the only metric that differed significantly between male and female fetuses. DISCUSSION We report quantitative metrics of placental morphometry, texture and microstructure in a large cohort of healthy controls during the second and third trimesters of pregnancy. These measures can serve as normative references of in-vivo placental development to better understand placental function in high-risk conditions and allow for the early detection of placental mal-development.
Collapse
Affiliation(s)
- Nickie Andescavage
- Division of Neonatology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA; Department of Pediatrics, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Kushal Kapse
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Yuan-Chiao Lu
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Scott D Barnett
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Marni Jacobs
- Division of Biostatistics & Study Methodology, George Washington University School of Medicine, 2300 Eye St. NW, Washington, DC, 20037, USA
| | - Alexis C Gimovsky
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Homa Ahmadzia
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Jessica Quistorff
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Catherine Lopez
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Nicole Reinholdt Andersen
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Dorothy Bulas
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA; Department of Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Catherine Limperopoulos
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA; Department of Pediatrics, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA; Department of Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA.
| |
Collapse
|
26
|
Adibi JJ, Layden AJ, Birru RL, Miragaia A, Xun X, Smith MC, Yin Q, Millenson ME, O’Connor TG, Barrett ES, Snyder NW, Peddada S, Mitchell RT. First trimester mechanisms of gestational sac placental and foetal teratogenicity: a framework for birth cohort studies. Hum Reprod Update 2021; 27:747-770. [PMID: 33675653 PMCID: PMC8222765 DOI: 10.1093/humupd/dmaa063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/18/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The function of the gestational sac (GS) and the placenta in the closely related processes of embryogenesis and teratogenicity in the first trimester has been minimally described. The prevailing assumption is that direct teratogenic effects are mediated by the critical extraembryonic organ, the placenta, which either blocks or transfers exposures to the foetus. Placental transfer is a dominant mechanism, but there are other paradigms by which the placenta can mediate teratogenic effects. Knowledge of these paradigms and first trimester human developmental biology can be useful to the epidemiologist in the conduct of biomarker-based studies of both maternal and child health. OBJECTIVE AND RATIONALE Our aim is to provide a causal framework for modelling the teratogenic effects of first trimester exposures on child health outcomes mediated by the GS and placenta using biomarker data collected in the first trimester. We initially present first trimester human developmental biology for the sake of informing and strengthening epidemiologic approaches. We then propose analytic approaches of modelling placental mechanisms by way of causal diagrams using classical non-embryolethal teratogens (diethylstilboestrol [DES], folic acid deficiency and cytomegalovirus [CMV]) as illustrative examples. We extend this framework to two chronic exposures of particular current interest, phthalates and maternal adiposity. SEARCH METHODS Information on teratogens was identified by a non-systematic, narrative review. For each teratogen, we included papers that answered the five following questions: (i) why were these exposures declared teratogens? (ii) is there a consensus on biologic mechanism? (iii) is there reported evidence of a placental mechanism? (iv) can we construct a theoretical model of a placental mechanism? and (v) can this knowledge inform future work on measurement and modelling of placental-foetal teratogenesis? We prioritized literature specific to human development, the organogenesis window in the first trimester and non-embryolethal mechanisms. OUTCOMES As a result of our review of the literature on five exposures considered harmful in the first trimester, we developed four analytic strategies to address first trimester placental mechanisms in birth cohort studies: placental transfer and direct effects on the foetus (DES and maternal adiposity), indirect effects through targeted placental molecular pathways (DES and phthalates), pre-placental effects through disruptions in embryonic and extraembryonic tissue layer differentiation (folic acid deficiency), and multi-step mechanisms that involve maternal, placental and foetal immune function and inflammation (DES and CMV). WIDER IMPLICATIONS The significance of this review is to offer a causal approach to classify the large number of potentially harmful exposures in pregnancy when the exposure occurs in the first trimester. Our review will facilitate future research by advancing knowledge of the first trimester mechanisms necessary for researchers to effectively associate environmental exposures with child health outcomes.
Collapse
Affiliation(s)
- Jennifer J Adibi
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander J Layden
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rahel L Birru
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandra Miragaia
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoshuang Xun
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Megan C Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Yin
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Thomas G O’Connor
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Nathaniel W Snyder
- Department of Microbiology and Immunology, Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Shyamal Peddada
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The University of Edinburgh, Queens Medical Research Institute, Edinburgh, UK
| |
Collapse
|
27
|
Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021; 42:295-353. [PMID: 33388776 PMCID: PMC8152448 DOI: 10.1210/endrev/bnaa035] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/07/2023]
Abstract
The burden of adverse pregnancy outcomes such as preterm birth and low birth weight is considerable across the world. Several risk factors for adverse pregnancy outcomes have been identified. One risk factor for adverse pregnancy outcomes receiving considerable attention in recent years is gestational exposure to endocrine-disrupting chemicals (EDCs). Humans are exposed to a multitude of environmental chemicals with known endocrine-disrupting properties, and evidence suggests exposure to these EDCs have the potential to disrupt the maternal-fetal environment culminating in adverse pregnancy and birth outcomes. This review addresses the impact of maternal and fetal exposure to environmental EDCs of natural and man-made chemicals in disrupting the maternal-fetal milieu in human leading to adverse pregnancy and birth outcomes-a risk factor for adult-onset noncommunicable diseases, the role lifestyle and environmental factors play in mitigating or amplifying the effects of EDCs, the underlying mechanisms and mediators involved, and the research directions on which to focus future investigations to help alleviate the adverse effects of EDC exposure.
Collapse
Affiliation(s)
| | - Wenhui Song
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
28
|
Gao H, Zhang C, Tao FB. Association between prenatal phthalate exposure and gestational metabolic syndrome parameters: a systematic review of epidemiological studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20921-20938. [PMID: 33674970 DOI: 10.1007/s11356-021-13120-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/18/2021] [Indexed: 05/05/2023]
Abstract
The relationship of intrauterine phthalate exposure with gestational metabolic syndrome (GMS) parameters is inconsistently reported. We performed a systematic review to evaluate the association between prenatal phthalate exposure and GMS parameters. A literature search was performed in three databases. According to the defined PECOS statement, eligible studies were identified. The method and result for each study was qualitatively summarized with great emphasis on study design and exposure assessment. Fourteen studies were included in the present systematic review. Two studies used one-spot serum sample for evaluation of phthalate exposure, while others used 1-4 urine samples. Concentrations of phthalate metabolites varied substantially, and the levels in serum were greatly lower than those in urine. These studies observed no interstudy or intrastudy consistency for association between phthalates and GMS in pregnant women cross-sectionally or longitudinally, regardless of phthalates species or GMS indicator. Most reported associations were not significantly different from null result. Besides, positive and negative relationships also existed. The current epidemiological data do not support the hypothesis that prenatal exposure to phthalates increases GMS risk.
Collapse
Affiliation(s)
- Hui Gao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, 230032, Anhui, China.
| | - Cheng Zhang
- Anhui Provincial Cancer Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Fang-Biao Tao
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, 230032, Anhui, China
| |
Collapse
|
29
|
Vrachnis N, Loukas N, Vrachnis D, Antonakopoulos N, Christodoulaki C, Tsonis O, George M, Iliodromiti Z. Phthalates and fetal growth velocity: tracking down the suspected links. J Matern Fetal Neonatal Med 2021; 35:4985-4993. [PMID: 33467971 DOI: 10.1080/14767058.2021.1873943] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fetuses that have not achieved their full growth potential are associated with adverse perinatal and long-term outcomes; thus, it is essential to identify environmental factors that can potentially impair normal intrauterine development. Endocrine disrupting compounds (EDCs), substances capable of altering the homeostasis of the endocrine system, are thought to play a role in restriction of growth velocity, with phthalates being among the most common EDCs to which pregnant women are exposed. Such exposure can potentially lead to changes to the epigenome, placental structure, and hormone function and trigger oxidative stress. Given that these pathways have been linked to fetal growth restriction, we reviewed the literature on the relationship between phthalates and fetal growth. The majority of the studies, which used birth weight as an indicator of intrauterine development, showed contradictory results, the main reason being the EDCs' rapid metabolism. However, we can draw more consistent conclusions when phthalates are quantified at more than one time point during pregnancy. In this narrative review, we present current data indicating the role of phthalates, and especially di-(2-ethylhexyl) phthalate (DEHP), in abnormal fetal growth velocity.
Collapse
Affiliation(s)
- Nikolaos Vrachnis
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Attikon Hospital, Athens, Greece.,Vascular Biology, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Nikolaos Loukas
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Attikon Hospital, Athens, Greece
| | - Dionysios Vrachnis
- Endocrinology Unit, 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Aretaieio Hospital, Athens, Greece
| | - Nikolaos Antonakopoulos
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Attikon Hospital, Athens, Greece
| | - Chryssi Christodoulaki
- Department of Obstetrics and Gynecology, Chania General Hospital "St. George", Crete, Greece
| | - Orestis Tsonis
- Department of Obstetrics and Gynecology, Medical School, University of Ioannina, Ioannina, Greece
| | - Mastorakos George
- Endocrinology Unit, 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Aretaieio Hospital, Athens, Greece
| | - Zoi Iliodromiti
- Department of Neonatology, National and Kapodistrian University of Athens Medical School, Aretaieio Hospital, Athens, Greece
| |
Collapse
|
30
|
Wang JQ, Hu YB, Gao H, Sheng J, Huang K, Zhang YW, Mao LJ, Zhou SS, Cai XX, Zhang LJ, Wang SF, Hao JH, Yang LQ, Tao FB. Sex-specific difference in placental inflammatory transcriptional biomarkers of maternal phthalate exposure: a prospective cohort study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:835-844. [PMID: 32015430 DOI: 10.1038/s41370-020-0200-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/10/2019] [Accepted: 11/24/2019] [Indexed: 05/08/2023]
Abstract
Previous epidemiologic research has shown that phthalate exposure in pregnant women is related to birth outcomes in a sex-specific manner. These outcomes may be mediated by placental inflammation, which is the proposed biological mechanism. This is the first study to address the relationship between phthalate exposure and gene expression in placental inflammation in a sex-specific manner. We performed quantitative PCR to measure placental inflammatory mRNAs (CRP, TNF-α, IL-1β, IL-6, IL-10, MCP-1, IL-8, CD68, and CD206) in 2469 placentae that were sampled at birth. We estimated the associations between mRNA and urinary phthalate monoesters using multiple linear regression models. Mono-n-butyl phthalate (MBP) was correlated with higher IL-1β, IL-6, and CRP expression in placentae of male fetuses and with higher IL-6, CRP, MCP-1, IL-8, IL-10, and CD68 expression in placentae of female fetuses. Mono benzyl phthalate (MBzP) increased the expression of TNF-α, MCP-1, and CD68 only in placentae of male fetuses. Mono (2-ethyl-5-oxohexyl) phthalate (MEOHP) was negatively correlated with CRP, MCP-1, and CD68 in placentae of female fetuses. Maternal phthalate exposure was associated with inflammatory variations in placental tissues. The associations were stronger in placentae of male than of female fetuses. Compared with the other metabolites, MBP plays a strong role in these associations. The placenta is worth being further investigated as a potential mediator of maternal exposure-induced disease risk in children.
Collapse
Affiliation(s)
- Jian-Qing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ya-Bin Hu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hui Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Sheng
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yun-Wei Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Lei-Jing Mao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shan-Shan Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiu-Xiu Cai
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Liang-Jian Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Su-Fang Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Li-Qi Yang
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
31
|
Zhu YD, Wu XY, Yan SQ, Huang K, Tong J, Gao H, Xie Y, Tao SM, Ding P, Zhu P, Tao FB. Domain- and trimester-specific effect of prenatal phthalate exposure on preschooler cognitive development in the Ma'anshan Birth Cohort (MABC) study. ENVIRONMENT INTERNATIONAL 2020; 142:105882. [PMID: 32593839 DOI: 10.1016/j.envint.2020.105882] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/07/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Phthalates are a group of heavily produced endocrine disruptors that are widely used in personal care products, food packaging, building materials, and medical device. Few epidemiological studies have examined the effect of repeated prenatal exposure to multiple phthalates on preschooler cognitive development. OBJECTIVES This study aimed to examine the association between prenatal phthalate exposure measured at multiple time points and the intelligent quotient (IQ) scores of preschoolers, and to further identify the critical windows and specific intelligence domains in which phthalate exposure would affect preschooler cognitive development. METHODS The current study was based on the Ma'anshan Birth Cohort (MABC) study. Seven phthalate metabolites were measured in 2128 maternal urine samples collected during the first, second, and third trimesters of pregnancy. The IQ score of preschool-aged children were assessed with the Chinese version of the Wechsler Preschool and Primary Scale of Intelligence, Fourth edition (WPPSI-Ⅳ CN). Linear mixed models (LMMs) were used to assess the longitudinal effects of repeated prenatal phthalate exposure on children's IQ score. Multiple linear regression models were fitted to determine whether critical window phthalate exposure would affect cognitive development of children. RESULTS Overall, the repeated measures analysis indicated that the verbal comprehension index (VCI), visual space index (VSI) and full-scale intelligence quotient (FSIQ) decreased by 0.30 (95% CI: -0.60, 0; p = 0.05), 0.32 (95% CI: -0.62, -0.01; p = 0.04), and 0.31 (95% CI:-0.57, -0.04; p = 0.02) points, respectively, with each ln-transformed increase in the metabolite concentration of MBP. The fluid reasoning index (FRI) and processing speed index (PSI) increased by 0.30 (95% CI: 0.07, 0.54; p = 0.01) and 0.28 (95% CI: 0.06, 0.51; p = 0.01) points, respectively, with each ln-concentration increase in MEP. Trimester-specific regression models stratified by the sample collection time during pregnancy generated consistent results. In the first trimester, each ln-transformed MBP increase was associated with reductions in VCI, VSI and FSIQ of 0.56 (95% CI:-1.09, -0.02; p = 0.04), 0.60 (95% CI:-1.15, -0.05; p = 0.03) and 0.49 (95% CI:-0.97, -0.01; p = 0.04) points, respectively. In the third trimester, we observed that only MBzP exposure was associated with an increase in VCI (β: 0.48, 95% CI: 0.03, 0.92; p = 0.04). The gender-stratified analyses revealed that boys drove these associations. CONCLUSIONS Our results suggest that prenatal phthalate exposure impairs the cognitive development of preschoolers. The first trimester of pregnancy might be the most vulnerable period in terms of neurotoxicitydue to phthalate exposure. These findings warrant further confirmation.
Collapse
Affiliation(s)
- Yuan-Duo Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiao-Yan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shuang-Qin Yan
- Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan 243011, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hui Gao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yang Xie
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shu-Man Tao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peng Ding
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
32
|
Basak S, Das MK, Duttaroy AK. Plastics derived endocrine-disrupting compounds and their effects on early development. Birth Defects Res 2020; 112:1308-1325. [PMID: 32476245 DOI: 10.1002/bdr2.1741] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Despite the fact that the estrogenic effects of bisphenols were first described 80 years ago, recent data about its potential negative impact on birth outcome parameters raises a strong rationale to investigate further. The adverse health effects of plastics recommend to measure the impacts of endocrine-disrupting compounds (EDCs) such as bisphenols (BPA, BPS, BPF), bis(2-ethylhexyl) phthalate, and dibutyl phthalate (DBP) in human health. Exposure to these compounds in utero may program the diseases of the testis, prostate, kidney and abnormalities in the immune system, and cause tumors, uterine hemorrhage during pregnancy and polycystic ovary. These compounds also control the processes of epigenetic transgenerational inheritance of adult-onset diseases by modulating DNA methylation and epimutations in reproductive cells. The early developmental stage is the most susceptible window for developmental and genomic programming. The critical stages of the events for a normal human birth lie between the many transitions occurring between spermatogenesis, egg fertilization and the fully formed fetus. As the cells begin to grow and differentiate, there are critical balances of hormones, and protein synthesis. Data are emerging on how these plastic-derived compounds affect embryogenesis, placentation and feto-placental development since pregnant women and unborn fetuses are often exposed to these factors during preconception and throughout gestation. Impaired early development that ultimately influences fetal outcomes is at the center of many developmental disorders and contributes an independent risk factor for adult chronic diseases. This review will summarize the current status on the impact of exposure to plastic derived EDCs on the growth, gene expression, epigenetic and angiogenic activities of the early fetal development process and their possible effects on birth outcomes.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Mrinal K Das
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
33
|
Zhu YD, Liang CM, Hu YB, Li ZJ, Wang SF, Xiang HY, Huang K, Yan SQ, Zhu P, Liu P, Tao FB. Repeated measures of prenatal thallium exposure and placental inflammatory cytokine mRNA expression: The Ma'anshan birth cohort (MABC) study. CHEMOSPHERE 2020; 246:125721. [PMID: 31911326 DOI: 10.1016/j.chemosphere.2019.125721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Thallium (Tl), a ubiquitous environmental toxicant, can cross the placental barrier during pregnancy. However, the effects of prenatal Tl exposure on placental function are currently unclear. Based on the Ma'anshan Birth Cohort study, we examined whether long-term prenatal Tl exposure was associated with placental inflammation. Tl concentrations were quantified in serum samples (n = 7050) from 2515 pregnancy during each trimester, placental inflammatory cytokine mRNA expression was assessed in 2519 placenta tissues. Geometric mean values of serum Tl concentrations were 63.57, 63.63 and 48.71 ng/L for the first, second and third trimesters, respectively. After adjustment for potential confounders, serum Tl concentration was positively associated with CD68 (β: 0.30; 95% CI: 0.05, 0.56) in the first trimester and TNF-α (β: 0.12; 95% CI: 0.01, 0.23), IL-6 (β: 0.15; 95% CI: 0.05, 0.25) and CD68 (β: 0.25; 95% CI: 0.10, 0.39) in the third trimester, however was negatively associated with IL-4 (β: -0.21; 95% CI: -0.41, -0.01) and CD206 (β: -0.23; 95% CI: -0.45, -0.02) in the first trimester. Repeated measures analysis showed that TNF-α, IL-6 and CD68 increased by 0.11 (95% CI: 0.01, 0.21), 0.12 (0.15, 95% CI: 0.05, 0.25), 0.22 (95% CI: 0.10, 0.39), respectively, with each 1ln-transformed Tl increase in total samples. Gender-specific analyses revealed that these associations were largely driven by male offspring. In addition, immunohistochemistry revealed that nuclear NF-κB p65 expression increased in placenta tissue. The results of this prospective cohort study provide longitudinal evidence that prenatal Tl exposure induces a placental inflammatory response in the Chinese population.
Collapse
Affiliation(s)
- Yuan-Duo Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Chun-Mei Liang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Ya-Bin Hu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Zhi-Juan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Su-Fang Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Hai-Yun Xiang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China.
| | - Shuang-Qin Yan
- Ma'anshan Maternal and Child Health (MCH) Clinic, Ma'anshan, China.
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China.
| | - Ping Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China.
| |
Collapse
|
34
|
Endocrine-Disrupting Chemicals in Human Fetal Growth. Int J Mol Sci 2020; 21:ijms21041430. [PMID: 32093249 PMCID: PMC7073082 DOI: 10.3390/ijms21041430] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Fetal growth is regulated by a complex interaction of maternal, placental, and fetal factors. The effects and outcomes that chemicals, widely distributed in the environment, may have on the health status of both the mother and the fetus are not yet well defined. Mainly mixtures of chemical substances are found in the mothers and placenta. Exposure to endocrine-disrupting chemicals (EDCs) can be associated with fetal growth retardation, thyroid dysfunction, and neurological disorders. EDCs mostly interfere with insulin, glucocorticoid, estrogenic, and thyroid pathways, with subsequent effects on normal endocrine and metabolic functions, which cause changes in the epigenome and state of inflammation with life-long effects and consequences. International scientific societies recommend the implementation of research and of all possible preventive measures. This review briefly summarizes all these aspects.
Collapse
|
35
|
Liu KY, Zhang JJ, Geng ML, Zhu YT, Liu XJ, Ding P, Wang BL, Liu WW, Liu YH, Tao FB. A Stable Isotope Dilution Assay for Multi-class Antibiotics in Pregnant Urines by LC–MS/MS. Chromatographia 2020. [DOI: 10.1007/s10337-020-03866-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Xiang W, Gong Q, Xu J, Li K, Yu F, Chen T, Qin S, Li C, Wang F. Cumulative risk assessment of phthalates in edible vegetable oil consumed by Chinese residents. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1124-1131. [PMID: 31680259 DOI: 10.1002/jsfa.10121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/05/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Phthalates have been widely used as plasticizers in various industries and are widely focused on in the international community as a result of their reproductive toxicity. Exposure of Chinese residents to phthalates via edible vegetable oil occurs often. In the present study, gas chromatography-mass spectrometry was used to detect the two main phthalates bis(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) in four major edible vegetable oil sources: an edible oil blend, soybean oil, peanut oil and rapeseed oil (a total of 1016 samples), as collected throughout China. Furthermore, cumulative risk assessment was used to estimate the reproductive health risk to Chinese residents caused by the phthalates that come from edible vegetable oils. RESULTS Both phthalates were detected in four major edible vegetable oil sources. The phthalate with the highest detection rate was DBP (13.48%), followed by DEHP (7.78%). The results of the cumulative risk assessment showed that the hazard indices of these two phthalates in edible vegetable oils were less than 1, except in soybean oil. Nevertheless, the two phthalates had the lowest detection rates in soybean oil, which were 1.94% (DEHP) and 5.16% (DBP). In China, contamination levels of phthalates in the soils where oil crops are cultivated have a great influence on the phthalate concentrations in edible vegetable oils. CONCLUSION It is recommended that Chinese residents who are consuming soybean oil choose well-known brands and regularly change their brand of consumption. The phthalates in edible vegetable oils pose a relatively small reproductive health risk to Chinese residents. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Xiang
- Crop Research Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Qin Gong
- Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, China
| | - Jian Xu
- College of Information Science and Technology, Hunan Agricultural University, Changsha, China
| | - Kailong Li
- Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, China
| | - Fengxiang Yu
- Department of Food Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha, China
| | - Ting Chen
- Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, China
| | - Si Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Can Li
- Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, China
| | - Fangbin Wang
- Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, China
| |
Collapse
|
37
|
Strakovsky RS, Schantz SL. Using Experimental Models to Assess Effects of Bisphenol A (BPA) and Phthalates on the Placenta: Challenges and Perspectives. Toxicol Sci 2019; 166:250-268. [PMID: 30203063 DOI: 10.1093/toxsci/kfy224] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The placenta is critical for all aspects of fetal development. Bisphenol A (BPA) and phthalates are endocrine disruptors with ubiquitous exposure in pregnant women-their effects on the placenta is an area of growing research interest. Therefore, our objectives were to (1) summarize research related to the effects BPA or phthalates on placental outcomes in animal and cell models, and (2) evaluate the challenges for using such models to study the impacts of these chemicals on placental endpoints. Overall, studies in cells and animal models suggest that BPA and phthalates impact placental hormones, some epigenetic endpoints, increase inflammation and oxidative stress, and decrease cell viability and nutrient transfer. However, few animal or cell studies have assessed these outcomes at concentrations relevant to humans. Furthermore, it is unclear whether effects of BPA/phthalates on the placenta in animal models mediate fetal outcomes, as most studies have dosed after the earliest stages of placental and fetal development. It is also unclear whether effects of these chemicals are sex-specific, as few studies have considered placental sex. Finally, while there is substantial evidence for effects of mono-(2-ethylhexyl) phthalate (the major metabolite of di-(2-ethylhexyl) phthalate), on placental endpoints in cells, little is currently known about effects of other phthalates to which pregnant women are exposed. Moving forward, these limitations will need to be addressed to help us understand the precise mechanisms of action of these chemicals within the placenta, and how these reported perturbations impact fetal health.
Collapse
Affiliation(s)
- Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48823
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology.,Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2347 Beckman Institute, Urbana, Illinois 61801
| |
Collapse
|
38
|
Gao H, Wang YF, Huang K, Han Y, Zhu YD, Zhang QF, Xiang HY, Qi J, Feng LL, Zhu P, Hao JH, Tao XG, Tao FB. Prenatal phthalate exposure in relation to gestational age and preterm birth in a prospective cohort study. ENVIRONMENTAL RESEARCH 2019; 176:108530. [PMID: 31220737 DOI: 10.1016/j.envres.2019.108530] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/20/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
This study enrolled 3266 pregnant women, to explore the relationship of prenatal phthalate exposure with the risk of preterm birth and gestational age. All participants filled questionnaires and provided with up to three urine samples during three trimesters. Seven phthalate metabolites in urines were measured. The incidences of very preterm, late preterm, early-term, late-term and postterm births were 0.58%, 3.52%, 24.22%, 10.53%, and 0.34%, respectively. Non-linear relationships were shown between phthalate metabolites and gestational age. Except for monomethyl phthalate (OR = 1.65, 95%CI = 1.17-2.34), the average concentrations of phthalate metabolites were associated with a slightly and insignificantly increased risk of overall preterm birth (<37+0 gestational weeks). Through a restricted cubic spline regression, phthalate metabolites were found to be related to the risk of overall preterm birth in a linear manner (p-value >0.05) or a non-linear manner (p-value <0.05). All curves indicated the overall preterm birth risk rose with the increase of phthalate metabolite concentrations. Finally, compared with full-term birth (39+0 to 40+6 gestational weeks), phthalate metabolites were associated with the elevated risks of very preterm, late preterm and postterm births, although some relationships were not statistically significant. In conclusion, these findings suggested non-linear associations between phthalate metabolites and gestational age. Exposure to some phthalate metabolites was associated with increased risks of overall preterm birth and postterm birth.
Collapse
Affiliation(s)
- Hui Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Ya-Fei Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui Province, China
| | - Yan Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Yuan-Duo Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Qiu-Feng Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Hai-Yun Xiang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Juan Qi
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Lan-Lan Feng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui Province, China
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui Province, China
| | - Xu-Guang Tao
- Division of Occupational and Environmental Medicine, Johns Hopkins School of Medicine, Baltimore, USA
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui Province, China.
| |
Collapse
|
39
|
Bloom MS, Wenzel AG, Brock JW, Kucklick JR, Wineland RJ, Cruze L, Unal ER, Yucel RM, Jiyessova A, Newman RB. Racial disparity in maternal phthalates exposure; Association with racial disparity in fetal growth and birth outcomes. ENVIRONMENT INTERNATIONAL 2019; 127:473-486. [PMID: 30981018 DOI: 10.1016/j.envint.2019.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/21/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Experimental and observational data implicate phthalates as developmental toxicants. However, few data are available to assess the maternal risks of gestational exposure by race and infant sex. To begin to address this data gap, we characterized associations between maternal urinary phthalate metabolites and birth outcomes among African American and white mothers from a southeastern U.S. population. We enrolled pregnant African American (n = 152) and white (n = 158) women with singleton live births between 18 and 22 weeks gestation. We measured phthalate metabolites (mono-n-butyl phthalate (MBP), monoisobutyl phthalate (MiBP), monobenzyl phthalate (MBzP), mono(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), monoethyl phthalate (MEP), monomethyl phthalate (MMP), and the sums of DEHP (ΣDEHP) and DBP (ΣDBP) metabolites) in up to two gestational urine specimens from mothers, and evaluated confounder-adjusted associations per natural log unit greater concentration with birth weight for gestational age z-score, small for gestational age (SGA; <10th %tile), preterm birth (PTB; <37 weeks gestation), and low birth weight (LBW; <2500 g). We also tested for interactions by maternal race and infant sex. We found that lower z-scores were associated with greater MiBP (β = -0.28; 95% CI: -0.54, -0.02) and MMP (β = -0.30; 95% CI: -0.52, -0.09) concentrations, while MEP interacted with race (p = 0.04), indicating an association among whites (β = -0.14; 95% CI: -0.28, 0.001) but not among African Americans (β = 0.05; 95% CI = -0.09, 0.19). Greater MiBP (OR = 2.82; 95% CI: 1.21, 6.56) and MEOHP (OR = 2.80; 95% CI: 1.05, 7.42) were associated with an overall higher SGA risk, greater MEHP was associated with higher SGA risk (p = 0.10) in whites (OR = 3.26 95% CI: 0.64, 16.56) but not in African Americans (OR = 0.71 95% CI: 0.07, 7.17), and the associations for MiBP (p = 0.02) and ΣDBP (p = 0.02) varied by infant sex. We detected interactions for PTB in which African Americans were at higher risk than whites for greater MiBP (p = 0.08) and MEP (p = 0.02) although lower risk for greater MEHP (p = 0.09). Greater MEP was associated with an overall higher LBW risk (OR = 1.33; 95% CI: 0.95, 1.86), and males were at higher risk than females with greater MBP (p = 0.002), MiBP (p = 0.02), MBzP (p = 0.01), MEP (p = 0.002), MMP (p = 0.09), and ΣDBP (p = 0.01) concentrations. Overall, our results suggest that gestational phthalate exposure is associated with adverse maternal birth outcomes, and that the effects vary by maternal race and infant sex.
Collapse
Affiliation(s)
- Michael S Bloom
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA; Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA.
| | - Abby G Wenzel
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| | - John W Brock
- Department of Chemistry, University of North Carolina-Asheville, Asheville, NC, USA
| | - John R Kucklick
- National Institute of Standards and Technology, Hollings Marine Laboratory, Charleston, SC, USA
| | - Rebecca J Wineland
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| | - Lori Cruze
- Department of Biology, Wofford College, Spartanburg, SC, USA
| | - Elizabeth R Unal
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Recai M Yucel
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Assem Jiyessova
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Roger B Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
40
|
Wineland RJ, Bloom MS, Cruze L, Butts CD, Wenzel AG, Unal ER, Kohno S, Willan KB, Brock JW, Newman RB. In utero effects of maternal phthalate exposure on male genital development. Prenat Diagn 2019; 39:209-218. [PMID: 30476355 DOI: 10.1002/pd.5398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND Phthalates are used extensively in commercial and personal care products and maternal exposure is ubiquitous. Phthalates are anti-androgenic, but the potential effects of phthalates on male penile development have not been assessed in utero. OBJECTIVE The study aims to investigate the association between early pregnancy phthalate exposure and fetal penile development, overall and by race. METHODS Prospective cohort study of women with singleton pregnancies presenting for prenatal ultrasound between 18 and 22 weeks' gestation. Maternal urine samples were assayed for eight phthalate monoester metabolites. We used maternal phthalate levels at 18 to 22 weeks' gestation as predictors of fetal size using multiple linear regression models, adjusted for fetal gestational age, maternal age, race, smoking, and education. We incorporated a phthalate by race interaction into a second set of regression models. RESULTS We detected statistically significant race interactions for continuous phthalates with penile width. Race interactions were also suggested for penile length and volume using tertiles of phthalates with point estimates generally positive for whites and negative for African Americans. CONCLUSION Penile development is significantly influenced by race, and the impact of maternal phthalates on penile measurements also varies by race. Maternal phthalate exposure can adversely affect in utero penile growth and development, especially among African Americans.
Collapse
Affiliation(s)
- Rebecca J Wineland
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina
| | - Michael S Bloom
- Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York
| | - Lori Cruze
- Wofford College, Spartanburg, South Carolina
| | - Celeste D Butts
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, New York
| | - Abby G Wenzel
- Marine Biomedicine and Environmental Science, Medical University of South Carolina, Charleston, South Carolina
| | - E Ramsey Unal
- Department of Obstetrics and Gynecology, Southern Illinois University, Springfield, Illinois
| | - Satomi Kohno
- Department of Biology, St. Cloud State University, Saint Cloud, Minnesota
| | - Keith B Willan
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina
| | - John W Brock
- Department of Chemistry, University of North Carolina Asheville, Asheville, North Carolina
| | - Roger B Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
41
|
Mustieles V, Mínguez-Alarcón L, Christou G, Ford JB, Dimitriadis I, Hauser R, Souter I, Messerlian C. Placental weight in relation to maternal and paternal preconception and prenatal urinary phthalate metabolite concentrations among subfertile couples. ENVIRONMENTAL RESEARCH 2019; 169:272-279. [PMID: 30497002 PMCID: PMC6347561 DOI: 10.1016/j.envres.2018.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 05/22/2023]
Abstract
INTRODUCTION Phthalates are known reproductive toxicants that reduce placental and fetal weight in experimental animal studies. Although phthalate exposure has been associated with reduced birth weight in humans, there is limited epidemiologic evidence on whether the placenta is also affected. OBJECTIVE To assess whether maternal and paternal preconception and prenatal urinary phthalate metabolite concentrations are associated with placental weight, and the birth weight: placental weight (BW:PW) ratio among singletons conceived by subfertile couples. METHODS The present analysis included 132 mothers and 68 fathers, and their corresponding 132 singletons recruited in an academic hospital fertility center in Boston, Massachusetts. Urinary concentrations of eleven phthalate metabolites were measured and averaged in multiple paternal (n = 196) and maternal (n = 596) preconception, and maternal prenatal (n = 328) samples. Placental weight and birth weight (grams) were abstracted from delivery records, and the BW:PW was calculated. We estimated the association of natural log-phthalate metabolite concentrations across windows of exposure with placental weight and the BW:PW ratio using multivariable linear regression models, adjusting for a priori covariates. RESULTS In adjusted models, each log-unit increase in paternal urinary concentrations of the sum of di-(2-ethylhexyl) phthalate (ΣDEHP) metabolites was associated with a 24 g (95% CI: -48, -1) decrease in placental weight. We also observed a significant negative association between maternal preconception monoethyl phthalate (MEP) metabolite concentrations and the BW:PW ratio (β = -0.26; 95%CI: -0.49, -0.04). Additionally, each log-unit increase in prenatal MEP metabolite concentrations was associated with a 24 g (95% CI: -41, -7) decrease in placental weight. CONCLUSIONS Our results suggest that certain paternal and maternal urinary phthalate metabolites may affect placental weight and the BW:PW ratio. However, given the small sample size within a subfertile cohort and the novelty of these findings, more studies are needed to confirm the present results.
Collapse
Affiliation(s)
- Vicente Mustieles
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - George Christou
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA 02114, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Irene Dimitriadis
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA 02114, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Irene Souter
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA 02114, USA
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Shoaito H, Petit J, Chissey A, Auzeil N, Guibourdenche J, Gil S, Laprévote O, Fournier T, Degrelle SA. The Role of Peroxisome Proliferator–Activated Receptor Gamma (PPARγ) in Mono(2-ethylhexyl) Phthalate (MEHP)-Mediated Cytotrophoblast Differentiation. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:27003. [PMID: 30810372 PMCID: PMC6752943 DOI: 10.1289/ehp3730] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Phthalates are environmental contaminants commonly used as plasticizers in polyvinyl chloride (PVC) products. Recently, exposure to phthalates has been associated with preterm birth, low birth weight, and pregnancy loss. There is limited information about the possible mechanisms linking maternal phthalate exposure and placental development, but one such mechanism may be mediated by peroxisome proliferator–activated receptor γ (PPARγ). PPARγ belongs to the nuclear receptor superfamily that regulates, in a ligand-dependent manner, the transcription of target genes. Studies of PPARγ-deficient mice have demonstrated its essential role in lipid metabolism and placental development. In the human placenta, PPARγ is expressed in the villous cytotrophoblast (VCT) and is activated during its differentiation into syncytiotrophoblast. OBJECTIVES The goal of this study was to investigate the action of mono(2-ethylhexyl) phthalate (MEHP) on PPARγ activity during in vitro differentiation of VCTs. METHODS We combined immunofluorescence, PPARγ activity/hCG assays, western blotting, and lipidomics analyses to characterize the impacts of physiologically relevant concentrations of MEHP (0.1, 1, and 10 μM) on cultured VCTs isolated from human term placentas. RESULTS Doses of 0.1 and 1 μM MEHP showed significantly lower PPARγ activity and less VCT differentiation in comparison with controls, whereas, surprisingly, a 10 μM dose had the opposite effect. MEHP exposure inhibited hCG production and significantly altered lipid composition. In addition, MEHP had significant effects on the mitogen-activated protein kinase (MAPK) pathway. CONCLUSIONS This study suggests that MEHP has a U-shaped dose–response effect on trophoblast differentiation that is mediated by the PPARγ pathway and acts as an endocrine disruptor in the human placenta. https://doi.org/10.1289/EHP3730.
Collapse
Affiliation(s)
- Hussein Shoaito
- UMR-S1139, Faculté de Pharmacie de Paris, Institut national de la santé et de la recherché médicale (Inserm, National Institute of Health & Medical Research), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Julia Petit
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- UMR 8638, Faculté de Pharmacie de Paris, Centre national de la recherche scientifique (Cnrs, National Center for Scientific Research), Paris, France
| | - Audrey Chissey
- UMR-S1139, Faculté de Pharmacie de Paris, Institut national de la santé et de la recherché médicale (Inserm, National Institute of Health & Medical Research), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nicolas Auzeil
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- UMR 8638, Faculté de Pharmacie de Paris, Centre national de la recherche scientifique (Cnrs, National Center for Scientific Research), Paris, France
| | - Jean Guibourdenche
- UMR-S1139, Faculté de Pharmacie de Paris, Institut national de la santé et de la recherché médicale (Inserm, National Institute of Health & Medical Research), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Fondation PremUp, Paris, France
- Department of Biological Endocrinology, CHU Cochin, Assistance publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Sophie Gil
- UMR-S1139, Faculté de Pharmacie de Paris, Institut national de la santé et de la recherché médicale (Inserm, National Institute of Health & Medical Research), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Fondation PremUp, Paris, France
| | - Olivier Laprévote
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- UMR 8638, Faculté de Pharmacie de Paris, Centre national de la recherche scientifique (Cnrs, National Center for Scientific Research), Paris, France
- Department of Biochemistry, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Thierry Fournier
- UMR-S1139, Faculté de Pharmacie de Paris, Institut national de la santé et de la recherché médicale (Inserm, National Institute of Health & Medical Research), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Fondation PremUp, Paris, France
| | - Séverine A. Degrelle
- UMR-S1139, Faculté de Pharmacie de Paris, Institut national de la santé et de la recherché médicale (Inserm, National Institute of Health & Medical Research), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Fondation PremUp, Paris, France
- Inovarion, Paris, France
| |
Collapse
|
43
|
Philippat C, Heude B, Botton J, Alfaidy N, Calafat AM, Slama R. Prenatal Exposure to Select Phthalates and Phenols and Associations with Fetal and Placental Weight among Male Births in the EDEN Cohort (France). ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:17002. [PMID: 30624098 PMCID: PMC6381819 DOI: 10.1289/ehp3523] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND The placenta performs crucial physiological functions to ensure normal fetal development. Few epidemiological studies investigated placental weight sensitivity to phthalates and phenols. OBJECTIVE Our goal was to explore whether maternal exposure to select phthalates and phenols is associated with changes in placental weight at birth and in placental–to–birth weight ratio (PFR). METHODS Placental weight and birth weight were available for 473 mother–son pairs in the EDEN (Etude des Déterminants pré et postnatals du développement et de la santé de l'Enfant) cohort for whom 9 phenols (4 parabens, 2 dichlorophenols, triclosan, benzophenone-3, bisphenol A) and 11 phthalate metabolites were measured in spot urine samples collected between weeks 23 and 29 of gestation. We used adjusted Elastic Net penalized regression models (ENET) to select biomarkers associated with placental weight, birth weight and PFR. Unpenalized effect estimates were then obtained by fitting linear regression models simultaneously adjusted for the ENET-selected biomarkers and a priori chosen confounders. RESULTS The multipollutant ENET model for placental weight retained four biomarkers: triclosan and monocarboxy-isononyl phthalate (MCNP), which were negatively associated with placental weight, and benzophenone-3 and the sum of parabens, which were positively associated with this outcome. The ENET model for PFR retained two phthalate metabolites [MCNP and monocarboxy-isooctyl phthalate (MCOP)], which were negatively associated with this outcome. DISCUSSION The positive association between the sum of parabens and placental weight was consistent with results of a previous study among 49 male births. Our results provide preliminary evidence of possible associations between other compounds such as triclosan, benzophenone-3, MCNP, and MCOP and both placental weight and PFR. These associations were not reported in previous studies and should be seen as hypothesis generating. Studies relying on repeated assessments of exposure in prospective mother–child cohorts are needed to substantiate the plausibility of the hypotheses generated by our results. https://doi.org/10.1289/EHP3523.
Collapse
Affiliation(s)
- Claire Philippat
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm U1209, Centre national de la recherche scientifique (CNRS) Unité de recherche (UMR) 5309, Université Grenoble Alpes, Grenoble, France
| | - Barbara Heude
- Early Origin of the Child's Health and Development (ORCHAD) Team, Inserm 1153 Epidemiology and Biostatistics Sorbonne Paris Cité Research Centre (CRESS), Villejuif, France
- Université Paris Descartes, Villejuif, France
| | - Jérémie Botton
- Faculty of Pharmacy, Université Paris-Sud/Université Paris-Saclay, Châtenay-Malabry, France
| | - Nadia Alfaidy
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Inserm U1036, Biosciences and Biotechnology Institute of Grenoble, Université Grenoble Alpes, Grenoble, France
| | | | - Rémy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm U1209, Centre national de la recherche scientifique (CNRS) Unité de recherche (UMR) 5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
44
|
Zhu YD, Zhu BB, Gao H, Huang K, Xu YY, Yan SQ, Zhou SS, Cai XX, Zhang QF, Qi J, Jin ZX, Sheng J, Pan WJ, Hao JH, Zhu P, Tao FB. Repeated measures of prenatal phthalate exposure and maternal hemoglobin concentration trends: The Ma'anshan birth cohort (MABC) study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1033-1041. [PMID: 30096541 DOI: 10.1016/j.envpol.2018.07.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
A prospective cohort study of a Chinese population was conducted to investigate the relationship between prenatal phthalates exposure and maternal hemoglobin or anemia. Based on the Ma'anshan Birth Cohort study, 7 phthalate metabolites were quantified in spot pregnancy urine samples (n = 9263) from 3269 pregnant women during each trimester. The maternal hemoglobin concentrations were obtained from electronic medical records at the same three time points for each participant during pregnancy. Anemia was defined as a hemoglobin concentration below 110 g/L in pregnant women. Repeated measures and trimester-specific analyses were used to estimate the effects of phthalates exposure on maternal hemoglobin and anemia. The prevalence of anemia was 3.6%, 27.0%, and 26.5% during the first, second and third trimester, respectively. Repeated measures analysis showed that hemoglobin concentrations decreased by 0.55, 0.19, 0.57, 0.49, and 0.54 g/L with each 1 ln-transformed concentration increase of MBP, MBzP, MEHP, MEOHP, and MEHHP, respectively. Exposure to MMP, MBP, MEHP, MEOHP, and MEHHP increased the risk of anemia by 1.11-fold, 1.21-fold, 1.20-fold, 1.13-fold, and 1.16-fold, respectively. Trimester-specific regression models stratified by the sample collection time during pregnancy generated consistent results. This is the first study focusing on the effect of prenatal phthalate exposures on hemoglobin or anemia in pregnant Chinese women. We found that prenatal phthalates exposure not only decreased the concentrations of hemoglobin but also showed associations with the prevalence of anemia. Associations appeared stronger for the subsample representing women pregnant with a male fetus than those pregnant with a female fetus. Anemia remains a moderate public health problem in China, and effective measures should be implemented.
Collapse
Affiliation(s)
- Yuan-Duo Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Bei-Bei Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Hui Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Yuan-Yuan Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Shuang-Qin Yan
- Ma'anshan Maternal and Child Health (MCH) Clinic, Ma'anshan, China
| | - Shan-Shan Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiu-Xiu Cai
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qiu-Feng Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Juan Qi
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhong-Xiu Jin
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Jie Sheng
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Wei-Jun Pan
- Ma'anshan Maternal and Child Health (MCH) Clinic, Ma'anshan, China
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China.
| |
Collapse
|
45
|
Martínez MA, Rovira J, Prasad Sharma R, Nadal M, Schuhmacher M, Kumar V. Comparing dietary and non-dietary source contribution of BPA and DEHP to prenatal exposure: A Catalonia (Spain) case study. ENVIRONMENTAL RESEARCH 2018; 166:25-34. [PMID: 29859370 DOI: 10.1016/j.envres.2018.05.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol A (BPA) and Di-(2-ethylhexyl) phthalate (DEHP) are two wide spread chemicals classified as endocrine disruptors (ED). The present study aims to estimate the non-dietary (dermal, non-dietary ingestion and inhalation) exposure to BPA and DEHP for a pregnant women cohort. In addition, to assess the prenatal exposure for the fetus, a physiologically based pharmacokinetic (PBPK) model was used. It was adapted for pregnancy in order to assess the internal dosimetry levels of EDs (BPA and DEHP) in the fetus. Estimates of exposure to BPA and DEHP from all pathways along with their relative importance were provided in order to establish which proportion of the total exposure came from diet and which came from non-dietary exposures. In this study, the different oral dosing scenarios (dietary and non-dietary) were considered keeping inhalation as a continuous exposure case. Total non-dietary mean values were 0.002 µg/kgbw/day (0.000; 0.004 µg/kgbw/day for 5th and 95th percentile, respectively) for BPA and 0.597 µg/kgbw/day (0.116 µg/kgbw/day and 1.506 µg/kgbw/day for 5th and 95th percentile, respectively) for DEHP. Indoor environments and especially dust ingestion were the main non-dietary contributors to the total exposure of BPA and DEHP with 60% and 81%. However, as expected, diet showed the higher contribution to total exposure with > 99.9% for BPA and 63% for DEHP. Although diet was considered the primary source of exposure to BPA and phthalates, it must be taken into account that with non-dietary sources the first-pass metabolism is lacking, so these may be of equal or even higher toxicological relevance than dietary sources. The present study is in the framework of "Health and environmental-wide associations based on large population surveys" (HEALS) project (FP7-603946).
Collapse
Affiliation(s)
- M A Martínez
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| | - J Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - R Prasad Sharma
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| | - M Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - M Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - V Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW To assess the strength of evidence for associations between environmental toxicants and hypertensive disorders of pregnancy, suggest potential biological mechanisms based on animal and in vitro studies, and highlight avenues for future research. RECENT FINDINGS Evidence is strongest for links between persistent chemicals, including lead, cadmium, organochlorine pesticides, and polycyclic biphenyls, and preeclampsia, although associations are sometimes not detectable at low-exposure levels. Results have been inconclusive for bisphenols, phthalates, and organophosphates. Biological pathways may include oxidative stress, epigenetic changes, endocrine disruption, and abnormal placental vascularization. Additional prospective epidemiologic studies beginning in the preconception period and extending postpartum are needed to assess the life course trajectory of environmental exposures and women's reproductive and cardiovascular health. Future studies should also consider interactions between chemicals and consider nonlinear associations. These results confirm recommendations by the International Federation of Gynecology and Obstetrics, the American Society for Reproductive Medicine, the American Academy of Pediatrics, and the Endocrine Society that providers counsel their pregnant patients to limit exposure to environmental toxicants.
Collapse
|