1
|
Havelikar U, Ghorpade KB, Kumar A, Patel A, Singh M, Banjare N, Gupta PN. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. DISCOVER NANO 2024; 19:165. [PMID: 39365367 PMCID: PMC11452581 DOI: 10.1186/s11671-024-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Nanomedicine has the potential to transform healthcare by offering targeted therapies, precise diagnostics, and enhanced drug delivery systems. The National Institutes of Health has coined the term "nanomedicine" to describe the use of nanotechnology in biological system monitoring, control, diagnosis, and treatment. Nanomedicine continues to receive increasing interest for the rationalized delivery of therapeutics and pharmaceutical agents to achieve the required response while reducing its side effects. However, as nanotechnology continues to advance, concerns about its potential toxicological effects have also grown. This review explores the current state of nanomedicine, focusing on the types of nanoparticles used and their associated properties that contribute to nanotoxicity. It examines the mechanisms through which nanoparticles exert toxicity, encompassing various cellular and molecular interactions. Furthermore, it discusses the assessment methods employed to evaluate nanotoxicity, encompassing in-vitro and in-vivo models, as well as emerging techniques. The review also addresses the regulatory issues surrounding nanotoxicology, highlighting the challenges in developing standardized guidelines and ensuring the secure translation of nanomedicine into clinical settings. It also explores into the challenges and ethical issues associated with nanotoxicology, as understanding the safety profile of nanoparticles is essential for their effective translation into therapeutic applications.
Collapse
Affiliation(s)
- Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Akhilesh Patel
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Manisha Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nagma Banjare
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
2
|
Xiang Q, Wang Z, Yan J, Niu M, Long W, Ju Z, Chang X. Metabolomic analysis to understand the mechanism of Ti 3C 2T x (MXene) toxicity in Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106904. [PMID: 38513426 DOI: 10.1016/j.aquatox.2024.106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Due to their potential release into the environment, the ecotoxicity of Ti3C2Tx (MXene) nanomaterials is a growing concern. Unfortunately, little is known about the toxic effects and mechanisms through which Ti3C2Tx induces toxicity in aquatic organisms. The aim of this study is thus to investigate the toxic effects and mechanisms of Daphnia magna upon exposure to Ti3C2Tx with different sheet sizes (100 nm [Ti3C2Tx-100] and 500 nm [Ti3C2Tx-500]) by employing conventional toxicology and metabolomics analysis. The results showed that exposure to both Ti3C2Tx-100 and Ti3C2Tx-500 at 10 μg/mL resulted in a significant accumulation of Ti3C2Tx in D. magna, but no effects on the mortality or growth of D. magna were observed. However, the metabolomics results revealed that Ti3C2Tx-100 and Ti3C2Tx-500 induced significant changes in up to 265 and 191 differential metabolites in D. magna, respectively, of which 116 metabolites were common for both. Ti3C2Tx-100-induced metabolites were mainly enriched in phospholipid, pyrimidine, tryptophan, and arginine metabolism, whereas Ti3C2Tx-500-induced metabolites were mainly enriched in the glycerol-ester, tryptophan, and glyoxylate metabolism and the pentose phosphate pathway. These results indicated that the toxicity of Ti3C2Tx to D. magna has a size-dependent effect at the metabolic level, and both sheet sizes of Ti3C2Tx can lead to metabolic disturbances in D. magna by interfering with lipid and amino acid metabolism pathways.
Collapse
Affiliation(s)
- Qianqian Xiang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Zhujun Wang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Jinzhan Yan
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Minmin Niu
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Wenyu Long
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Zhihao Ju
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada.
| |
Collapse
|
3
|
Augustyniak M, Ajay AK, Kędziorski A, Tarnawska M, Rost-Roszkowska M, Flasz B, Babczyńska A, Mazur B, Rozpędek K, Alian RS, Skowronek M, Świerczek E, Wiśniewska K, Ziętara P. Survival, growth and digestive functions after exposure to nanodiamonds - Transgenerational effects beyond contact time in house cricket strains. CHEMOSPHERE 2024; 349:140809. [PMID: 38036229 DOI: 10.1016/j.chemosphere.2023.140809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
The long-term exposure effects of nanodiamonds (NDs), spanning an organism's entire lifespan and continuing for subsequent generation, remain understudied. Most research has focused on evaluating their biological impacts on cell lines and selected organisms, typically over short exposure durations lasting hours or days. The study aimed to assess growth, mortality, and digestive functions in wild (H) and long-lived (D) strains of Acheta domesticus (Insecta: Orthoptera) after two-generational exposure to NDs in concentrations of 0.2 or 2 mg kg-1 of food, followed by their elimination in the third generation. NDs induced subtle stimulating effect that depended on the strain and generation. In the first generation, more such responses occurred in the H than in the D strain. In the first generation of H strain insects, contact with NDs increased survival, stimulated the growth of young larvae, and the activity of most digestive enzymes in mature adults. The same doses and exposure time did not cause similar effects in the D strain. In the first generation of D strain insects, survival and growth were unaffected by NDs, whereas, in the second generation, significant stimulation of those parameters was visible. Selection towards longevity appears to support higher resistance of the insects to exposure to additional stressor, at least in the first generation. The cessation of ND exposure in the third generation caused potentially harmful changes, which included, e.g., decreased survival probability in H strain insects, slowed growth of both strains, as well as changes in heterochromatin density and distribution in nuclei of the gut cells in both strains. Such a reaction may suggest the involvement of epigenetic inheritance mechanisms, which may become inadequate after the stress factor is removed.
Collapse
Affiliation(s)
- Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Amrendra K Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Beata Mazur
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Katarzyna Rozpędek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Reyhaneh Seyed Alian
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Skowronek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Klaudia Wiśniewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Patrycja Ziętara
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
4
|
Antal TK, Volgusheva AA, Baizhumanov AA, Kukarskikh GP, Mezzi A, Caschera D, Ciasca G, Lambreva MD. Nanodiamond Particles Reduce Oxidative Stress Induced by Methyl Viologen and High Light in the Green Alga Chlamydomonas reinhardtii. Int J Mol Sci 2023; 24:ijms24065615. [PMID: 36982691 PMCID: PMC10052329 DOI: 10.3390/ijms24065615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Widely used in biomedical and bioanalytical applications, the detonation nanodiamonds (NDs) are generally considered to be biocompatible and non-toxic to a wide range of eukaryotic cells. Due to their high susceptibility to chemical modifications, surface functionalisation is often used to tune the biocompatibility and antioxidant activity of the NDs. The response of photosynthetic microorganisms to redox-active NDs is still poorly understood and is the focus of the present study. The green microalga Chlamydomonas reinhardtii was used to assess the potential phytotoxicity and antioxidant activity of NDs hosting hydroxyl functional groups at concentrations of 5–80 μg NDs/mL. The photosynthetic capacity of microalgae was assessed by measuring the maximum quantum yield of PSII photochemistry and the light-saturated oxygen evolution rate, while oxidative stress was assessed by lipid peroxidation and ferric-reducing antioxidant capacity. We demonstrated that hydroxylated NDs might reduce cellular levels of oxidative stress, protect PSII photochemistry and facilitate the PSII repair under methyl viologen and high light associated stress conditions. Factors involved in this protection may include the low phytotoxicity of hydroxylated NDs in microalgae and their ability to accumulate in cells and scavenge reactive oxygen species. Our findings could pave the way for using hydroxylated NDs as antioxidants to improve cellular stability in algae-based biotechnological applications or semi-artificial photosynthetic systems.
Collapse
Affiliation(s)
- Taras K. Antal
- Laboratory of Integrated Ecological Research, Pskov State University, 180000 Pskov, Russia
| | - Alena A. Volgusheva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Adil A. Baizhumanov
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Galina P. Kukarskikh
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alessio Mezzi
- Institute for the Study of Nanostructured Materials, National Research Council, Monterotondo Stazione, 00015 Rome, Italy
| | - Daniela Caschera
- Institute for the Study of Nanostructured Materials, National Research Council, Monterotondo Stazione, 00015 Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Maya D. Lambreva
- Institute for Biological Systems, National Research Council, Monterotondo Stazione, 00015 Rome, Italy
- Correspondence:
| |
Collapse
|
5
|
Singh S, Jaiswal V, Singh JK, Semwal R, Raina D. Nanoparticle formulations: A smart era of advanced treatment with nanotoxicological imprints on the human body. Chem Biol Interact 2023; 373:110355. [PMID: 36682480 DOI: 10.1016/j.cbi.2023.110355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
In the modern era, nanoparticles are the preferred dosage form, and maximum research is going on in the field of nanoparticle formulations. But as they are so small, nanoparticles are able to slip through the body's defenses and cause damage to the organs and tissues deep inside. In recent years, most researchers have focused solely on the therapeutic value of drugs or, at times, the performance of dosage forms, but few have given toxicity studies equal weight in their research. This review demonstrates that nanoparticle formulations are not suitable from a safety standpoint. So, researchers should be focused on alternative formulations like nanoemulsion, nanogel, and other liquids as well as semisolid formulations.
Collapse
Affiliation(s)
- Siddharth Singh
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Vishakha Jaiswal
- Faculty of Pharmacy, BBDNIIT, Lucknow, Uttar Pradesh, 226028, India
| | | | - Ravindra Semwal
- Research and Development Centre, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India
| | - Deepika Raina
- School of Pharmacy, Graphic Era Hill University, Dehradun, India.
| |
Collapse
|
6
|
Jemec Kokalj A, Heinlaan M, Novak S, Drobne D, Kühnel D. Defining Quality Criteria for Nanoplastic Hazard Evaluation: The Case of Polystyrene Nanoplastics and Aquatic Invertebrate Daphnia spp. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:536. [PMID: 36770497 PMCID: PMC9919956 DOI: 10.3390/nano13030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Polystyrene nanoparticles are the most investigated type of nanoplastics in environmental hazard studies. It remains unclear whether nanoplastic particles pose a hazard towards aquatic organisms. Thus, it was our aim to investigate whether the existing studies and data provided therein are reliable in terms of data completeness. We used the example of Daphnia spp. studies for the purpose of polystyrene nanoplastic (nanoPS) hazard evaluation. First, a set of quality criteria recently proposed for nanoplastic ecotoxicity studies was applied. These rather general criteria for all types of nanoplastics and different test organisms were then, in the second step, tailored and refined specifically for Daphnia spp. and nanoPS. Finally, a scoring system was established by setting mandatory (high importance) as well as desirable (medium importance) criteria and defining a threshold to pass the evaluation. Among the existing studies on nanoPS ecotoxicity for Daphnia spp. (n = 38), only 18% passed the evaluation for usability in hazard evaluation. The few studies that passed the evaluation did not allow for conclusions on the hazard potential of nanoPS because there was no consensus among the studies. The greatest challenge we identified is in data reporting, as only a few studies presented complete data for hazard evaluation.
Collapse
Affiliation(s)
- Anita Jemec Kokalj
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Margit Heinlaan
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Sara Novak
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Dana Kühnel
- Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, 03418 Leipzig, Germany
| |
Collapse
|
7
|
Augustyniak M, Babczyńska A, Dziewięcka M, Flasz B, Karpeta-Kaczmarek J, Kędziorski A, Mazur B, Rozpędek K, Seyed Alian R, Skowronek M, Świerczek E, Świętek A, Tarnawska M, Wiśniewska K, Ziętara P. Does age pay off? Effects of three-generational experiments of nanodiamond exposure and withdrawal in wild and longevity-selected model animals. CHEMOSPHERE 2022; 303:135129. [PMID: 35636606 DOI: 10.1016/j.chemosphere.2022.135129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Nanodiamonds (NDs) are considered a material with low toxicity. However, no studies describe the effects of ND withdrawal after multigenerational exposure. The aim was to evaluate ND exposure (in the 1st and 2nd generations) effects at low concentrations (0.2 or 2 mg kg-1) and withdrawal (in the 3rd generation) in the wild (H) and longevity-selected (D) model insect Acheta domesticus. We measured selected oxidative stress parameters, immunity, types of cell death, and DNA damage. Most of the results obtained in the 1st generation, e.g., catalase (CAT), total antioxidant capacity (TAC), heat shock proteins (HSP70), defensins, or apoptosis level, confirmed no significant toxicity of low doses of NDs. Interestingly, strain-specific differences were observed. D-strain crickets reduced autophagy, the number of ROS+ cells, and DNA damage. The effect can be a symptom of mobilization of the organism and stimulation of physiological defense mechanisms in long-living organisms. The 2nd-generation D-strain insects fed ND-spiked food at higher concentrations manifested a reduction in CAT, TAC, early apoptosis, and DNA damage, together with an increase in HSP70 and defensins. ROS+ cells and cells with reduced membrane potential and autophagy did not differ significantly from the control. H-strain insects revealed a higher number of ROS+ cells and cells with reduced membrane potential, decreased CAT activity, and early apoptosis. Elimination of NDs from the diet in the 3rd generation did not cause full recovery of the measured parameters. We noticed an increase in the concentration of HSP70 and defensins (H-strain) and a decrease in apoptosis (D-strain). However, the most visible increase was a significant increase in DNA damage, especially in H-strain individuals. The results suggest prolonged adverse effects of NDs on cellular functions, reaching beyond "contact time" with these particles. Unintentional and/or uncontrolled ND pollution of the environment poses a new challenge for all organisms inhabiting it, particularly during multigenerational exposure.
Collapse
Affiliation(s)
- Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Julia Karpeta-Kaczmarek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Beata Mazur
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Katarzyna Rozpędek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Reyhaneh Seyed Alian
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Skowronek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Agata Świętek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Klaudia Wiśniewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Patrycja Ziętara
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
8
|
Mostafavi E, Zare H. Carbon-based nanomaterials in gene therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
9
|
Khanna K, Kohli SK, Handa N, Kaur H, Ohri P, Bhardwaj R, Yousaf B, Rinklebe J, Ahmad P. Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112459. [PMID: 34217114 DOI: 10.1016/j.ecoenv.2021.112459] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/06/2021] [Accepted: 06/23/2021] [Indexed: 05/09/2023]
Abstract
Nanotechnology is an avant-garde field of scientific research that revolutionizes technological advancements in the present world. It is a cutting-edge scientific approach that has undoubtedly a plethora of functions in controlling environmental pollutants for the welfare of the ecosystem. However, their unprecedented utilization and hysterical release led to a huge threat to the soil microbiome. Nanoparticles(NPs) hamper physicochemical properties of soil along with microbial metabolic activities within rhizospheric soils.Here in this review shed light on concentric aspects of NP-biosynthesis, types, toxicity mechanisms, accumulation within the ecosystem. However, the accrual of tiny NPs into the soil system has dramatically influenced rhizospheric activities in terms of soil properties and biogeochemical cycles. We have focussed on mechanistic pathways engrossed by microbes to deal with NPs.Also, we have elaborated the fate and behavior of NPs within soils. Besides, a piece of very scarce information on NPs-toxicity towards environment and rhizosphere communities is available. Therefore, the present review highlights ecological perspectives of nanotechnology and solutions to such implications. We have comprehend certain strategies such as avant-garde engineering methods, sustainable procedures for NP synthesis along with vatious regulatory actions to manage NP within environment. Moreover, we have devised risk management sustainable and novel strategies to utilize it in a rationalized and integrated manner. With this background, we can develop a comprehensive plan about NPs with novel insights to understand the resistance and toxicity mechanisms of NPs towards microbes. Henceforth, the orientation towards these issues would enhance the understanding of researchers for proper recommendation and promotion of nanotechnology in an optimized and sustainable manner.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Neha Handa
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harsimran Kaur
- Plant Protection Division, PG Department of Agriculture, Khalsa College, Amritsar 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Balal Yousaf
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey; CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Parvaiz Ahmad
- Botany and Microbiology Department, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
10
|
Zhang C, Chen X, Ho SH. Wastewater treatment nexus: Carbon nanomaterials towards potential aquatic ecotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125959. [PMID: 33990041 DOI: 10.1016/j.jhazmat.2021.125959] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Carbon nanomaterials (CNMs) provide an effective solution and a novel advancement for wastewater treatment. In this review, a total of 3823 bibliographic records derived from recent 10 years are visualized based on scientometric analysis. The results indicate metal-free CNMs-mediated advanced oxidation processes (AOPs) might be a motive force to develop CNMs application for wastewater treatment; however, corresponding evaluations of aquatic toxicity still lack sufficient attention. Therefore, recent breakthroughs and topical innovations related to prevalent wastewater treatment technologies (i.e., adsorption, catalysis and membrane separation) using three typical dimensional CNMs (nanodiamonds, carbon nanotubes, and graphene-based nanomaterials) are comprehensively summarized in-depth, along with a compendious introduction to some novel techniques (e.g., computational simulation) for identifying reaction mechanisms. Then, current research focusing on CNMs-associated aquatic toxicity is discussed thoroughly, mainly demonstrating: (1) the adverse effects on aquatic organisms should not be overlooked prior to large-scale CNMs application; (2) divergent consequences can be further reduced if the ecological niche of aquatic organisms is emphasized; and (3) further investigations on joint toxicity can provide greater beneficial insight into realistic exposure scenarios. Finally, ongoing challenges and developmental directions of CNMs-based wastewater treatment and evaluation of its aquatic toxicity are pinpointed and shaped in terms of future research.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
11
|
Lu Y, Zhang H, Wang H, Ma N, Sun T, Cui B. Humic acid mediated toxicity of faceted TiO 2 nanocrystals to Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126112. [PMID: 34492909 DOI: 10.1016/j.jhazmat.2021.126112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Nano-bio interface is of great importance in dictating the interaction between the nanomaterials and biological system and thus the toxicity to aquatic organisms. Herein, two specific faceted TiO2 nanocrystals, {101} and {001} facet, were exposed to Daphnia magna to explore facet-dependent toxicological responses in aquatic environment. Due to the different influences on oxidative stress process, the half-maximal effective concentration (EC50) value of {001} TiO2 (1.27 g L-1) to D. magna was less than that of {101} TiO2 (1.68 g L-1). Suwannee river humic acid (SRHA) could significantly reduce the oxidative stress responses of TiO2 nanocrystals and thus alleviate their toxicities to D. magna in aquatic environment. The protective effect of SRHA against TiO2 toxicity exhibited a facet-dependent manner. Compared to {101} TiO2, a more obvious detoxification effect was observed for {001} TiO2. The high SRHA concentration could endow both faceted TiO2 nanocrystals with a similar toxicity due to the formation of SRHA-corona on TiO2 surface. This facet-affected toxicity of nanomaterials in aquatic environment would provide us new insights in predicting the exposure risk of nanomaterials in nature waters.
Collapse
Affiliation(s)
- Yi Lu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; School of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Hui Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Hua Wang
- School of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Ning Ma
- Beijing Key Laboratory of Water Environmental and Ecological Technology for River Basins, Beijing Water Science and Technology Institute, Beijing 100048, China
| | - Tao Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baoshan Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
12
|
Zhang Y, Dahal U, Feng ZV, Rosenzweig Z, Cui Q, Hamers RJ. Influence of Surface Ligand Molecular Structure on Phospholipid Membrane Disruption by Cationic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7600-7610. [PMID: 34115507 DOI: 10.1021/acs.langmuir.1c01146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cationic nanoparticles are known to interact with biological membranes and often cause serious membrane damage. Therefore, it is important to understand the molecular mechanism for such interactions and the factors that impact the degree of membrane damage. Previously, we have demonstrated that spatial distribution of molecular charge at cationic nanoparticle surfaces plays an important role in determining the cellular uptake and membrane damage of these nanoparticles. In this work, using diamond nanoparticles (DNPs) functionalized with five different amine-based surface ligands and small phospholipid unilamellar vesicles (SUVs), we further investigate how chemical features and conformational flexibility of surface ligands impact nanoparticle/membrane interactions. 31P-NMR T2 relaxation measurements quantify the mobility changes in lipid dynamics upon exposing the SUVs to functional DNPs, and coarse-grained molecular dynamics simulations further elucidate molecular details for the different modes of DNP-SUV interactions depending on the surface ligands. Collectively, our results show that the length of the hydrophobic segment and conformational flexibility of surface ligands are two key factors that dictate the degree of membrane damage by the DNP, while the amount of surface charge alone is not predictive of the strength of interaction.
Collapse
Affiliation(s)
- Yongqian Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Udaya Dahal
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Z Vivian Feng
- Chemistry Department, Augsburg University, Minneapolis, Minnesota 55454, United States
| | - Zeev Rosenzweig
- Department of Chemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
13
|
Wang Z, Song L, Zhang F, Wang DG. Comparative Acute Toxicity and Oxidative Stress Responses in Three Aquatic Species Exposed to Stannic Oxide Nanoparticles and Stannic Chloride. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:841-846. [PMID: 33237379 DOI: 10.1007/s00128-020-03052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
We experimentally investigated the toxicity of stannic oxide nanoparticles (SnO2 NPs) to three freshwater species including Scenedesmus obliquus, Daphnia magna, and Danio rerio. To evaluate effect, toxicological impacts were compared to that of stannic chloride (SnCl4). Based on the actual concentration of Sn, SnO2 NPs suspensions inhibited growth of S. obliquus in a dose-dependent manner, demonstrating a median effect concentration of 2.28 ± 0.53 mg/L. However, SnO2 NP suspensions were found to exhibit limited acute toxicity in D. magna and D. rerio. Moreover, the toxicity of the SnO2 NP suspension was lower than SnCl4 for all three trophic aquatic organisms. Comparison of component-specific contribution to overall toxicity indicated that, in SnO2 NP suspensions, particulate Sn more significantly contributed to toxicity than dissolved Sn-ions. Furthermore, we found that the toxic mechanism of the SnO2 NP suspension involved the induction of oxidative stress by increasing intracellular ROS accumulation.
Collapse
Affiliation(s)
- Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China.
| | - Lan Song
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
- Shenzhen Institute of Sustainable Development, Shenzhen, 518055, People's Republic of China
| | - Fan Zhang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China
| | - De-Gao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| |
Collapse
|
14
|
Yakovlev RY, Mingalev PG, Leonidov NB, Lisichkin GV. Detonation Nanodiamonds as Promising Drug Carriers. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Ma Q, Zhang Q, Yang S, Yilihamu A, Shi M, Ouyang B, Guan X, Yang ST. Toxicity of nanodiamonds to white rot fungi Phanerochaete chrysosporium through oxidative stress. Colloids Surf B Biointerfaces 2020; 187:110658. [DOI: 10.1016/j.colsurfb.2019.110658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/21/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
|
16
|
Martín-de-Lucía I, Gonçalves SF, Leganés F, Fernández-Piñas F, Rosal R, Loureiro S. Combined toxicity of graphite-diamond nanoparticles and thiabendazole to Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1145-1154. [PMID: 31726545 DOI: 10.1016/j.scitotenv.2019.06.316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/21/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Carbon-based nanomaterials exhibit unique properties that make them suitable for a wide variety of industrial and biomedical applications. In this work, we studied the acute toxicity of graphite-diamond nanoparticles (GDN) combined with the fungicide thiabendazole (TBZ) to the immobilization of the cladoceran Daphnia magna in the presence and absence of the micro green algae Raphidocelis subcapitata, supplied as food source. The toxicity of GDN to D. magna decreased in the presence of R. subcapitata, while that of TBZ increased, the latter suggesting a carrier effect to TBZ. GDN-TBZ mixtures were fitted to the most common conceptual models applied to mixture toxicity: Concentration Addition (CA), Independent Action (IA) and Combination Index (CI). For GDN-TBZ mixtures in the absence of food the best fit was obtained with dose ratio deviation from CA model, while in the presence of food, dose level deviation from CA gave a better fit. The binary mixtures of GDN and TBZ showed synergistic toxic interactions at low concentrations, which could be attributed to the increased bioavailability of TBZ adsorbed on GDN. For higher concentrations of GDN, the binary mixtures turned antagonistic due to particle agglomeration. Our study provides evidence that deviations from additivity are dose dependent and relevant for the risk assessment of mixtures of nanoparticles with other chemical pollutants.
Collapse
Affiliation(s)
- Idoia Martín-de-Lucía
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Sandra F Gonçalves
- Department of Biology & CESAM, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Francisco Leganés
- Department of Biology, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
17
|
Buchman JT, Hudson-Smith NV, Landy KM, Haynes CL. Understanding Nanoparticle Toxicity Mechanisms To Inform Redesign Strategies To Reduce Environmental Impact. Acc Chem Res 2019; 52:1632-1642. [PMID: 31181913 DOI: 10.1021/acs.accounts.9b00053] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been a surge of consumer products that incorporate nanoparticles, which are used to improve or impart new functionalities to the products based on their unique physicochemical properties. With such an increase in products containing nanomaterials, there is a need to understand their potential impacts on the environment. This is often done using various biological models that are abundant in the different environmental compartments where the nanomaterials may end up after use. Beyond studying whether nanomaterials simply kill an organism, the molecular mechanisms by which nanoparticles exhibit toxicity have been extensively studied. Some of the main mechanisms include (1) direct nanoparticle association with an organism's cell surface, where the membrane can be damaged or initiate internal signaling pathways that damage the cell, (2) dissolution of the material, releasing toxic ions that impact the organism, generally through impairing important enzyme functions or through direct interaction with a cell's DNA, and (3) the generation of reactive oxygen species and subsequent oxidative stress on an organism, which can also damage important enzymes or an organism's genetic material. This Account reviews these toxicity mechanisms, presenting examples for each with different types of nanomaterials. Understanding the mechanism of nanoparticle toxicity will inform efforts to redesign nanoparticles with reduced environmental impact. The redesign strategies will need to be chosen based on the major mode of toxicity, but also considering what changes can be made to the nanomaterial without impacting its ability to perform in its intended application. To reduce interactions with the cell surface, nanomaterials can be designed to have a negative surface charge, use ligands such as polyethylene glycol that reduce protein binding, or have a morphology that discourages binding with a cell surface. To reduce the nanoparticle dissolution to toxic ions, the toxic species can be replaced with less toxic elements that have similar properties, the nanoparticle can be capped with a shell material, the morphology of the nanoparticle can be chosen to minimize surface area and thus minimize dissolution, or a chelating agent can be co-introduced or functionalized onto the nanomaterial's surface. To reduce the production of reactive oxygen species, the band gap of the material can be tuned either by using different elements or by doping, a shell layer can be added to inhibit direct contact with the core, or antioxidant molecules can be tethered to the nanoparticle surface. When redesigning nanoparticles, it will be important to test that the redesign strategy actually reduces toxicity to organisms from relevant environmental compartments. It is also necessary to confirm that the nanomaterial still demonstrates the critical physicochemical properties that inspired its inclusion in a product or device.
Collapse
Affiliation(s)
- Joseph T. Buchman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Natalie V. Hudson-Smith
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kaitlin M. Landy
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Lane D, Soong R, Bermel W, Ning P, Dutta Majumdar R, Tabatabaei-Anaraki M, Heumann H, Gundy M, Bönisch H, Liaghati Mobarhan Y, Simpson MJ, Simpson AJ. Selective Amino Acid-Only in Vivo NMR: A Powerful Tool To Follow Stress Processes. ACS OMEGA 2019; 4:9017-9028. [PMID: 31459990 PMCID: PMC6648361 DOI: 10.1021/acsomega.9b00931] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/09/2019] [Indexed: 05/24/2023]
Abstract
In vivo NMR of small 13C-enriched aquatic organisms is developing as a powerful tool to detect and explain toxic stress at the biochemical level. Amino acids are a very important category of metabolites for stress detection as they are involved in the vast majority of stress response pathways. As such, they are a useful proxy for stress detection in general, which could then be a trigger for more in-depth analysis of the metabolome. 1H-13C heteronuclear single quantum coherence (HSQC) is commonly used to provide additional spectral dispersion in vivo and permit metabolite assignment. While some amino acids can be assigned from HSQC, spectral overlap makes monitoring them in vivo challenging. Here, an experiment typically used to study protein structures is adapted for the selective detection of amino acids inside living Daphnia magna (water fleas). All 20 common amino acids can be selectively detected in both extracts and in vivo. By monitoring bisphenol-A exposure, the in vivo amino acid-only approach identified larger fluxes in a greater number of amino acids when compared to published works using extracts from whole organism homogenates. This suggests that amino acid-only NMR of living organisms may be a very sensitive tool in the detection of stress in vivo and is highly complementary to more traditional metabolomics-based methods. The ability of selective NMR experiments to help researchers to "look inside" living organisms and only detect specific molecules of interest is quite profound and paves the way for the future development of additional targeted experiments for in vivo research and monitoring.
Collapse
Affiliation(s)
- Daniel Lane
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Ronald Soong
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Wolfgang Bermel
- Bruker
BioSpin GmbH, Silberstreifen 4, Rheinstetten, Germany
| | - Paris Ning
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Rudraksha Dutta Majumdar
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
- Bruker
Canada Ltd, 2800 High
Point Drive, Milton, Ontario, Canada L9T 6P4
| | - Maryam Tabatabaei-Anaraki
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | | | | | | | - Yalda Liaghati Mobarhan
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Myrna J. Simpson
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - André J. Simpson
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| |
Collapse
|
19
|
Bayal M, Janardhanan P, Tom E, Chandran N, Devadathan S, Ranjeet D, Unniyampurath U, Pilankatta R, Nair SS. Cytotoxicity of nanoparticles - Are the size and shape only matters? or the media parameters too?: a study on band engineered ZnS nanoparticles and calculations based on equivolume stress model. Nanotoxicology 2019; 13:1005-1020. [DOI: 10.1080/17435390.2019.1602678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Manikanta Bayal
- Department of Physics, Central University of Kerala, Periye, Kasaragod, India
| | - Prajit Janardhanan
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasaragod, India
| | - Emmanuel Tom
- Department of Physics, Central University of Kerala, Periye, Kasaragod, India
| | - Neeli Chandran
- Department of Physics, Central University of Kerala, Periye, Kasaragod, India
| | - S. Devadathan
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasaragod, India
| | - D. Ranjeet
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasaragod, India
| | | | - Rajendra Pilankatta
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasaragod, India
| | - Swapna S. Nair
- Department of Physics, Central University of Kerala, Periye, Kasaragod, India
| |
Collapse
|
20
|
Qiu TA, Clement PL, Haynes CL. Linking nanomaterial properties to biological outcomes: analytical chemistry challenges in nanotoxicology for the next decade. Chem Commun (Camb) 2018; 54:12787-12803. [DOI: 10.1039/c8cc06473c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article provides our perspective on the analytical challenges in nanotoxicology as the field is entering its third decade.
Collapse
Affiliation(s)
- Tian A. Qiu
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | | | | |
Collapse
|