1
|
Gao Q, Gan J, Wang P, Huang Y, Zhang D, Yu W. Bio-inspired hierarchical bamboo-based air filters for efficient removal of particulate matter and toxic gases. EXPLORATION (BEIJING, CHINA) 2025; 5:20240012. [PMID: 40040832 PMCID: PMC11875449 DOI: 10.1002/exp.20240012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/14/2024] [Accepted: 04/24/2024] [Indexed: 03/06/2025]
Abstract
Air pollution is caused by the perilous accumulation of particulate matter (PM) and harmful gas molecules of different sizes. There is an urgent need to develop highly efficient air filtration systems capable of removing particles with a wide size distribution. However, the efficiency of current air filters is compromised by controlling their hierarchical pore size. Inspired by the graded filtration mechanisms in the human respiratory system, microporous ZIF-67 is in situ synthesized on a 3D interconnected network of bamboo cellulose fibers (BCFs) to fabricate a multiscale porous filter with a comprehensive pore size distribution. The macropores between the BCFs, mesopores formed by the BCF microfibers, and micropores within the ZIF-67 synergistically facilitate the removal of particulates of different sizes. The filtration capabilities of PM2.5 and PM0.3 could reach 99.3% and 98.6%, respectively, whereas the adsorption of formaldehyde is 88.7% within 30 min. In addition, the filter exhibits excellent antibacterial properties (99.9%), biodegradability (80.1% degradation after 14 days), thermal stability, and skin-friendly properties (0 irritation). This study may inspire the research of using natural features of renewable resources to design high-performance air-filtration materials for various applications.
Collapse
Affiliation(s)
- Qi Gao
- Research Institute of Wood IndustryChinese Academy of ForestryBeijingChina
| | - Jian Gan
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesNanjing Forestry UniversityNanjingChina
| | - Pixiang Wang
- Center for Materials and Manufacturing SciencesDepartment of Chemistry and PhysicsTroy UniversityTroyUSA
| | - Yuxiang Huang
- Research Institute of Wood IndustryChinese Academy of ForestryBeijingChina
| | - Daihui Zhang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesNanjing Forestry UniversityNanjingChina
- Institute of Chemical Industry of Forest ProductsChinese Academy of ForestryNanjingChina
| | - Wenji Yu
- Research Institute of Wood IndustryChinese Academy of ForestryBeijingChina
| |
Collapse
|
2
|
Zhang X, Zhang X, Yang H, Cheng X, Zhu YG, Ma J, Cui D, Zhang Z. Spatial and temporal changes of air quality in Shandong Province from 2016 to 2022 and model prediction. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135408. [PMID: 39096641 DOI: 10.1016/j.jhazmat.2024.135408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
This study investigates the spatial and temporal dynamics of air quality in Shandong Province from 2016 to 2022. The Air Quality Index (AQI) showed a seasonal pattern, with higher values in winter due to temperature inversions and heating emissions, and lower values in summer aided by favorable dispersion conditions. The AQI improved significantly, decreasing by approximately 39.4 % from 6.44 to 3.90. Coastal cities exhibited better air quality than inland areas, influenced by industrial activities and geographical features. For instance, Zibo's geography restricts pollutant dispersion, resulting in poor air quality. CO levels remained stable, while O3 increased seasonally due to photochemical reactions in summer, with correlation coefficients indicating a strong positive correlation with temperature (r = 0.65). Winter saw elevated NO2 levels linked to heating and vehicular emissions, with an observed increase in correlation with AQI (r = 0.78). PM2.5 and PM10 concentrations were higher in colder months due to heating and atmospheric dust, showing a significant decrease of 45 % and 40 %, respectively, over the study period. Predictive modeling forecasts continued air quality improvements, contingent on sustained policy enforcement and technological advancements. This approach provides a comprehensive framework for future air quality management and improvement.
Collapse
Affiliation(s)
- Xu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinrui Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Huanhuan Yang
- School of Life Sciences, Qilu Normal University, Jinan 250200, China.
| | - Xu Cheng
- Institute for Advanced Technology, Shandong University, Jinan 250061, China
| | - Yong Guan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dayong Cui
- School of Life Sciences, Qilu Normal University, Jinan 250200, China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Strobl K, Irfan SA, Masood H, Latif N, Kurmi O. Association between PM10 exposure and risk of myocardial infarction in adults: A systematic review and meta-analysis. PLoS One 2024; 19:e0301374. [PMID: 38691568 PMCID: PMC11062553 DOI: 10.1371/journal.pone.0301374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 03/11/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Air pollution has several negative health effects. Particulate matter (PM) is a pollutant that is often linked to health adversities. PM2.5 (PM with an aerodynamic diameter of ≤2.5μm) exposure has been associated with negative cardiovascular (CV) outcomes. However, the impact of PM10 (PM with an aerodynamic diameter of ≤10μm) exposure is often overlooked due to its limited ability to pass the alveolar barrier. This study aims to assess the association between PM10 exposure and risk of myocardial infarction (MI) amongst adults (≥18 years of age) as this has been poorly studied. METHODS The study protocol was published on the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42023409796) on March 31, 2023. Literature searches were conducted on 4 databases (Ovid Medline, Embase, CINAHL (Cumulative Index to Nursing and Allied Health Literature), and Web of Science) on January 17, 2023, for studies looking at associations between PM and MI. English studies from all time periods were assessed. Studies selected for review were time-series, case-crossover, and cohort studies which investigated the risk of MI as an outcome upon PM10 exposure. The quality of evidence was assessed using Cochrane's Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. Data for different risk outcomes (risk ratio (RR), odds ratio (OR), hazard ratio (HR)) and 3 lags was meta-analyzed using an inverse variance statistical analysis using a random effects model. The pooled effect sizes and the 95% confidence intervals (CIs) were reported in forest plots. RESULTS Among the 1,099 studies identified, 41 were included for review and 23 were deemed eligible for meta-analysis. Our analysis revealed that there is an increased risk (OR = 1.01; 95% CI:1.00-1.02) of MI with a 10 μg/m3 increase in PM10 after a lag 0 and lag 1 delay. CONCLUSIONS Our findings indicate that PM10 exposure is associated with an increased risk of MI. This can aid in informing environmental policy-making, personal-level preventative measures, and global public health action.
Collapse
Affiliation(s)
- Kleiton Strobl
- Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Syed Asad Irfan
- Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Hassan Masood
- Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Noor Latif
- Faculty of Science, McMaster University, Hamilton, Canada
| | - Om Kurmi
- Faculty of Health Sciences, McMaster University, Hamilton, Canada
- Faculty Research Centre for Healthcare and Communities, Coventry University, Coventry, United Kingdom
| |
Collapse
|
4
|
Cha J, Choi SY, Rha SW, Choi BG, Byun JK, Hyun S, Lee MW, Kang J, Chu W, Park EJ, Kang DO, Choi CU, Kim SW, Jeong MH, Park S. Long-term air pollution exposure is associated with higher incidence of ST-elevation myocardial infarction and in-hospital cardiogenic shock. Sci Rep 2024; 14:4976. [PMID: 38424210 PMCID: PMC10904831 DOI: 10.1038/s41598-024-55682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Previous studies have reported the association between myocardial infarction (MI) and air pollution (AP). However, limited information is available regarding the long-term effects of AP on the relative incidence rates of ST-elevation MI (STEMI) and Non-ST-elevation MI (NSTEMI). We investigated the association between long-term exposure to AP and the incidence of STEMI. Between January 2006 and December 2015, a total of 45,619 eligible patients with Acute Myocardial Infarction (AMI) were enrolled in the Korea Acute MI Registry (KAMIR) and KAMIR-National Institutes of Health. Mixed-effect regression models were used to examine the association between the annual average ambient AP before MI onset and the incidence of STEMI, and to evaluate the association of AP with the incidence of in-hospital cardiogenic shock. After mixed-effect regression model analysis, particulate matter (PM) 10 µm or less in diameter (PM10) was associated with increased incidence of STEMI compared with NSTEMI (odds ratio [OR] 1.009, 95% Confidence Interval [CI] 1.002-1.016; p = 0.012). For in-hospital cardiogenic shock complication, PM10 and SO2 were associated with increased risk, PM10 (OR 1.033, 95% CI 1.018-1.050; p < 0.001), SO2 (OR 1.104, 95% CI 1.006-1.212; p = 0.037), respectively. Policy-level strategies and clinical efforts to reduce AP exposure are necessary to prevent the incidence of STEMI and severe cardiovascular complications.
Collapse
Affiliation(s)
- Jinah Cha
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Cardiology, Cardiovascular Center, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Se Yeon Choi
- Cardiovascular Research Institution, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Seung-Woon Rha
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Byoung Geol Choi
- Cardiovascular Research Institution, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Jae Kyeong Byun
- Cardiovascular Research Institution, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sujin Hyun
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Seoul, 02841, Republic of Korea
| | - Min Woo Lee
- Research Institute of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Jaeho Kang
- Department of Cardiology, Cardiovascular Center, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Wonsang Chu
- Department of Cardiology, Cardiovascular Center, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Eun Jin Park
- Department of Cardiology, Cardiovascular Center, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Dong Oh Kang
- Department of Cardiology, Cardiovascular Center, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Cheol Ung Choi
- Department of Cardiology, Cardiovascular Center, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Suhng Wook Kim
- School of Health and Environmental Science, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Myung Ho Jeong
- Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Soohyung Park
- Department of Cardiology, Cardiovascular Center, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea.
| |
Collapse
|
5
|
Mokammel A, Malkawi M, Momeniha F, Safi HAM, Niazi S, Yousefian F, Azimi F, Naddafi K, Shamsipour M, Roostaei V, Faridi S, Hassanvand MS. Assessing capabilities of conducted ambient air pollution health effects studies in 22 Eastern Mediterranean countries to adopt air quality standards: a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:295-304. [PMID: 37869598 PMCID: PMC10584797 DOI: 10.1007/s40201-023-00862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/18/2023] [Indexed: 10/24/2023]
Abstract
Purpose The Eastern Mediterranean Region (EMR) countries suffer from exposure to high levels of ambient air pollutants due to dust storms and have unique climatic as well as topographic and socio-economic conditions which lead to adverse health effects on humans. The purpose of the review was to evaluate the quantity and quality of published articles on air pollution and health-based studies in 22 EMR countries to determine if they can be applied to adopting air quality standards. Methods We designed a review based on a broad search of the literature in the Scopus, PubMed, and web of science (WOS) databases published from January 1, 2000, to January 2, 2022, using combinations of the following relevant terms: air pollution, health, and EMR countries. The generic eligibility criteria for this review were based on the population, exposure, comparator, outcome, and study design (PECOS) statement. Results The search results showed that following the PRISMA approach, of 2947 identified articles, 353 studies were included in this review. The analysis of the types of studies showed that about 70% of the studies conducted in EMR countries were Health Burden Estimation studies (31%), Ecological and time trend ecological studies (23%), and cross-sectional studies (16%). Also, researchers from Iran participated in the most published relevant studies in the region 255 (~ 63%) and just 10 published documents met all the PECOS criteria. Conclusion The lack of sufficient studies which can meet the PECOS appraising criteria and the lack of professionals in this field are some of the issues that make it impossible to use as potential documents in the WHO future studies and adopt air quality standards. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-023-00862-1.
Collapse
Affiliation(s)
- Adel Mokammel
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mazen Malkawi
- Centre for Environmental Health Action (CEHA), World Health Organization (WHO), Amman, Jordan
| | - Fatemeh Momeniha
- Center for Solid Waste Research, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Heba Adel Moh’d Safi
- Faculty of Science, School of Earth and Atmospheric Sciences, Queensland University of Technology (QUT), International Laboratory for Air Quality and Health, Brisbane, 4001 Australia
| | - Sadegh Niazi
- Faculty of Science, School of Earth and Atmospheric Sciences, Queensland University of Technology (QUT), International Laboratory for Air Quality and Health, Brisbane, 4001 Australia
| | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Faramarz Azimi
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Roostaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Faridi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Guo X, Su W, Wang H, Li N, Song Q, Liang Q, Sun C, Liang M, Zhou Z, Song EJ, Sun Y. Short-term exposure to ambient ozone and cardiovascular mortality in China: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:958-975. [PMID: 35438585 DOI: 10.1080/09603123.2022.2066070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Air pollution is a major public health concern in China. Notwithstanding this, there is limited evidence regarding the impact of short-term exposure to ambient ozone on cardiovascular mortality in the Chinese population. Therefore, we conducted this meta-analysis to address this important question. The random-effects model was applied to pool the results from individual studies. Finally, 32 effect estimates extracted from 19 studies were pooled in this meta-analysis. The pooled relative risk for cardiovascular mortality for each 10 µg/m3 increment in ozone concentration was 1.0068 (95% CI: 1.0049, 1.0086). Ths significant positive association between ozone exposure and cardiovascular mortality was also observed in different two-pollutant models. This meta-analysis revealed that exposure to ozone was associated with an increased risk of cardiovascular mortality in China, and more efforts on controlling the population from ozone are needed to improve cardiovascular health of Chinese population.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Chenyu Sun
- Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, USA
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Evelyn J Song
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
- Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, P.R. China
| |
Collapse
|
7
|
Yuan C, Liu F, Huang K, Shen C, Li J, Liang F, Yang X, Cao J, Chen S, Hu D, Huang J, Liu Y, Lu X, Gu D. Association of Long-Term Exposure to Ambient Fine Particulate Matter with Atherosclerotic Cardiovascular Disease Incidence Varies across Populations with Different Predicted Risks: The China-PAR Project. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37368969 DOI: 10.1021/acs.est.3c01460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Previous studies have established a significant link between ambient fine particulate matter (PM2.5) exposure and atherosclerotic cardiovascular disease (ASCVD) incidence, but whether this association varies across populations with different predicted ASCVD risks was uncertain previously. We included 109,374 Chinese adults without ASCVD at baseline from the Prediction for Atherosclerotic Cardiovascular Disease Risk in China (China-PAR) project. We obtained PM2.5 data of participants' residential address from 2000 to 2015 using a satellite-based spatiotemporal model. Participants were classified into low-to-medium and high-risk groups according to the ASCVD 10-year and lifetime risk prediction scores. Hazard ratios (HRs) and 95% confidence intervals (CIs) for PM2.5 exposure-related incident ASCVD, as well as the multiplication and additive interaction, were calculated using stratified Cox proportional hazard models. The additive interaction between risk stratification and PM2.5 exposure was estimated by the synergy index (SI), the attributable proportion due to the interaction (API), and the relative excess risk due to interaction (RERI). Over the follow-up of 833,067 person-years, a total of 4230 incident ASCVD cases were identified. Each 10 μg/m3 increment of PM2.5 concentration was associated with 18% (HR: 1.18; 95% CI: 1.14-1.23) increased risk of ASCVD in the total population, and the association was more pronounced among individuals having a high predicted ASCVD risk than those having a low-to-medium risk, with the HR (95% CI) of 1.24 (1.19-1.30) and 1.11 (1.02-1.20) per 10 μg/m3 increment in PM2.5 concentration, respectively. The RERI, API, and SI were 1.22 (95% CI: 0.62-1.81), 0.22 (95% CI: 0.12-0.32), and 1.37 (95% CI: 1.16-1.63), respectively. Our findings demonstrate a significant synergistic effect on ASCVD between ASCVD risk stratification and PM2.5 exposure and highlight the potential health benefits of reducing PM2.5 exposure in Chinese, especially among those with high ASCVD risk.
Collapse
Affiliation(s)
- Chenxi Yuan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Keyong Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Chong Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jianxin Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xueli Yang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health; Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jie Cao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Shufeng Chen
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Dongsheng Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Department of Epidemiology and Health Statistics, School of Public Health, Shenzhen University Health Science Center, Shenzhen 518071, China
| | - Jianfeng Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322 United States
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Dongfeng Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
Psistaki K, Achilleos S, Middleton N, Paschalidou AK. Exploring the impact of particulate matter on mortality in coastal Mediterranean environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161147. [PMID: 36587685 DOI: 10.1016/j.scitotenv.2022.161147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Air pollution is one of the most important problems the world is facing nowadays, adversely affecting public health and causing millions of deaths every year. Particulate matter is a criteria pollutant that has been linked to increased morbidity, as well as all-cause and cause-specific mortality. However, this association remains under-investigated in smaller-size cities in the Eastern Mediterranean, which are also frequently affected by heat waves and dust storms. This study explores the impact of particulate matter with an aerodynamic diameter ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5) on mortality (all-cause, cardiovascular, respiratory) in two coastal cities in the Eastern Mediterranean; Thessaloniki, Greece and Limassol, Cyprus. Generalized additive Poisson models were used to explore overall and gender-specific associations, controlling for long- and short-term patterns, day of week and the effect of weather variables. Moreover, the effect of different lags, season, co-pollutants and dust storms on primary associations was investigated. A 10 μg/m3 increase in PM2.5 resulted in 1.10 % (95 % CI: -0.13, 2.34) increase in cardiovascular mortality in Thessaloniki, and in 3.07 % (95 % CI: -0.90, 7.20) increase in all-cause mortality in Limassol on the same day. Additionally, significant positive associations were observed between PM2.5 as well as PM10 and mortality at different lags up to seven days. Interestingly, an association with dust storms was observed only in Thessaloniki, having a protective effect, while the gender-specific analysis revealed significant associations only for the males in both cities. The outcome of this study highlights the need of city- or county-specific public health interventions to address the impact of climate, population lifestyle behaviour and other socioeconomic factors that affect the exposure to air pollution and other synergistic effects that alter the effect of PM on population health.
Collapse
Affiliation(s)
- K Psistaki
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Orestiada 68200, Greece
| | - S Achilleos
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia, Cyprus
| | - N Middleton
- Department of Nursing, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - A K Paschalidou
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Orestiada 68200, Greece.
| |
Collapse
|
9
|
Yount CS, Utell MJ, Hopke PK, Thurston SW, Lin S, Ling FS, Chen Y, Chalupa D, Deng X, Rich DQ. Triggering of ST-elevation myocardial infarction by ultrafine particles in New York: Changes following Tier 3 vehicle introduction. ENVIRONMENTAL RESEARCH 2023; 216:114445. [PMID: 36181892 DOI: 10.1016/j.envres.2022.114445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Previously, we found increased rates of ST-elevation myocardial infarction (STEMI) associated with increased ultrafine particle (UFP; <100 nm) concentrations in the previous few hours in Rochester, New York. Relative rates were higher after air quality policies and a recession reduced pollutant concentrations (2014-2016 versus 2005-2013), suggesting PM composition had changed and the same PM mass concentration had become more toxic. Tier 3 light duty vehicles, which should produce less primary organic aerosols and oxidizable gaseous compounds, likely making PM less toxic, were introduced in 2017. Thus, we hypothesized we would observe a lower relative STEMI rate in 2017-2019 than 2014-2016. METHODS Using STEMI events treated at the University of Rochester Medical Center (2014-2019), UFP and other pollutants measured in Rochester, a case-crossover design, and conditional logistic regression models, we estimated the rate of STEMI associated with increased UFP and other pollutants in the previous hours and days in the 2014-2016 and 2017-2019 periods. RESULTS An increased rate of STEMI was associated with each 3111 particles/cm3 increase in UFP concentration in the previous hour in 2014-2016 (lag hour 0: OR = 1.22; 95% CI = 1.06, 1.39), but not in 2017-2019 (OR = 0.94; 95% CI = 0.80, 1.10). There were similar patterns for black carbon, UFP11-50nm, and UFP51-100nm. In contrast, increased rates of STEMI were associated with each 0.6 ppb increase in SO2 concentration in the previous 120 h in both periods (2014-2016: OR = 1.26, 95% CI = 1.03, 1.55; 2017-2019: OR = 1.21, 95% CI = 0.87, 1.68). CONCLUSIONS Greater rates of STEMI were associated with short term increases in concentrations of UFP and other motor vehicle related pollutants before Tier 3 introduction (2014-2016), but not afterwards (2017-2019). This change may be due to changes in PM composition after Tier 3 introduction, as well as to increased exposure misclassification and greater underestimation of effects from 2017 to 2019.
Collapse
Affiliation(s)
- Catherine S Yount
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard CU420644, Rochester, NY, 14642, USA
| | - Mark J Utell
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA; Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box EHSC, Rochester, NY, 14642, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard CU420644, Rochester, NY, 14642, USA; Center for Air and Aquatic Resources Engineering and Sciences, Clarkson University, 8 Clarkson Avenue Box 5708, Potsdam, NY, 13699, USA
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box EHSC, Rochester, NY, 14642, USA; Department of Biostatistics and Computational Biology, 265 Crittenden Boulevard CU420630, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shao Lin
- Department of Environmental Health, University at Albany School of Public Health, State University of New York, 1 University Place, Rensselaer, NY, 12144, USA
| | - Frederick S Ling
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yunle Chen
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard CU420644, Rochester, NY, 14642, USA
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box EHSC, Rochester, NY, 14642, USA
| | - Xinlei Deng
- Department of Environmental Health, University at Albany School of Public Health, State University of New York, 1 University Place, Rensselaer, NY, 12144, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard CU420644, Rochester, NY, 14642, USA; Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA; Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box EHSC, Rochester, NY, 14642, USA.
| |
Collapse
|
10
|
Du P, Du H, Lu K, He MZ, Feng D, He M, Liu T, Hu J, Li T. Traffic-related PM 2.5 and its specific constituents on circulatory mortality: A nationwide modelling study in China. ENVIRONMENT INTERNATIONAL 2022; 170:107652. [PMID: 36446182 DOI: 10.1016/j.envint.2022.107652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Short-term fine particulate matter (PM2.5) exposure and increased circulatory mortality have been well documented. However, there are inconsistent findings on mortality effects of traffic-related pollutants from the perspective of sources or constituents. Few studies have examined such associations using source and constituents simultaneously, and even less are based on large-scale, nationally representative data. We aimed to conduct a comprehensive analysis to investigate source- and constituent-specific mortality effects due to traffic-related PM2.5 pollution in China. METHODS We extracted daily mortality data in 280 counties from the China Disease Surveillance Points system (DSPs) from January 2013 to December 2018. Daily concentrations of traffic-related PM2.5 and specific constituents were simulated using the Community Multiscale Air Quality (CMAQ) model. The downscaling and adjustment methods were carried out to generate a refined exposure assessment. We estimated the circulatory mortality risk using a standard two-stage approach, combining generalized linear model (GLM) with a quasi-Poisson distribution and random-effects meta-analysis. RESULTS We observed that traffic-related PM2.5 and specific constituents were significantly associated with increased circulatory mortality. An increase of interquartile range of traffic-related PM2.5, elemental carbon (EC), organic carbon (OC), and nitrate (NO3-) were associated with elevated circulatory mortality risks of 1.80 % (95 % confidence interval, CI: 1.27, 2.33), 1.85 % (1.33, 2.37), 1.42 % (0.90, 1.94), and 1.10 % (0.55, 1.66) at 3-day moving average (lag 0-2 days), respectively. We also found relatively high associations between traffic-related PM2.5 and EC exposures and cardiovascular mortality, and OC exposure and cerebrovascular mortality. Moreover, our stratified analysis demonstrated such mortality risks tended to be stronger in males, individuals age 65 years or older, and during the cold season. CONCLUSION Our findings provided robust evidence on significant associations of traffic-related PM2.5 and specific constituents with circulatory mortality. Further emissions abatement from the transportation sector and corresponding pollutants should merit a particular focus in China.
Collapse
Affiliation(s)
- Peng Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hang Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Kailai Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mike Z He
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Da Feng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Miao He
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ting Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
11
|
Biondi-Zoccai G, Rodriguez-Granillo GA, Mercade JM, Dawidowski L, Seropian IM, Cohen F, Sturmer-Ramos C, Descalzo A, Rubilar B, Sztejfman M, Zaidel E, Pazos C, Leguizamon J, Cafaro G, Visconti M, Baglioni P, Noya A, Fontana L, Rodriguez-Granillo M, Pavlovsky H, Alvarez JA, Lylyk P, Versaci F, Abrutzky R. Interplay between climate, pollution and COVID-19 on ST-elevation myocardial infarction in a large metropolitan region. Minerva Med 2022; 113:950-958. [PMID: 34309338 DOI: 10.23736/s0026-4806.21.07748-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Collective risk factors such as climate and pollution impact on the risk of acute cardiovascular events, including ST-elevation myocardial infarction (STEMI). There is limited data however on the precise temporal and independent association between these factors and STEMI, and the potentially interacting role of government policies against Coronavirus disease 2019 (COVID-19), especially for Latin America. METHODS We retrospectively collected aggregate data on daily STEMI admissions at 10 tertiary care centers in the Buenos Aires metropolitan area, Argentina, from January 1, 2017 to November 30, 2020. Daily measurements for temperature, humidity, atmospheric pressure, wind direction, wind speed, and rainfall, as well as carbon monoxide (CO), nitrogen dioxide, and particulate matter <10 µm (PM10), were retrieved. Exploratory analyses focused on key COVID-19-related periods (e.g. first case, first lockdown), and Stringency Index quantifying the intensity of government policy response against COVID-19. RESULTS A total of 1498 STEMI occurred over 1430 days, for an average of 0.12 STEMI per center (decreasing from 0.130 in 2018 to 0.102 in 2020, P=0.016). Time series analysis showed that lower temperature and higher concentration of CO and PM10 were all significantly associated with an increased rate of STEMI (all P<0.05), whereas COVID-19 outbreak, lockdown, and stringency of government policies were all inversely associated with STEMI (all P<0.05). Notably, environmental features impacted as early as 28 days before the event (all P<0.05), even if same or prior day associations proved stronger (all P<0.05). Multivariable analysis suggested that maximum temperature (P=0.001) and PM10 (P=0.033) were the strongest predictor of STEMI, even after accounting for COVID-19-related countermeasures (P=0.043). CONCLUSIONS Lower temperature and higher concentrations of CO and PM10 are associated with significant increases in the rate of STEMI in a large Latin American metropolitan area. The reduction in STEMI cases seen during the COVID-19 pandemic is at least in part mediated by improvements in pollution, especially reductions in PM10.
Collapse
Affiliation(s)
- Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy -
- Mediterranea Cardiocentro, Naples, Italy -
| | - Gaston A Rodriguez-Granillo
- Department of Cardiovascular Imaging, ENERI Medical Institute, La Sagrada Familia Clinic, Buenos Aires, Argentina
- National Council of Scientific and Technical Investigations, Buenos Aires, Argentina
| | - Juan M Mercade
- Agencia de Proteccion Ambiental (APRA), Buenos Aires, Argentina
| | - Laura Dawidowski
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | - Ignacio M Seropian
- Department of Interventional Cardiology, Buenos Aires Italian Hospital, Buenos Aires, Argentina
| | - Fernando Cohen
- Department of Interventional Cardiology, Buenos Aires Italian Hospital, Buenos Aires, Argentina
| | | | - Amalia Descalzo
- Department of Interventional Cardiology ENERI Medical Institute, La Sagrada Familia Clinic, Buenos Aires, Argentina
| | - Bibiana Rubilar
- Department of Interventional Cardiology ENERI Medical Institute, La Sagrada Familia Clinic, Buenos Aires, Argentina
| | - Matias Sztejfman
- Department of Interventional Cardiology, Guemes Sanatorium, Buenos Aires, Argentina
| | - Ezequiel Zaidel
- Department of Interventional Cardiology, Guemes Sanatorium, Buenos Aires, Argentina
| | - Cristian Pazos
- Department of Interventional Cardiology, Santa Isabel Clinic, Buenos Aires, Argentina
| | - Jorge Leguizamon
- Department of Interventional Cardiology, Santa Isabel Clinic, Buenos Aires, Argentina
| | - German Cafaro
- Service of Interventional Cardiology, Diagnóstico Mediter-Sanatorio Dr Julio Méndez, Buenos Aires, Argentina
| | - Mariano Visconti
- Service of Interventional Cardiology, Diagnóstico Mediter-Sanatorio Dr Julio Méndez, Buenos Aires, Argentina
| | - Pablo Baglioni
- Department of Interventional Cardiology, San Juan de Dios Hospital, Buenos Aires, Argentina
| | - Agustin Noya
- Department of Interventional Cardiology, British Hospital, Buenos Aires, Argentina
| | - Lucia Fontana
- Department of Cardiovascular Imaging, ENERI Medical Institute, La Sagrada Familia Clinic, Buenos Aires, Argentina
| | | | - Hernan Pavlovsky
- Department of Interventional Cardiology, Otamendi Sanatorium, Buenos Aires, Argentina
| | - Jose A Alvarez
- Department of Interventional Cardiology, British Hospital, Buenos Aires, Argentina
- Department of Interventional Cardiology, German Hospital, Buenos Aires, Argentina
| | - Pedro Lylyk
- Department of Interventional Neuroradiology, ENERI Medical Institute, La Sagrada Familia Clinic, Buenos Aires, Argentina
| | - Francesco Versaci
- Unit of Hemodynamics and Cardiology, Santa Maria Goretti Hospital, Latina, Italy
| | - Rosana Abrutzky
- University of Buenos Aires, Faculty of Social Sciences, Gino Germani Investigation Institute, Buenos Aires, Argentina
| |
Collapse
|
12
|
Yao Y, Yin H, Xu C, Chen D, Shao L, Guan Q, Wang R. Assessing myocardial infarction severity from the urban environment perspective in Wuhan, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115438. [PMID: 35653844 DOI: 10.1016/j.jenvman.2022.115438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/08/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Health inequalities are globally widespread due to the regional socioeconomic inequalities. Myocardial infarction (MI) is a leading health problem causing deaths worldwide. Yet medical services for it are often inequitably distributed by region. Moreover, studies concerning MI's potential spatial risk factors generally suffer from difficulties in focusing on too few factors, inappropriate models, and coarse spatial grain of data. To address these issues, this paper integrates registered 1098 MI cases and urban multi-source spatio-temporal big data, and spatially analyses the risk factors for MI severity by applying an advanced interpretable model, the random forest algorithm (RFA)-based SHapley Additive exPlanations (SHAP) model. In addition, a community-scale model between spatio-temporal risk factors and MI cases is constructed to predict the MI severity of all communities in Wuhan, China. The results suggest that those risk factors (i.e., age of patients, medical quality, temperature changes, air pollution and urban habitat) affect the MI severity at the community scale. We found that Wuhan residents in the downtown area are at risk for high MI severity, and the surrounding suburb areas show a donut-shape pattern of risk for medium-to-high MI severity. These patterns draw our attention to the impact of spatial environmental risk factors on MI severity. Thus, this paper provides three recommendations for urban planning to reduce the risk and mortality from severe MI in the aspect of policy implication.
Collapse
Affiliation(s)
- Yao Yao
- School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430078, Hubei province, PR China.
| | - Hanyu Yin
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430072, Hubei province, PR China.
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Dongsheng Chen
- China Regional Coordinated Development and Rural Construction Institute, Sun Yat-sen University, Guangzhou, 510000, Guangdong Province, PR China.
| | - Ledi Shao
- School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430078, Hubei province, PR China.
| | - Qingfeng Guan
- School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430078, Hubei province, PR China.
| | - Ruoyu Wang
- UKCRC Centre of Excellence for Public Health/Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom.
| |
Collapse
|
13
|
Zhou CB, Hu YG, Fan YN, Wu N, Yao CY, Liu XL, Zhou YM, Xiao H, Tang EJ, Li DW, Cai TJ, Ji AL. More obvious association between short-term ambient nitrogen dioxide and atrial fibrillation outpatient visits in cool seasons: A hospital-based study in northwestern China. ENVIRONMENTAL RESEARCH 2022; 212:113220. [PMID: 35398083 DOI: 10.1016/j.envres.2022.113220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Atrial fibrillation (AF) is the most common sustained heart rhythm disorder associated with high mortality and morbidity. Limited studies have been conducted to assess the relationship between short-term exposure to ambient air pollution and AF attacks. This study aimed to explore the association between short-term ambient nitrogen dioxide (NO2) exposure and outpatient visits for AF in Xi'an, China. Data on daily AF outpatient visits and air pollutants from 2013 to 2019 (2555 days) were obtained. A time-series approach using over-dispersed Poisson generalized additive model (GAM) was employed, and stratified analyses were performed to investigate the potential modifying effects by season, age, and gender. A total of 8307 outpatient visits for AF were recorded. Increased levels of NO2 were associated with increased AF outpatient visits, and the most significant effect estimates were observed at lag 03: A 10 μg/m3 increase of NO2 at lag 03 was related to an elevation of 5.59% (95% CI: 2.67%, 8.51%) in daily outpatient visits for AF. Stratified analyses showed that there were no gender and age difference in the effect of NO2, while more obvious association was observed in cool seasons (October to March) than in warm seasons (April to September). In summary, short-term ambient NO2 exposure can be positively associated with daily outpatient visits for AF, especially in cool seasons. This work provided novel data that the association between air pollutants and AF can vary by seasons, further supporting that the prevention of cardiovascular health effects should be strengthened in winter.
Collapse
Affiliation(s)
- Chun-Bei Zhou
- Chongqing Center for Disease Control and Prevention, Chongqing, 400042, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yue-Gu Hu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yan-Ni Fan
- Medical Record Room of Information Department, Second Affiliated Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Na Wu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chun-Yan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiao-Ling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yu-Meng Zhou
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Hua Xiao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - En-Jie Tang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Da-Wei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tong-Jian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Ai-Ling Ji
- Department of Preventive Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| |
Collapse
|
14
|
Sun Q, Cao B, Jiang Y, Zhuang J, Zhang C, Jiang B. Association between ambient particulate matter (PM 2.5/PM 10) and first incident ST-elevation myocardial infarction in Suzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62690-62697. [PMID: 35404033 DOI: 10.1007/s11356-022-20150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Interests in evaluation of the effect of air pollution and weather conditions on cardiovascular disease have increased. However, the relationship between short-term particulate matter (PM) exposure and first incident ST-elevation myocardial infarction (STEMI) remains unclear. Medical records were collected from December 2013 to December 2016. A total of 1354 patients with first incident STEMI were included. The daily average of air pollution and weather conditions were calculated. In this case-crossover study, conditional logistic regression was performed to assess the association between daily concentrations of PM and first incident STEMI. The daily average of PM2.5 and PM10 were 58.9 μg/m3 and 80.2 μg/m3, respectively. In this case-crossover study, single-pollutant models showed that each 10 μg/m3 increase in PM2.5 was associated with a percent change of 3.36, 95% confidence interval (CI): (1.01-5.77), or in PM10 percent change of 2.1%, 95%CI: (0.2-4.04) for patients with first incident STEMI. The association remained stable after adjusting for ozone (O3). The results from subgroup analysis showed the association slightly enhanced in women, elder patients, patients with history of diabetes, patients without history of smoking, and cold seasons. The p values were not significant between these strata, which may be due to small sample size. This investigation showed that short-term PM exposure associated with first incident STEMI in Suzhou. Given the effect of PM on the first incident STEMI, strategies to decrease PM should be considered.
Collapse
Affiliation(s)
- Qian Sun
- Department of Pulmonary and Critical Care Medicine, the Affiliated Hospital 4 of Nantong University, the First Hospital of Yancheng, Yancheng City, Jiangsu Province, China
| | - Bangming Cao
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai City, Shandong Province, China
| | - Yufeng Jiang
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province, China
| | - Jin Zhuang
- Department of Pulmonary and Critical Care Medicine, the Affiliated Hospital 4 of Nantong University, the First Hospital of Yancheng, Yancheng City, Jiangsu Province, China
| | - Chi Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China.
| | - Bin Jiang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| |
Collapse
|
15
|
Yang L, Zhang Y, Qi W, Zhao T, Zhang L, Zhou L, Ye L. Adverse effects of PM 2.5 on cardiovascular diseases. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:71-80. [PMID: 33793141 DOI: 10.1515/reveh-2020-0155] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
As an air pollutant, fine particulate matter with a diameter ≤ 2.5 μm (PM2.5) can enter the body through the respiratory tract and cause adverse cardiovascular effects. Here, the effects of PM2.5 on atherosclerosis, hypertension, arrhythmia, myocardial infarction are summarized from the perspective researches of human epidemiology, animal, cell and molecule. The results of this review should be proved useful as a scientific basis for the prevention and treatment of cardiovascular disease caused by PM2.5.
Collapse
Affiliation(s)
- Liwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lele Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
16
|
Moon H, Yoo SH, Huh SY. Monetary valuation of air quality improvement with the stated preference technique: A multi-pollutant perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148604. [PMID: 34328998 DOI: 10.1016/j.scitotenv.2021.148604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/01/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Air pollution is an important global issue, and governments are making efforts to reduce air pollutant emissions. The elaborate calculation of the social costs of air pollution is essential for justifying the substantial public expenditure on air pollution control policies. This study aims to derive the monetary value of reducing different kinds of air pollutants through the public's willingness to pay (WTP). A choice experiment survey is conducted to examine the public perception of air quality improvement, and the collected stated preference data are analysed with the hierarchical Bayesian logit model. The analysis results show that the public valuation of the emission reduction differs for individual pollutants. On average, the monetary value of one ton of emission reduction follows the order of PM2.5, PM10, SOx, TSP, NOx, and VOC. Based on the elicited WTP, the economic feasibility of the two air pollutant reduction plans of the South Korean Government is assessed. The benefit-to-cost ratio of the plans is 0.61 and 0.66, respectively, based on the mean WTP, indicating that they are not economically feasible at the moment. Implications for the efficient budget allocation of air pollution control policies are provided based on the results.
Collapse
Affiliation(s)
- HyungBin Moon
- Graduate School of Management of Technology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, South Korea.
| | - Seung-Hoon Yoo
- Department of Energy Policy, Seoul National University of Science & Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul 01811, South Korea.
| | - Sung-Yoon Huh
- Department of Energy Policy, Seoul National University of Science & Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul 01811, South Korea.
| |
Collapse
|
17
|
Arrivi A, Dominici M, Bier N, Truglio M, Vaudo G, Pucci G. Association Between Air Pollution and Acute Coronary Syndromes During Lockdown for COVID-19: Results From the Terni Hub Center. Front Public Health 2021; 9:683683. [PMID: 34249847 PMCID: PMC8264185 DOI: 10.3389/fpubh.2021.683683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background: During the lockdown for COVID-19, a massive decrease in hospital admissions for acute coronary syndrome (ACS) and a drop in air pollution were both detected in Italy. Our aim was to investigate the possible association between these two events at the Province of Terni, one of the most polluted urban and industrial area in Central Italy. Methods: We analyzed data of daily 24-h urban air concentrations of particulate matter (PM)10 and PM2.5 from fixed station monitoring network located in the main city centers of the Terni province, and accesses for ACS at the catheterization laboratory of the Cardiological Hub Center of the Terni University Hospital during lockdown. A comparison was made with data corresponding to the same lockdown time period of years 2019, 2018, and 2017. Results: Invasive procedures for ACS decreased in 2020 (n = 49) as compared with previous years (n = 93 in 2019, n = 109 in 2018, and n = 89 in 2017, p < 0.001). Conversely, reductions in average PM10 (20.7 μg/m3) and PM2.5 (14.7 μg/m3) in 2020 were consistent with a long-term decreasing trend, being comparable to those recorded in 2019 and 2018 (all p > 0.05) and slightly lower than 2017 (p < 0.05). The Granger-causality test demonstrated the lack of association between time-varying changes in air pollution and the number of procedures for ACS. Conclusions: Our results did not support the hypothesis that reduction in invasive procedures for ACS during lockdown was linked to an air cleaning effect. Reasons other than reduced air pollution should be sought to explain the observed decrease in ACS procedures.
Collapse
Affiliation(s)
- Alessio Arrivi
- Interventional Cardiology Unit, "Santa Maria" University Hospital, Terni, Italy
| | - Marcello Dominici
- Interventional Cardiology Unit, "Santa Maria" University Hospital, Terni, Italy.,Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Nicola Bier
- Interventional Cardiology Unit, "Santa Maria" University Hospital, Terni, Italy.,Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gaetano Vaudo
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.,Unit of Internal Medicine, "Santa Maria" University Hospital, Terni, Italy
| | - Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.,Unit of Internal Medicine, "Santa Maria" University Hospital, Terni, Italy
| |
Collapse
|
18
|
Torkashvand J, Jafari AJ, Hopke PK, Shahsavani A, Hadei M, Kermani M. Airborne particulate matter in Tehran's ambient air. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1179-1191. [PMID: 34150304 PMCID: PMC8172739 DOI: 10.1007/s40201-020-00573-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 10/15/2020] [Indexed: 05/09/2023]
Abstract
In recent decades, particulate matter (PM) concentrations in Tehran have exceeded the World Health Organization's (WHO) guideline on most days. In this study, a search protocol was defined by identifying the keywords, to carry out a systematic review of the concentrations and composition of PM in Tehran's ambient air. For this purpose, searches were done in Scopus, PubMed, and Web of Science in 2019. Among the founded articles (197 in Scopus, 61 in PubMed, and 153 in Web of Science). The results show that in Tehran, the annual average PM10 exceeded the WHO guidelines and for more than 50.0% of the days, the PM2.5 concentration was more than WHO 24-h guidance value. The PM concentration in Tehran has two seasonal peaks due to poorer dispersion and suspension from dry land, respectively. Tehran has two daily PM peaks due to traffic and changes in boundary-layer heights; one just after midnight and the other during morning rush hour. Indoor concentrations of PM10 and PM2.5 in Tehran were 10.6 and 21.8 times higher than the corresponding values in ambient air. Tehran represents a unique case of problems of controlling PM because of its geographical setting, emission sources, and land use. This review provided a comprehensive assessment for decision makers to assist them in making appropriate policy decisions to improve the air quality. Considering factors such as diversity of resources, temporal and spatial variations, and urban location is essential in developing control plans. Also future studies should focus more on PM reduction plans.
Collapse
Affiliation(s)
- Javad Torkashvand
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR Iran
| | - Ahamd Jonidi Jafari
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR Iran
| | - Philip K. Hopke
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY USA
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Abbas Shahsavani
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
19
|
Kuźma Ł, Małyszko J, Bachórzewska-Gajewska H, Kralisz P, Dobrzycki S. Exposure to air pollution and renal function. Sci Rep 2021; 11:11419. [PMID: 34075149 PMCID: PMC8169649 DOI: 10.1038/s41598-021-91000-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Air pollution contributes to the premature death of approximately 428,000 citizens of Europe every year. The adverse effects of air pollution can be observed in respiratory, circulatory systems but also in renal function. We decide to investigate the hypothesis indicating that we can observe not only long- but also short-term impact of air pollution on kidney function. We used linear, log-linear, and logistic regression models to assess the association between renal function and NO2, SO2, and PMs. Results are reported as beta (β) coefficients and odds ratios (OR) for an increase in interquartile range (IQR) concentration. 3554 patients (median age 66, men 53.2%) were included into final analysis. Chronic kidney disease (CKD) was diagnosed in 21.5%. The odds of CKD increased with increase in annual concentration of PM2.5 (OR for IQR increase = 1.07; 95% CI 1.01-1.15, P = 0.037) and NO2 (OR for IQR increase = 1.05; 95% CI 1.01-1.10, P = 0.047). The IQR increase in weekly PM2.5 concentration was associated with 2% reduction in expected eGFR (β = 0.02, 95% CI - 0.03; - 0.01). Medium- and short-term exposure to elevated air pollution levels was associated with a decrease in eGFR and development CKD. The main pollutants affecting the kidneys were PM2.5 and NO2.
Collapse
Affiliation(s)
- Łukasz Kuźma
- Department of Invasive Cardiology, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24 A, 15-276, Bialystok, Poland.
| | - Jolanta Małyszko
- Department of Nephrology, Dialysis and Internal Disease, Medical University of Warsaw, Warsaw, Poland
| | - Hanna Bachórzewska-Gajewska
- Department of Invasive Cardiology, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24 A, 15-276, Bialystok, Poland
- Department of Clinical Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Paweł Kralisz
- Department of Invasive Cardiology, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24 A, 15-276, Bialystok, Poland
| | - Sławomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24 A, 15-276, Bialystok, Poland
| |
Collapse
|
20
|
Kuźma Ł, Wańha W, Kralisz P, Kazmierski M, Bachórzewska-Gajewska H, Wojakowski W, Dobrzycki S. Impact of short-term air pollution exposure on acute coronary syndrome in two cohorts of industrial and non-industrial areas: A time series regression with 6,000,000 person-years of follow-up (ACS - Air Pollution Study). ENVIRONMENTAL RESEARCH 2021; 197:111154. [PMID: 33872649 DOI: 10.1016/j.envres.2021.111154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND There is a lack of studies directly comparing the effect of air pollution on acute coronary syndrome (ACS) occurrence in industrial and non-industrial areas. OBJECTIVES A comparison of association of air pollution exposure with ACS in two cohorts of industrially different areas. MATERIALS AND METHODS The study covered 6,000,000 person-years of follow-up and five pollutants between 2008 and 2017. A time series regression analysis with 7-lag was used to assess the effects air pollution on ACS. RESULTS A total of 9046 patients with ACS were included in the analysis, of whom 3895 (43.06%) had ST-elevation myocardial infarction (STEMI) - 45.39% from non-industrial area, and 42.37% from industrial area; and 5151 (56.94%) had non-ST-elevation myocardial infarction (NSTEMI) - 54.61% from non-industrial area and 57.63% from industrial area. The daily concentrations of PM2.5, PM10, NO2, SO2, CO were higher in industrial than in non-industrial area (P < 0.001). In non-industrial area, an increase of 10 μg/m3 of NO2 concentration (Odds Ratio (OR) = 1.126, 95%CI = 1.009-1.257; P = 0.034, lag-0) and an increase of 1 mg/m3 in CO concentration (RR = 1.055, 95%CI = 1.010-1.103; P = 0.017, lag-0) were associated with an increase in the number of hospitalization due to NSTEMI (for industrial area increase of 10 μg/m3 in NO2 (OR = 1.062, 95%CI = 1.020-1.094; P = 0.005, lag-0), SO2 (OR = 1.061, 95%CI = 1.010-1.116; P = 0.018, lag-4), PM10 (OR = 1.010, 95%CI = 1.001-1.030; P = 0.047, lag-6). In STEMI patients in industrial area, an increased hospitalization was found to be associated with an increase of 10 μg/m3 in SO2 (OR = 1.094, 95%CI = 1.030-1.162; P = 0.002, lag-1), PM2.5 (OR = 1.041, 95%CI = 1.020-1.073; P < 0.001, lag-1), PM10 (OR = 1.030, 95%CI = 1.010-1.051; P < 0.001, lag-1). No effects of air pollution on the number of hospitalization due to STEMI were noted from non-industrial area. CONCLUSION The risk of air pollution-related ACS was higher in industrial over non-industrial area. The effect of NO2 on the incidence of NSTEMI was observed in both areas. In industrial area, the effect of PMs and SO2 on NSTEMI and STEMI were also observed. A clinical effect was more delayed in time in patients with NSTEMI, especially after exposure to PM10. Chronic exposure to air pollution may underlie the differences in the short-term effect between particulate air pollution impact on the incidence of STEMI.
Collapse
Affiliation(s)
- Łukasz Kuźma
- Department of Invasive Cardiology, Medical University of Bialystok, 24A M. Skłodowskiej-Curie St., 15-276, Białystok, Poland.
| | - Wojciech Wańha
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, 45/47 Ziolowa St., 40-635, Katowice, Poland
| | - Paweł Kralisz
- Department of Invasive Cardiology, Medical University of Bialystok, 24A M. Skłodowskiej-Curie St., 15-276, Białystok, Poland
| | - Maciej Kazmierski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, 45/47 Ziolowa St., 40-635, Katowice, Poland
| | - Hanna Bachórzewska-Gajewska
- Department of Invasive Cardiology, Medical University of Bialystok, 24A M. Skłodowskiej-Curie St., 15-276, Białystok, Poland
| | - Wojciech Wojakowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, 45/47 Ziolowa St., 40-635, Katowice, Poland
| | - Sławomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Bialystok, 24A M. Skłodowskiej-Curie St., 15-276, Białystok, Poland
| |
Collapse
|
21
|
Altuwayjiri A, Taghvaee S, Mousavi A, Sowlat MH, Hassanvand MS, Kashani H, Faridi S, Yunesian M, Naddafi K, Sioutas C. Association of systemic inflammation and coagulation biomarkers with source-specific PM 2.5 mass concentrations among young and elderly subjects in central Tehran. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:191-208. [PMID: 32758070 DOI: 10.1080/10962247.2020.1806140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 05/20/2023]
Abstract
In this study, we investigated the association between short-term exposure to different sources of fine particulate matter (PM2.5) and biomarkers of coagulation and inflammation in two different panels of elderly and healthy young individuals in central Tehran. Five biomarkers, including white blood cells (WBC), high sensitive C-reactive protein (hsCRP), tumor necrosis factor-soluble receptor-II (sTNF-RII), interleukin-6 (IL-6), and von Willebrand factor (vWF) were analyzed in the blood samples drawn every 8 weeks from the subjects between May 2012 and May 2013. The studied populations consisted of 44 elderly individuals at a retirement home as well as 40 young adults residing at a school dormitory. Positive Matrix Factorization (PMF)-resolved source-specific PM2.5 mass concentrations and biomarker levels were used as the input to the linear mixed-effects regression model to evaluate the impact of exposure to previously identified PM sources at retirement home and school dormitory in two time lag configurations: lag 1-3 (1-3 days before the blood sampling), and lag 4-6 (4-6 days before the blood sampling). Our analysis of the elderly revealed positive associations of all biomarkers (except hsCRP) with particles of secondary origin in both time lags, further corroborating the toxicity of secondary aerosols formed by photochemical processing in central Tehran. Moreover, industrial emissions, and road dust particles were positively associated with WBC, sTNF-RII, and IL-6 among seniors, while vehicular emissions exhibited positive associations with all biomarkers in either first- or second-time lag. In contrast, most of the PM2.5 sources showed insignificant associations with biomarkers of inflammation in the panel of healthy young subjects. Therefore, findings from this study indicated that various PM2.5 sources increase the levels of inflammation and coagulation biomarkers, although the strength and significance of these associations vary depending on the type of PM sources, demographic characteristics, and differ across the different time lags. Implications: Tehran, the capital of Iran with a population of more than 9 million people, has been facing serious air pollution challenges as a result of extensive vehicular, and industrial activities in the previous years. Among various air pollutants in Tehran, fine particulate matters (PM2.5, particles with aerodynamic diameters < 2.5 µm) are known as one of the most important critical pollutants, causing several adverse health impacts including lung cancer, respiratory, cardiovascular, and cardiopulmonary diseases. Therefore, a number of studies in the area have tried to investigate the adverse health impacts of exposure to PM2.5. However, no studies have ever been conducted in Tehran to examine the association between specific PM2.5 sources and biomarkers of coagulation and systemic inflammation as indicators of cardiovascular disorders. Indeed, this is the first study in the area investigating the association of source-specific PM2.5 with biomarkers of inflammation including white blood cells (WBC), high sensitive C-reactive protein (hsCRP), tumor necrosis factor-soluble receptor-II (sTNF-RII), interleukin-6 (IL-6), and von Willebrand factor (vWF). Our results have important implications for policy makers in identifying the most toxic sources of PM2.5, and in turn designing schemes for mitigating adverse health impacts of air pollution in Tehran.
Collapse
Affiliation(s)
- Abdulmalik Altuwayjiri
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| | - Sina Taghvaee
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| | - Amirhosein Mousavi
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| | - Mohammad H Sowlat
- Advanced Monitoring Technologies, Science and Technology Advancement Division, South Coast Air Quality Management District , Diamond Bar, CA, USA
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
| | - Homa Kashani
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
| | - Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Masud Yunesian
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| |
Collapse
|
22
|
Short-Term Effects of Air Pollution on Cardiovascular Hospitalizations in the Pisan Longitudinal Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031164. [PMID: 33525695 PMCID: PMC7908381 DOI: 10.3390/ijerph18031164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/05/2022]
Abstract
Air pollution effects on cardiovascular hospitalizations in small urban/suburban areas have been scantly investigated. Such effects were assessed among the participants in the analytical epidemiological survey carried out in Pisa and Cascina, Tuscany, Italy (2009–2011). Cardiovascular hospitalizations from 1585 subjects were followed up (2011–2015). Daily mean pollutant concentrations were estimated through random forests at 1 km (particulate matter: PM10, 2011–2015; PM2.5, 2013–2015) and 200 m (PM10, PM2.5, NO2, O3, 2013–2015) resolutions. Exposure effects were estimated using the case-crossover design and conditional logistic regression (odds ratio—OR—and 95% confidence interval—CI—for 10 μg/m3 increase; lag 0–6). During the period 2011–2015 (137 hospitalizations), a significant effect at lag 0 was observed for PM10 (OR = 1.137, CI: 1.023–1.264) at 1 km resolution. During the period 2013–2015 (69 hospitalizations), significant effects at lag 0 were observed for PM10 (OR = 1.268, CI: 1.085–1.483) and PM2.5 (OR = 1.273, CI: 1.053–1.540) at 1 km resolution, as well as for PM10 (OR = 1.365, CI: 1.103–1.690), PM2.5 (OR = 1.264, CI: 1.006–1.589) and NO2 (OR = 1.477, CI: 1.058–2.061) at 200 m resolution; significant effects were observed up to lag 2. Larger ORs were observed in males and in subjects reporting pre-existent cardiovascular/respiratory diseases. Combining analytical and routine epidemiological data with high-resolution pollutant estimates provides new insights on acute cardiovascular effects in the general population and in potentially susceptible subgroups living in small urban/suburban areas.
Collapse
|
23
|
Gorini F, Chatzianagnostou K, Mazzone A, Bustaffa E, Esposito A, Berti S, Bianchi F, Vassalle C. "Acute Myocardial Infarction in the Time of COVID-19": A Review of Biological, Environmental, and Psychosocial Contributors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7371. [PMID: 33050220 PMCID: PMC7600622 DOI: 10.3390/ijerph17207371] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has quickly become a worldwide health crisis.Although respiratory disease remains the main cause of morbidity and mortality in COVID patients,myocardial damage is a common finding. Many possible biological pathways may explain therelationship between COVID-19 and acute myocardial infarction (AMI). Increased immune andinflammatory responses, and procoagulant profile have characterized COVID patients. All theseresponses may induce endothelial dysfunction, myocardial injury, plaque instability, and AMI.Disease severity and mortality are increased by cardiovascular comorbidities. Moreover, COVID-19has been associated with air pollution, which may also represent an AMI risk factor. Nonetheless,a significant reduction in patient admissions following containment initiatives has been observed,including for AMI. The reasons for this phenomenon are largely unknown, although a real decreasein the incidence of cardiac events seems highly improbable. Instead, patients likely may presentdelayed time from symptoms onset and subsequent referral to emergency departments because offear of possible in-hospital infection, and as such, may present more complications. Here, we aim todiscuss available evidence about all these factors in the complex relationship between COVID-19and AMI, with particular focus on psychological distress and the need to increase awareness ofischemic symptoms.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (E.B.); (F.B.)
| | - Kyriazoula Chatzianagnostou
- Ospedale del Cuore G Pasquinucci Fondazione Toscana Gabriele Monasterio di Massa, via Aurelia Sud, 54100 Massa, Italy; (K.C.); (A.M.); (A.E.); (S.B.)
| | - Annamaria Mazzone
- Ospedale del Cuore G Pasquinucci Fondazione Toscana Gabriele Monasterio di Massa, via Aurelia Sud, 54100 Massa, Italy; (K.C.); (A.M.); (A.E.); (S.B.)
| | - Elisa Bustaffa
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (E.B.); (F.B.)
| | - Augusto Esposito
- Ospedale del Cuore G Pasquinucci Fondazione Toscana Gabriele Monasterio di Massa, via Aurelia Sud, 54100 Massa, Italy; (K.C.); (A.M.); (A.E.); (S.B.)
| | - Sergio Berti
- Ospedale del Cuore G Pasquinucci Fondazione Toscana Gabriele Monasterio di Massa, via Aurelia Sud, 54100 Massa, Italy; (K.C.); (A.M.); (A.E.); (S.B.)
| | - Fabrizio Bianchi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (E.B.); (F.B.)
| | - Cristina Vassalle
- Ospedale del Cuore G Pasquinucci Fondazione Toscana Gabriele Monasterio di Massa, via Aurelia Sud, 54100 Massa, Italy; (K.C.); (A.M.); (A.E.); (S.B.)
| |
Collapse
|
24
|
Yang F, Zhang W, Zhao Y, Ji Y, Liu B, Zhou K. Optimization of Working Conditions by Response Surface Methodology of Sulfur Dioxide Gas Sensors Based on Au/CoO‐2La
2
WO
6
Nanoparticles. ChemistrySelect 2020. [DOI: 10.1002/slct.202001415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Fuxiu Yang
- Biochemical Engineering College Beijing Union University Beijing 100023 China
| | - Wenjuan Zhang
- Biochemical Engineering College Beijing Union University Beijing 100023 China
| | - Youxi Zhao
- Biochemical Engineering College Beijing Union University Beijing 100023 China
- Beijing Key Laboratory of Biomass Waste Resource Utilization Beijing 100023 China
| | - Yizhi Ji
- Biochemical Engineering College Beijing Union University Beijing 100023 China
- Beijing Key Laboratory of Biomass Waste Resource Utilization Beijing 100023 China
| | - Baining Liu
- Biochemical Engineering College Beijing Union University Beijing 100023 China
- Beijing Key Laboratory of Biomass Waste Resource Utilization Beijing 100023 China
| | - Kaowen Zhou
- Biochemical Engineering College Beijing Union University Beijing 100023 China
- Beijing Key Laboratory of Biomass Waste Resource Utilization Beijing 100023 China
| |
Collapse
|
25
|
Shahrbaf MA, Akbarzadeh MA, Tabary M, Khaheshi I. Air Pollution and Cardiac Arrhythmias: A Comprehensive Review. Curr Probl Cardiol 2020; 46:100649. [PMID: 32839041 DOI: 10.1016/j.cpcardiol.2020.100649] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/26/2022]
Abstract
Air pollution is the mixture of some chemical and environmental agents including dust, fumes, gases, particulate matters, and biological materials which can be harmful for the environment and the human body. The increasing trend of the air pollution, especially in developing countries, may exert its detrimental effects on human health. The potentially harmful effects of air pollution on the human health have been recognized and many epidemiological studies have clearly suggested the strong association between air pollution exposure and increased morbidities and mortalities. Air pollutants are classified into gaseous pollutants including carbon mono oxide, nitrogen oxides, ozone and sulfur dioxide, and particulate matters (PMs). All air pollutants have destructive effects on the health systems including cardiovascular system. Many studies have demonstrated the effect of air pollutant on the occurrence of ST elevation myocardial infarction, sudden cardiac death, cardiac arrythmias, and peripheral arterial disease. Recently, some studies suggested that air pollution may be associated with cardiac arrhythmias. In this study, we aimed to comprehensively review the last evidences related to the association of air pollutant and cardiac arrythmias. We found that particulate matters (PM10, PM2.5, and UFP) and gaseous air pollutants can exert undesirable effects on cardiac rhythms. Short-term and long-term exposure to the air pollutants can interact with the cardiac rhythms through oxidative stress, autonomic dysfunction, coagulation dysfunction, and inflammation. It seems that particulate matters, especially PM2.5 have stronger association with cardiac arrhythmias among all air pollutants. However, future studies are needed to confirm these results.
Collapse
|
26
|
Stieb DM, Zheng C, Salama D, BerjawI R, Emode M, Hocking R, Lyrette N, Matz C, Lavigne E, Shin HH. Systematic review and meta-analysis of case-crossover and time-series studies of short term outdoor nitrogen dioxide exposure and ischemic heart disease morbidity. Environ Health 2020; 19:47. [PMID: 32357902 PMCID: PMC7195719 DOI: 10.1186/s12940-020-00601-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/20/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Nitrogen dioxide (NO2) is a pervasive urban pollutant originating primarily from vehicle emissions. Ischemic heart disease (IHD) is associated with a considerable public health burden worldwide, but whether NO2 exposure is causally related to IHD morbidity remains in question. Our objective was to determine whether short term exposure to outdoor NO2 is causally associated with IHD-related morbidity based on a synthesis of findings from case-crossover and time-series studies. METHODS MEDLINE, Embase, CENTRAL, Global Health and Toxline databases were searched using terms developed by a librarian. Screening, data extraction and risk of bias assessment were completed independently by two reviewers. Conflicts between reviewers were resolved through consensus and/or involvement of a third reviewer. Pooling of results across studies was conducted using random effects models, heterogeneity among included studies was assessed using Cochran's Q and I2 measures, and sources of heterogeneity were evaluated using meta-regression. Sensitivity of pooled estimates to individual studies was examined using Leave One Out analysis and publication bias was evaluated using Funnel plots, Begg's and Egger's tests, and trim and fill. RESULTS Thirty-eight case-crossover studies and 48 time-series studies were included in our analysis. NO2 was significantly associated with IHD morbidity (pooled odds ratio from case-crossover studies: 1.074 95% CI 1.052-1.097; pooled relative risk from time-series studies: 1.022 95% CI 1.016-1.029 per 10 ppb). Pooled estimates for case-crossover studies from Europe and North America were significantly lower than for studies conducted elsewhere. The high degree of heterogeneity among studies was only partially accounted for in meta-regression. There was evidence of publication bias, particularly for case-crossover studies. For both case-crossover and time-series studies, pooled estimates based on multi-pollutant models were smaller than those from single pollutant models, and those based on older populations were larger than those based on younger populations, but these differences were not statistically significant. CONCLUSIONS We concluded that there is a likely causal relationship between short term NO2 exposure and IHD-related morbidity, but important uncertainties remain, particularly related to the contribution of co-pollutants or other concomitant exposures, and the lack of supporting evidence from toxicological and controlled human studies.
Collapse
Affiliation(s)
- David M. Stieb
- Environmental Health Science and Research Bureau, Health Canada, 420-757 West Hastings St. - Federal Tower, Vancouver, BC V6C 1A1 Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Carine Zheng
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Dina Salama
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Rania BerjawI
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Monica Emode
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Robyn Hocking
- Learning, Knowledge and Library Services, Health Canada, Ottawa, Canada
| | - Ninon Lyrette
- Water and Air Quality Bureau, Health, Canada, Ottawa, Canada
| | - Carlyn Matz
- Water and Air Quality Bureau, Health, Canada, Ottawa, Canada
| | - Eric Lavigne
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
- Water and Air Quality Bureau, Health, Canada, Ottawa, Canada
| | - Hwashin H. Shin
- Environmental Health Science and Research Bureau, Health Canada, 420-757 West Hastings St. - Federal Tower, Vancouver, BC V6C 1A1 Canada
- Department of Mathematics and Statistics, Queen’s University, Kingston, Canada
| |
Collapse
|
27
|
Farhadi Z, Abulghasem Gorgi H, Shabaninejad H, Aghajani Delavar M, Torani S. Association between PM 2.5 and risk of hospitalization for myocardial infarction: a systematic review and a meta-analysis. BMC Public Health 2020; 20:314. [PMID: 32164596 PMCID: PMC7068986 DOI: 10.1186/s12889-020-8262-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background It is generally assumed that there have been mixed results in the literature regarding the association between ambient particulate matter (PM) and myocardial infarction (MI). The aim of this meta-analysis was to explore the rate of short-term exposure PM with aerodynamic diameters ≤2.5 μm (PM2.5) and examine its potential effect(s) on the risk of MI. Methods A systematic search was conducted on databases like PubMed, Scopus, Web of Science, and Embase with components: “air pollution” and “myocardial infarction”. The summary relative risk (RR) and 95% confidence intervals (95%CI) were also calculated to assess the association between the PM2.5 and MI. Results Twenty-six published studies were ultimately identified as eligible candidates for the meta-analysis of MI until Jun 1, 2018. The results illustrated that a 10-μg/m 3 increase in PM2.5 was associated with the risk of MI (RR = 1.02; 95% CI 1.01–1.03; P ≤ 0.0001). The heterogeneity of the studies was assessed through a random-effects model with p < 0.0001 and the I2 was 69.52%, indicating a moderate degree of heterogeneity. We also conducted subgroup analyses including study quality, study design, and study period. Accordingly, it was found that subgroups time series study design and high study period could substantially decrease heterogeneity (I2 = 41.61, 41.78). Conclusions This meta-analysis indicated that exposure – response between PM2.5 and MI. It is vital decision makers implement effective strategies to help improve air pollution, especially in developing countries or prevent exposure to PM2.5 to protect human health.
Collapse
Affiliation(s)
- Zeynab Farhadi
- Department of Health Services Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hasan Abulghasem Gorgi
- Department of Health Services Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran. .,Department of Health Economics, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Hosein Shabaninejad
- Department of Health Services Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mouloud Aghajani Delavar
- Infertility and Reproductive Health Research Center, Research Institute for Health, Babol University of Medical Sciences, Babol, Iran
| | - Sogand Torani
- Department of Health Services Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Kim SY, Min C, Choi J, Park B, Choi HG. Air pollution by NO 2 is associated with the risk of Bell's palsy: A nested case-controlled study. Sci Rep 2020; 10:4221. [PMID: 32144358 PMCID: PMC7060183 DOI: 10.1038/s41598-020-61232-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/20/2020] [Indexed: 11/28/2022] Open
Abstract
This study investigated the relationship of weather and air pollution with the onset of Bell’s palsy. The Korean Health Insurance Review and Assessment Service-National Sample Cohort (HIRA-NSC) data from 2002 through 2013 were used. The 3,935 Bell’s palsy patients were matched with 15,740 control participants. The meteorological data, including daily mean temperature (°C), daily mean highest temperature (°C), daily mean lowest temperature (°C), daily mean temperature difference (°C), relative humidity (%), spot atmospheric pressure (hPa), sulfur dioxide (SO2) (ppm), nitrogen dioxide (NO2) (ppm), ozone (O3) (ppm), carbon monoxide (CO) (ppm), and PM10 (particulate matter ≤ 10 μg/m3) for 60 days, 30 days, 14 days, 7 days, and 3 days prior to the index date were analyzed for Bell’s palsy cases and controls. Conditional logistic regression analysis was used to estimate the odds ratios (ORs) of the association between the meteorological data and Bell’s palsy. The mean NO2 and PM10 concentrations for 60 days were higher, while that of O3 was lower in the Bell’s palsy group than in the control group (both P < 0.001). The Bell’s palsy group showed 16.63-fold higher odds of NO2 for 60 days (0.1 ppm) than the control group (95% CI = 10.18–27.16, P < 0.001). The ORs of PM10, and O3 for 60 days showed inconsistent results according to the included variables. Bell’s palsy was related to high concentrations of NO2.
Collapse
Affiliation(s)
- So Young Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Chanyang Min
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang, Korea.,Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Jay Choi
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Bumjung Park
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Anyang, Korea
| | - Hyo Geun Choi
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang, Korea. .,Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Anyang, Korea. .,Hallym Convergence Research Institute for Environmental Diseases, Anyang, Korea.
| |
Collapse
|
29
|
Yokoo K, Matsune H, Kishida M, Tatebayashi J, Yamamoto T. Kinetic modeling of PM combustion with relative velocity at low-temperature and numerical simulation of continuous regenerating type PM removal device that uses a fluidized bed. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.11.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Pan SC, Huang CC, Chin WS, Chen BY, Chan CC, Guo YL. Association between air pollution exposure and diabetic retinopathy among diabetics. ENVIRONMENTAL RESEARCH 2020; 181:108960. [PMID: 31785778 DOI: 10.1016/j.envres.2019.108960] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Exposure to air pollution has been linked to adverse effects on vascular diseases. However, the effects of air pollution exposure on diabetic retinopathy (DR), a vascular disease, have not been studied. OBJECTIVE To determine the association of ambient air pollution exposure with DR risk. METHODS Patients newly diagnosed as having diabetes mellitus (DM) during 2003-2012 from Longitudinal Health Insurance Database 2005), a subset of National Health Insurance Research Database, were included as the study cohort. Newly diagnosed DR patients one year or later after DM diagnosis were identified as cases. Kriging was used to interpolate yearly concentrations of air pollutants at township levels and linked with every individual's residence in each year; average concentrations during the follow-up period were then calculated as personal exposure. Conditional logistic regressions with adjustments for age at DM diagnosis and comorbidities were applied. RESULTS Of newly diagnosed DM cases during 2003-2012, 579 were newly diagnosed as having DR over a mean follow-up period of 5.6 years. The Odds ratio (95% confidence interval) of DR occurrence for every 10-μg/m3 increase in particulate matter with ≤2.5 and 2.5-10-μm diameter was 1.29 (1.11-1.50) and 1.37 (1.17-1.61), respectively. CONCLUSION In patients with DM, the higher particulate matter exposure, the higher is the DR risk.
Collapse
Affiliation(s)
- Shih-Chun Pan
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan.
| | - Ching-Chun Huang
- Environmental and Occupational Medicine, College of Medicine, National Taiwan University (NTU) and NTU Hospital, Taipei, Taiwan.
| | - Wei-Shan Chin
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan.
| | - Bing-Yu Chen
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Keelung, Taiwan.
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan.
| | - Yue Leon Guo
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan; Environmental and Occupational Medicine, College of Medicine, National Taiwan University (NTU) and NTU Hospital, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institute, Miaoli, Taiwan.
| |
Collapse
|
31
|
Ji P, Li Z, Dong J, Yi H. SO 2 derivatives and As co-exposure promote liver cancer metastasis through integrin αvβ3 activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:572-578. [PMID: 31252212 DOI: 10.1016/j.ecoenv.2019.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Arsenic (As) and sulfur dioxide (SO2) are two environmental pollutants that have been shown to promote the development of human cancer. In recent years, due to increased pollution, humans are often exposed to SO2, in addition to As. Despite the development and implementation of standards for environment and air quality, cases of disease caused by As or SO2 continue to rise alarmingly. It is currently unknown whether simultaneous exposure to As and SO2 results in increased cancer promoting activity. In this study, concentrations of As and SO2 below the limits established by the world health organization (WHO) in force environmental standards (concentrations of As should be lower than 1×10-2 mg/L and SO2 should be lower than 50 μg/m3), were employed to investigate possible, long-term, synergistic effects of As and SO2, by using cell-based assays. We found that co-exposure to these pollutants significantly promotes HepG2 cancer cell migration, while As or SO2 alone have no remarkable effects. Integrins αvβ3 play a key role in this process, as cilengitide, an integrin αvβ3 inhibitor, substantially prevented As and SO2-induced cell migration. MMPs, IL-8, and TGF-β were also involved in the induced cell migration. In summary, combined exposure to As and SO2 promotes integrin-dependent cell migration and may be of relevance for the activation of mechanisms underlying liver cancer progression.
Collapse
Affiliation(s)
- Pengyu Ji
- School of Life Science, Shanxi University, Taiyuan, China; College of Environmental and Resource, Shanxi University, Taiyuan, China
| | - Zhuoyu Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jintang Dong
- Emory University Winship Cancer Institute, Atlanta, GA, USA
| | - Huilan Yi
- School of Life Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
32
|
Wang M, Hopke PK, Masiol M, Thurston SW, Cameron S, Ling F, van Wijngaarden E, Croft D, Squizzato S, Thevenet-Morrison K, Chalupa D, Rich DQ. Changes in triggering of ST-elevation myocardial infarction by particulate air pollution in Monroe County, New York over time: a case-crossover study. Environ Health 2019; 18:82. [PMID: 31492149 PMCID: PMC6728968 DOI: 10.1186/s12940-019-0521-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 08/23/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Previous studies have reported that fine particle (PM2.5) concentrations triggered ST elevation myocardial infarctions (STEMI). In Rochester, NY, multiple air quality policies and economic changes/influences from 2008 to 2013 led to decreased concentrations of PM2.5 and its major constituents (SO42-, NO3-, elemental and primary organic carbon). This study examined whether the rate of STEMI associated with increased ambient gaseous and PM component concentrations was different AFTER these air quality policies and economic changes (2014-2016), compared to DURING (2008-2013) and BEFORE these polices and changes (2005-2007). METHODS Using 921 STEMIs treated at the University of Rochester Medical Center (2005-2016) and a case-crossover design, we examined whether the rate of STEMI associated with increased PM2.5, ultrafine particles (UFP, < 100 nm), accumulation mode particles (AMP, 100-500 nm), black carbon, SO2, CO, and O3 concentrations in the previous 1-72 h was modified by the time period related to these pollutant source changes (BEFORE, DURING, AFTER). RESULTS Each interquartile range (3702 particles/cm3) increase in UFP concentration in the previous 1 h was associated with a 12% (95% CI = 3%, 22%) increase in the rate of STEMI. The effect size was larger in the AFTER period (26%) than the DURING (5%) or BEFORE periods (9%). There were similar patterns for black carbon and SO2. CONCLUSIONS An increased rate of STEMI associated with UFP and other pollutant concentrations was higher in the AFTER period compared to the BEFORE and DURING periods. This may be due to changes in PM composition (e.g. higher secondary organic carbon and particle bound reactive oxygen species) following these air quality policies and economic changes.
Collapse
Affiliation(s)
- Meng Wang
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
| | - Philip K. Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY USA
| | - Mauro Masiol
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY USA
| | - Sally W. Thurston
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY USA
| | - Scott Cameron
- Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Frederick Ling
- Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Edwin van Wijngaarden
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Daniel Croft
- Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Stefania Squizzato
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY USA
| | - Kelly Thevenet-Morrison
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - David Q. Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, 265 Crittenden Boulevard, CU 420644, Rochester, NY 14642 USA
| |
Collapse
|
33
|
Zuidema C, Stebounova LV, Sousan S, Thomas G, Koehler K, Peters TM. Sources of error and variability in particulate matter sensor network measurements. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2019; 16:564-574. [PMID: 31251121 PMCID: PMC6954050 DOI: 10.1080/15459624.2019.1628965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The quality of mass concentration estimates from increasingly popular networks of low-cost particulate matter sensors depends on accurate conversion of sensor output (e.g., voltage) into gravimetric-equivalent mass concentration, typically using a calibration procedure. This study evaluates two important sources of variability that lead to error in estimating gravimetric-equivalent mass concentration: the temporal changes in sensor calibration and the spatial and temporal variability in gravimetric correction factors. A 40-node sensor network was deployed in a heavy vehicle manufacturing facility for 8 months. At a central location in the facility, particulate matter was continuously measured with three sensors of the network and a traditional, higher-cost photometer, determining the calibration slope and intercept needed to translate sensor output to photometric-equivalent mass concentration. Throughout the facility, during three intensive sampling campaigns, respirable mass concentrations were measured with gravimetric samplers and photometers to determine correction factors needed to adjust photometric-equivalent to gravimetric-equivalent mass concentration. Both field-determined sensor calibration slopes and intercepts were statistically different than those estimated in the laboratory (α = 0.05), emphasizing the importance of aerosol properties when converting voltage to photometric-equivalent mass concentration and the need for field calibration to determine slope. Evidence suggested the sensors' weekly field calibration slope decreased and intercept increased, indicating the sensors were deteriorating over time. The mean correction factor in the cutting and shot blasting area (2.9) was substantially and statistically lower than that in the machining and welding area (4.6; p = 0.01). Therefore, different correction factors should be determined near different occupational processes to accurately estimate particle mass concentrations.
Collapse
Affiliation(s)
- Christopher Zuidema
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Larissa V. Stebounova
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | - Sinan Sousan
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
- Department of Public Health, East Carolina University/North Carolina Agromedicine Institute, Greenville, North Carolina
| | - Geb Thomas
- Department of Industrial and Systems Engineering, University of Iowa, Iowa City, Iowa
| | - Kirsten Koehler
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Thomas M. Peters
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| |
Collapse
|
34
|
Ji PY, Li ZY, Wang H, Dong JT, Li XJ, Yi HL. Arsenic and sulfur dioxide co-exposure induce renal injury via activation of the NF-κB and caspase signaling pathway. CHEMOSPHERE 2019; 224:280-288. [PMID: 30825854 DOI: 10.1016/j.chemosphere.2019.02.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/02/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Although emerging evidence suggests positive association of arsenic (As) or sulfur dioxide (SO2) exposure with human diseases, reports concerning the effects of co-exposure of As and SO2 are lacking. Moreover, there is insufficient information in the literature about As and SO2 co-exposure to renal injury. In this study, we focus on the environmental problems of excessive As and SO2 that co-exist in many coal consumption areas. We used both C57BL/6 mice and 293T cells to detect toxicities of As and SO2 exposure alone or in combination. Our results showed that co-exposure significantly increased the hazard compared with exposure to As or SO2 alone. Mouse kidney tissue slices showed that co-exposure caused more severe diffuse sclerosing glomerulonephritis than As and SO2 exposure alone. Meanwhile experiments showed that apoptosis was aggravated by co-exposure of As and SO2 in 293T cells. Because As and SO2 cause cell toxicity through increasing oxidative stress, next we detected ROS and other oxidative stress parameters, and the results showed oxidative stress was increased by co-exposure compared with the other three groups. The expression levels of downstream genes in the NF-κB and caspase pathways were higher in the co-exposure group than in the groups of As or SO2 exposure alone in mice and 293T cells. Based on the above results, co-exposure could induce higher toxicity in vitro and in vivo compared with single exposure to As or SO2, indicating that people living in places that contaminated by As and SO2 may have higher chance to get renal injury.
Collapse
Affiliation(s)
- Peng-Yu Ji
- School of Life Science, Shanxi University, Taiyuan, China; College of Environmental and Resource, Shanxi University, Taiyuan, China
| | - Zhuo-Yu Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Hong Wang
- School of Life Science, Shanxi University, Taiyuan, China; Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Jin-Tang Dong
- School of Life Science, Shanxi University, Taiyuan, China; Emory University Winship Cancer Insititute, Atlanta, GA, USA
| | - Xiu-Juan Li
- School of Life Science, Shanxi University, Taiyuan, China; College of Environmental and Resource, Shanxi University, Taiyuan, China
| | - Hui-Lan Yi
- School of Life Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
35
|
Ho AFW, Zheng H, Earnest A, Cheong KH, Pek PP, Seok JY, Liu N, Kwan YH, Tan JWC, Wong TH, Hausenloy DJ, Foo LL, Tan BYQ, Ong MEH. Time-Stratified Case Crossover Study of the Association of Outdoor Ambient Air Pollution With the Risk of Acute Myocardial Infarction in the Context of Seasonal Exposure to the Southeast Asian Haze Problem. J Am Heart Assoc 2019; 8:e011272. [PMID: 31112443 PMCID: PMC6475051 DOI: 10.1161/jaha.118.011272] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/25/2019] [Indexed: 12/27/2022]
Abstract
Background Prior studies have demonstrated the association of air pollution with cardiovascular deaths. Singapore experiences seasonal transboundary haze. We investigated the association between air pollution and acute myocardial infarction ( AMI ) incidence in Singapore. Methods and Results We performed a time-stratified case-crossover study on all AMI cases in the Singapore Myocardial Infarction Registry (2010-2015). Exposure on days where AMI occurred (case days) were compared with the exposure on days where AMI did not occur (control days). Control days were chosen on the same day of the week earlier and later in the same month and year. We fitted conditional Poisson regression models to daily AMI incidence to include confounders such as ambient temperature, rainfall, wind-speed, and Pollutant Standards Index. We assessed relationships between AMI incidence and Pollutant Standards Index in the entire cohort and subgroups of individual-level characteristics. There were 53 948 cases. Each 30-unit increase in Pollutant Standards Index was association with AMI incidence (incidence risk ratio [ IRR ] 1.04, 95% CI 1.03-1.06). In the subgroup of ST -segment-elevation myocardial infarction the IRR was 1.00, 95% CI 0.98 to 1.03, while for non-ST-segment-elevation myocardial infarction, the IRR was 1.08, 95% CI 1.05 to 1.10. Subgroup analyses showed generally significant. Moderate/unhealthy Pollutant Standards Index showed association with AMI occurrence with IRR 1.08, 95% CI 1.05 to 1.11 and IRR 1.09, 95% CI 1.01 to 1.18, respectively. Excess risk remained elevated through the day of exposure and for >2 years after. Conclusions We found an effect of short-term air pollution on AMI incidence, especially non-ST-segment-elevation myocardial infarction and inpatient AMI . These findings have public health implications for primary prevention and emergency health services during haze.
Collapse
Affiliation(s)
- Andrew Fu Wah Ho
- SingHealth Duke‐NUS Emergency Medicine Academic Clinical ProgrammeSingapore
- SingHealth Emergency Medicine Residency ProgrammeSingapore
- Cardiovascular & Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingapore
- Department of Emergency MedicineSingapore General HospitalSingapore
| | - Huili Zheng
- National Registry of Diseases OfficeHealth Promotion BoardSingapore
| | - Arul Earnest
- Department of Epidemiology and Preventive MedicineSchool of Public Health and Preventive MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Kang Hao Cheong
- Engineering ClusterSingapore Institute of TechnologySingapore
- Science and Math ClusterSingapore University of Technology and DesignSingapore
| | - Pin Pin Pek
- Department of Emergency MedicineSingapore General HospitalSingapore
- Saw Swee Hock School of Public HealthNational University of SingaporeSingapore
| | - Jeon Young Seok
- Saw Swee Hock School of Public HealthNational University of SingaporeSingapore
| | - Nan Liu
- Health Services Research CentreSingapore Health ServicesSingapore
- Centre for Quantitative MedicineDuke‐NUS Medical SchoolSingapore
| | - Yu Heng Kwan
- Program in Health Services and Systems ResearchDuke‐NUS Medical SchoolSingapore
| | | | - Ting Hway Wong
- Department of General SurgerySingapore General HospitalSingapore
| | - Derek J. Hausenloy
- Cardiovascular & Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingapore
- National Heart Research Institute SingaporeNational Heart CentreSingapore
- Yong Loo Lin School of MedicineNational University SingaporeSingapore
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUnited Kingdom
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & DevelopmentLondonUnited Kingdom
- Department of CardiologyBarts Heart CentreSt Bartholomew's HospitalLondonUnited Kingdom
| | - Ling Li Foo
- National Registry of Diseases OfficeHealth Promotion BoardSingapore
| | | | - Marcus Eng Hock Ong
- Department of Emergency MedicineSingapore General HospitalSingapore
- Health Services Research CentreSingapore Health ServicesSingapore
| |
Collapse
|
36
|
Masiol M, Zíková N, Chalupa DC, Rich DQ, Ferro AR, Hopke PK. Hourly land-use regression models based on low-cost PM monitor data. ENVIRONMENTAL RESEARCH 2018; 167:7-14. [PMID: 30005199 DOI: 10.1016/j.envres.2018.06.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/01/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Land-use regression (LUR) models provide location and time specific estimates of exposure to air pollution and thereby improve the sensitivity of health effects models. However, they require pollutant concentrations at multiple locations along with land-use variables. Often, monitoring is performed over short durations using mobile monitoring with research-grade instruments. Low-cost PM monitors provide an alternative approach that increases the spatial and temporal resolution of the air quality data. LUR models were developed to predict hourly PM concentrations across a metropolitan area using PM concentrations measured simultaneously at multiple locations with low-cost monitors. Monitors were placed at 23 sites during the 2015/16 heating season. Monitors were externally calibrated using co-located measurements including a reference instrument (GRIMM particle spectrometer). LUR models for each hour of the day and weekdays/weekend days were developed using the deletion/substitution/addition algorithm. Coefficients of determination for hourly PM predictions ranged from 0.66 and 0.76 (average 0.7). The hourly-resolved LUR model results will be used in epidemiological studies to examine if and how quickly, increases in ambient PM concentrations trigger adverse health events by reducing the exposure misclassification that arises from using less time resolved exposure estimates.
Collapse
Affiliation(s)
- Mauro Masiol
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA
| | - Naděžda Zíková
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA; Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - David C Chalupa
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Andrea R Ferro
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA.
| |
Collapse
|
37
|
Taghvaee S, Sowlat MH, Hassanvand MS, Yunesian M, Naddafi K, Sioutas C. Source-specific lung cancer risk assessment of ambient PM 2.5-bound polycyclic aromatic hydrocarbons (PAHs) in central Tehran. ENVIRONMENT INTERNATIONAL 2018; 120:321-332. [PMID: 30107293 DOI: 10.1016/j.envint.2018.08.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/11/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
In this study, source-specific cancer risk characterization of ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) was performed in central Tehran. The positive matrix factorization (PMF) model was applied for source apportionment of PAHs in the area from May 2012 through May 2013. The PMF runs were carried out using chemically analyzed PAHs mass concentrations. Five factors were identified as the major sources of airborne PAHs in central Tehran, including petrogenic sources and petroleum residue, natural gas and biomass burning, industrial emissions, diesel exhaust emissions, and gasoline exhaust emissions, with approximately similar contributions of around 20% to total PAHs concentration from each factor. Results of the PMF source apportionment (i.e., PAHs factor profiles and contributions) were then used to calculate the source-specific lung cancer risks for outdoor and lifetime exposure, using the benzo[α]pyrene (BaP) equivalent method. Our risk assessment analysis indicated that the lung cancer risk associated with each specific source is within the range of 10-6-10-5, posing cancer risks exceeding the United States Environmental Protection Agency's (USEPA) guideline safety values (10-6). Furthermore, the epidemiological lung cancer risk for lifetime exposure to total ambient PAHs was found to be (2.8 ± 0.78) × 10-5. Diesel exhaust and industrial emissions were the two sources with major contributions to the overall cancer risk, contributing respectively to 39% and 27% of the total risk associated with exposure to ambient PAHs. Results from this study provide an estimate of the cancer risk caused by exposure to ambient PAHs in highly crowded areas in central Tehran, and can be used as a guide for the adoption of effective air quality policies in order to reduce the human exposure to these harmful organic species.
Collapse
Affiliation(s)
- Sina Taghvaee
- University of Southern California, Department of Civil and Environmental Engineering, LA, California, USA.
| | - Mohammad H Sowlat
- University of Southern California, Department of Civil and Environmental Engineering, LA, California, USA.
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Masud Yunesian
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, LA, California, USA.
| |
Collapse
|
38
|
Zhang W, Lin S, Hopke PK, Thurston SW, van Wijngaarden E, Croft D, Squizzato S, Masiol M, Rich DQ. Triggering of cardiovascular hospital admissions by fine particle concentrations in New York state: Before, during, and after implementation of multiple environmental policies and a recession. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1404-1416. [PMID: 30142556 DOI: 10.1016/j.envpol.2018.08.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Previous studies reported triggering of acute cardiovascular events by short-term increasedPM2.5 concentrations. From 2007 to 2013, national and New York state air quality policies and economic influences resulted in reduced concentrations of PM2.5 and other pollutants across the state. We estimated the rate of cardiovascular hospital admissions associated with increased PM2.5 concentrations in the previous 1-7 days, and evaluated whether they differed before (2005-2007), during (2008-2013), and after these concentration changes (2014-2016). METHODS Using the Statewide Planning and Research Cooperative System (SPARCS) database, we retained all hospital admissions with a primary diagnosis of nine cardiovascular disease (CVD) subtypes, for residents living within 15 miles of PM2.5 monitoring sites in Buffalo, Rochester, Albany, Queens, Bronx, and Manhattan from 2005 to 2016 (N = 1,922,918). We used a case-crossover design and conditional logistic regression to estimate the admission rate for total CVD, and nine specific subtypes, associated with increased PM2.5 concentrations. RESULTS Interquartile range (IQR) increases in PM2.5 on the same and previous 6 days were associated with 0.6%-1.2% increases in CVD admission rate (2005-2016). There were similar patterns for cardiac arrhythmia, ischemic stroke, congestive heart failure, ischemic heart disease (IHD), and myocardial infarction (MI). Ambient PM2.5 concentrations and annual total CVD admission rates decreased across the period. However, the excess rate of IHD admissions associated with each IQR increase in PM2.5 in previous 2 days was larger in the after period (2.8%; 95%CI = 1.5%-4.0%) than in the during (0.6%; 95%CI = 0.0%-1.2%) or before periods (0.8%; 95%CI = 0.2%-1.3%), with similar patterns for total CVD and MI, but not other subtypes. CONCLUSIONS While pollutant concentrations and CVD admission rates decreased after emission changes, the same PM2.5 mass was associated with a higher rate of ischemic heart disease events. Future work should confirm these findings in another population, and investigate whether specific PM components and/or sources trigger IHD events.
Collapse
Affiliation(s)
- Wangjian Zhang
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA
| | - Shao Lin
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Edwin van Wijngaarden
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Daniel Croft
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Stefania Squizzato
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Mauro Masiol
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
39
|
Tibuakuu M, Michos ED, Navas-Acien A, Jones MR. Air Pollution and Cardiovascular Disease: A Focus on Vulnerable Populations Worldwide. CURR EPIDEMIOL REP 2018; 5:370-378. [PMID: 30931239 DOI: 10.1007/s40471-018-0166-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose of review Certain subgroups defined by sociodemographics (race/ethnicity, age, sex and socioeconomic status [SES]), geographic location (rural vs. urban), comorbid conditions and country economic conditions (developed vs. developing) may disproportionately suffer the adverse cardiovascular effects of exposure to ambient air pollution. Yet, previous reviews have had a broad focus on the general population without consideration of these potentially vulnerable populations. Recent findings Over the past decade, a wealth of epidemiologic studies have linked air pollutants including particulate matter, oxides of nitrogen, and carbon monoxide to cardiovascular disease (CVD) risk factors, subclinical CVD, clinical cardiovascular outcomes and cardiovascular mortality in certain susceptible populations. Highest risk for poor CVD outcomes from air pollution exist in racial/ethnic minorities, especially in blacks compared to whites in the U.S, those at low SES, elderly populations, women, those with certain comorbid conditions and developing countries compared to developed countries. However, findings are less consistent for urban compared to rural populations. Summary Vulnerable subgroups including racial/ethnic minorities, women, the elderly, smokers, diabetics and those with prior heart disease had higher risk for adverse cardiovascular outcomes from exposure to air pollution. There is limited data from developing countries where concentrations of air pollutants are more extreme and cardiovascular event rates are higher than that of developed countries. Further epidemiologic studies are needed to understand and address the marked disparities in CVD risk conferred by air pollution globally, particularly among these vulnerable subgroups.
Collapse
Affiliation(s)
- Martin Tibuakuu
- St. Luke's Hospital, Department of Medicine, Chesterfield, MO, USA.,Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Erin D Michos
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University School of Public Health, New York, NY, USA
| | - Miranda R Jones
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
40
|
Taghvaee S, Sowlat MH, Mousavi A, Hassanvand MS, Yunesian M, Naddafi K, Sioutas C. Source apportionment of ambient PM 2.5 in two locations in central Tehran using the Positive Matrix Factorization (PMF) model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:672-686. [PMID: 29455128 DOI: 10.1016/j.scitotenv.2018.02.096] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 05/10/2023]
Abstract
In this study, the positive matrix factorization (PMF) model was used for source apportionment of ambient PM2.5 in two locations in the central Tehran from May 2012 through June 2013. The average PM2.5 mass concentrations were 30.9 and 33.2μg/m3 in Tohid retirement home and the school dormitory, respectively. Metals and trace elements, water-soluble ions, and PM2.5 mass concentrations were used as inputs to the model. Concentrations of elemental and organic carbon (EC and OC), and meteorological data were also used as auxiliary variables to help with the factor identification and interpretation. A 7-factor solution was identified as the best solution for both sites. The identified source factors included vehicular emissions, secondary aerosol, industrial emissions, biomass burning, soil, and road dust (including tire and brake wear particles) in both sampling sites. Results indicated that almost half of PM2.5 mass can be attributed to vehicular emissions at both sites. Secondary aerosol was the second major contributor to PM2.5 mass concentrations at both sites, with contributions of around 25% on average for both sites. In addition, while two industrial factors were identified in Tohid retirement home (with an overall contribution of 17%), only one industrial factor (with a minimal contribution of <2%) was identified at Tohid retirement home, probably due to the fact that the retirement home is impacted to a higher degree by industry-related activities. The other factors included biomass burning, road dust, and soil, with overall contributions of around 20% in both sites. Results of this study clearly indicate the major role of traffic-related emissions (both tailpipe and non-tailpipe) on ambient PM2.5 concentrations, and can be used as a beneficial tool for air quality policy makers to mitigate adverse health effects of exposure to PM2.5.
Collapse
Affiliation(s)
- Sina Taghvaee
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Mohammad H Sowlat
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Amirhosein Mousavi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
41
|
Shahrbaf MA, Mahjoob MP, Khaheshi I, Akbarzadeh MA, Barkhordari E, Naderian M, Tajrishi FZ. The role of air pollution on ST-elevation myocardial infarction: a narrative mini review. Future Cardiol 2018; 14:301-306. [PMID: 29932738 DOI: 10.2217/fca-2017-0078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ST-elevation myocardial infarction (STEMI) is one of the potential causes of death worldwide. In spite of substantial advances in its diagnosis and treatment, STEMI is still considered as a major public health dilemma in developed and particularly developing countries. One of the triggering factors of STEMI is supposed to be air pollutants like gaseous pollutants including, sulfur dioxide, nitric dioxide, carbon monoxide, ozone and particulate matters (PM) including, PM under 2.5 µm (PM2.5) and PM under 10 µm (PM10). Air pollution can trigger STEMI with various mechanisms such as increasing inflammatory factors and changing the heart rate or blood viscosity. In this article, we aimed to explore research in the field and discuss the relationship between air pollution and STEMI.
Collapse
Affiliation(s)
- Mohammad Amin Shahrbaf
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Parsa Mahjoob
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Isa Khaheshi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Modarres Hospital, Kaj square, Sa'adat Abad Ave, Tehran, Iran, 1998734383
| | - Mohammad Ali Akbarzadeh
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Barkhordari
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Naderian
- Non-Communicable Diseases Research Center, Endocrinology & Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|