1
|
Lin T, He L, Liu S, Li Y, Huang Z, Cai D, Wang Y, Mo Z, Zhu Y, Chen Z, Xu P, Lou X, Sheng J, Chen G, Wang X. Per- and polyfluoroalkyl substances mixture impairs intestinal barrier function through microbiota-derived 21-deoxycortisol and cortisol metabolism dysregulation. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138378. [PMID: 40359747 DOI: 10.1016/j.jhazmat.2025.138378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are persistent environmental pollutants linked to various health risks, including intestinal disorders. However, the effect of real-world PFASs mixture on intestinal health remains unclear. Therefore, this study aimed to investigate the effects of a PFASs mixture by mimicking the exposure composition in a population on intestinal homeostasis in rats. Although the colon showed no significant morphological alterations, transcriptomic analysis revealed dose-dependent changes in gene expression levels related to cell-cell and tight junctions. Immunofluorescence and immunohistochemistry further confirmed these findings, demonstrating a dose-dependent decrease in key tight junction proteins, occludin and claudin-1, in the colonic epithelium. Integrative analysis revealed that PFASs mixture exposure disrupted the growth and metabolism of gut bacteria, such as Ruminococcus, leading to increased production of 21-deoxycortisol (21-DF). 21-DF inhibited cortisol to cortisone conversion, elevating cortisol levels in intestinal epithelial cells. Consequently, the increased cortisol levels suppressed the expression of tight junction proteins and disrupted the intestinal barrier function. Our findings provide novel insights into the underlying mechanisms by which real-world PFASs mixture disrupt intestinal barrier function through the gut microbiome-metabolome-epithelial cell axis, highlighting the need to consider the complex interplay between environmental pollutants, gut microbiota, and host health in risk assessment and development of intervention strategies.
Collapse
Affiliation(s)
- Tingting Lin
- Institute of Environmental Medicine, Zhejiang University School of Public Health, Hangzhou 310058, China; Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Luyang He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Sishuo Liu
- Institute of Environmental Medicine, Zhejiang University School of Public Health, Hangzhou 310058, China
| | - Yahui Li
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China
| | - Zhi Huang
- Institute of Environmental Medicine, Zhejiang University School of Public Health, Hangzhou 310058, China
| | - Delei Cai
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yiming Wang
- Institute of Environmental Medicine, Zhejiang University School of Public Health, Hangzhou 310058, China
| | - Zhe Mo
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yi Zhu
- Institute of Environmental Medicine, Zhejiang University School of Public Health, Hangzhou 310058, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, Zhejiang University School of Public Health, Hangzhou 310058, China.
| | - Guangdi Chen
- Institute of Environmental Medicine, Zhejiang University School of Public Health, Hangzhou 310058, China.
| | - Xiaofeng Wang
- Institute of Environmental Medicine, Zhejiang University School of Public Health, Hangzhou 310058, China; Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| |
Collapse
|
2
|
Zhao Z, Zhou J, Shi A, Wang J, Li H, Yin X, Gao J, Wu Y, Li J, Sun YX, Yan H, Li Y, Chen G. Per- and poly-fluoroalkyl substances (PFAS) accelerate biological aging mediated by increased C-reactive protein. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136090. [PMID: 39405719 DOI: 10.1016/j.jhazmat.2024.136090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 12/01/2024]
Abstract
Unhealthy biological aging is related to higher incidence of varied age-related diseases, even higher all-cause mortality. Previous small sample size study suggested that Per- and poly-fluoroalkyl substances (PFAS) was associated with biological aging, but the evidence of exposure-response relationships, potential effect modifiers, and potential mediators were not investigated. Therefore, we conducted a cross-sectional analysis of national study including 14, 865 adults in the US from 8 survey cycles of NHANES from 2003 to 2018, to investigate the associations of PFAS compounds in body serum, including perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS), with biological aging. Generalized linear models showed that higher human exposure to PFAS was associated with accelerated biological aging. Importantly, human exposure to PFOA, PFOS, PFNA, and PFHxS with detected level (above 0.10 ng/mL) was associated with an average of 3.3 year (95 %CI: 2.7, 3.9, P < 0.001), 14.9 year (95 %CI: 7.2, 22.7, P < 0.001), 10.9 years (95 %CI: 3.9, 17.7, P < 0.001), and 8.8 years (95 %CI: 4.8, 12.9, P < 0.001) of biological aging acceleration. Cubic spline models indicated exposure-response relationships where there was no safe threshold of PFAS level regarding harms to human healthy aging. The weighted sum regression model found the significant associations of PFAS compound mixture with biological aging acceleration, and PFOA was the dominant contributor among 4 PFAS compounds. Mediation analysis suggested that C-reactive protein, one of the inflammation biomarkers, might play as mediator in PFAS-induced accelerated biological aging, but not Triglyceride-glucose index. In summary, our study suggests that the effects of PFAS on biological aging acceleration should be of concern and more action plans to address their negative impact on human health should be launched.
Collapse
Affiliation(s)
- Zongxi Zhao
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Jiayan Zhou
- School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Anye Shi
- System Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jingyi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongzheng Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiangjun Yin
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jialiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ying Wu
- Harvard Law School, Harvard University, Cambridge 02138, United States
| | - Jinlin Li
- PBC School of Finance, Tsinghua University, Beijing 100190, China
| | - Ya Xuan Sun
- T.H. Chan School of Public Health, Harvard University, Boston 02115, United States
| | - Hao Yan
- School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Yige Li
- Department of Health Care Policy, Harvard Medical School, Harvard University, Boston 02115, United States
| | - Guang Chen
- Broad Institute of MIT and Harvard, Cambridge 02142, United States; Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
3
|
Hård Af Segerstad EM, Borge TC, Guo A, Mårild K, Stene LC, Brantsæter AL, Størdal K. Associations of Pregnancy Dietary Quality and Diversity with Childhood Celiac Disease. J Nutr 2024; 154:3770-3779. [PMID: 39428068 DOI: 10.1016/j.tjnut.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND High gluten and low dietary fiber in pregnancy intake is associated with an increased risk of celiac disease (CeD) in the child. Early life higher dietary quality is suggested to reduce the subsequent risk of CeD. OBJECTIVES The aim was to investigate associations of pregnancy dietary quality and diversity with child risk of CeD. METHODS In The Norwegian Mother, Father and Child Cohort Study, 85,122 mother-child pairs had available data from a validated pregnancy food frequency questionnaire. Pregnancy dietary quality and diversity were estimated by a Pregnancy Healthy Eating Index [mean 99.3, standard deviation (SD) 9.9, range 48.8-128.3], and a Diet Diversity Score (mean 7.0, SD 1.0, range 1.6-9.8), respectively. Child CeD was captured by ≥2 diagnostic codes in the Norwegian Patient Registry. Logistic regression was used to estimate associations between pregnancy dietary quality, diversity and child CeD, adjusted for socioeconomic factors, and parents CeD [adjusted odds ratio (aOR), 95% confidence intervals (CI)]. CeD-susceptible human leukocyte antigen haplotypes (DQ2/DQ8) were present in 30,718 (45.5%). RESULTS Up to mean age 16.0 (SD 1.8, 12.4-19.8) y, 1363 (1.6%) children were diagnosed with CeD. Lower as well as higher pregnancy dietary quality associated with a reduced risk of CeD in the child (<5th percentile aOR = 0.67, 95% CI: 0.48, 0.93, >95th percentile aOR = 0.71, 95% CI: 0.52, 0.98, respectively, nonlinear squared term P = 0.011). Analyses on genetically susceptible children, adjustments for pregnancy iron supplementation, gluten, and dietary fiber intake, and child early life dietary quality, gluten intake and iron supplementation, supported the finding. Pregnancy dietary diversity was not associated with child CeD (aOR = 1.00, 95% CI: 0.94, 1.07/score). CONCLUSIONS In this population-based study, lower as well as higher pregnancy dietary quality associated with a reduced risk of CeD diagnosis in the child. In contrast, no such association was observed with maternal dietary diversity.
Collapse
Affiliation(s)
- Elin M Hård Af Segerstad
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway; Unit for Celiac and Diabetes Research, Clinical Sciences, Lund University, Malmoe, Sweden.
| | - Tiril Cecilie Borge
- Cluster for Reviews and Health Technology Assessments, Norwegian Institute of Public Health, Oslo, Norway
| | - Annie Guo
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karl Mårild
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Pediatrics, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Lars C Stene
- Cluster for Reviews and Health Technology Assessments, Norwegian Institute of Public Health, Oslo, Norway
| | - Anne Lise Brantsæter
- Department of Food Safety, Center for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Ketil Størdal
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway; Faculty of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Maerten A, Callewaert E, Sanz-Serrano J, Devisscher L, Vinken M. Effects of per- and polyfluoroalkyl substances on the liver: Human-relevant mechanisms of toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176717. [PMID: 39383969 DOI: 10.1016/j.scitotenv.2024.176717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are abundantly used in a plethora of products with applications in daily life. As a result, PFAS are widely distributed in the environment, thus providing a source of exposure to humans. The majority of human exposure to PFAS is attributed to the human diet, which encompasses drinking water. Their chemical nature grants persistent, accumulative and toxic properties, which are currently raising concerns. Over the past few years, adverse effects of PFAS on different organs have been repeatedly documented. Numerous epidemiological studies established a clear link between PFAS exposure and liver toxicity. Likewise, effects of PFAS on liver homeostasis, lipid metabolism, bile acid metabolism and hepatocarcinogenesis have been reported in various in vitro and in vivo studies. This review discusses the role of PFAS in liver toxicity with special attention paid to human relevance as well as to the mechanisms underlying the hepatotoxic effects of PFAS. Future perspectives and remaining knowledge gaps were identified to enhance future PFAS risk assessment.
Collapse
Affiliation(s)
- Amy Maerten
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen Callewaert
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julen Sanz-Serrano
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Sciences, Universiteit Gent, Gent, Belgium; Liver Research Center Ghent, Universiteit Gent, University Hospital Ghent, Gent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
5
|
Guo YT, Huang JB, Xue JC, Qin SJ, Cai D, Wu QZ, Chu C, Tang CL, Xie YQ, Lin LZ, Dong GH, Zeng XW. Intrauterine exposure to long-chain perfluorocarboxylic acids (PFCAs) were associated with reduced primary bile acids in three-year-old children: Findings from a prospective birth cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124583. [PMID: 39038776 DOI: 10.1016/j.envpol.2024.124583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Bile acids (BAs) play a crucial role in lipid metabolism of children. However, the association between per- and polyfluoroalkyl substance (PFAS) exposure and BAs in children is scarce. To address this need, we selected 252 children from the Maoming Birth Cohort and measured 32 PFAS, encompassing short- and long-chain perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs) in the cord blood. Additionally, we analyzed nine primary and eight secondary BAs in the serum of three-year-old children. Generalized linear models with FDR-adjusted and Bayesian kernel machine regression (BKMR) were used to explore the associations of individual and mixture effects of PFAS and BAs. We found negative associations between cord blood long-chain PFCAs exposure and serum primary BAs in three-year-old children. For example, one ln-unit (ng/mL) increase of perfluoro-n-tridecanoic acid (PFTrDA), perfluoro-n-undecanoic acid (PFUnDA) and perfluoro-n-decanoic acid (PFDA) were associated with decreased taurochenodeoxycholic acid, with estimated percentage change of -24.28% [95% confidence interval (CI): -36.75%, -9.35%], -25.84% (95% CI: -39.67%, -8.83%), and -22.97% (95% CI: -34.45%, -9.47%) respectively. Notably, the observed associations were more pronounced in children with lower vegetable intake. Additionally, the BKMR model also demonstrated a monotonical decline in primary BAs as the PFAS mixture increased. We provided the first evidence of the association between intrauterine exposure to PFAS and its mixture with BAs in children. Further large-sample-size studies are needed to verify this finding.
Collapse
Affiliation(s)
- Yu-Ting Guo
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jin-Bo Huang
- Maoming Maternal and Child Health Hospital, Maoming, 525000, China
| | - Jing-Chuan Xue
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chu Chu
- Guangdong Cardiovascular Institute, Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Cui-Lan Tang
- Maoming Maternal and Child Health Hospital, Maoming, 525000, China
| | - Yan-Qi Xie
- Maoming Maternal and Child Health Hospital, Maoming, 525000, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Zhang B, Yang Y, Li Q, Ding X, Tian M, Ma Q, Xu D. Impacts of PFOS, PFOA and their alternatives on the gut, intestinal barriers and gut-organ axis. CHEMOSPHERE 2024; 361:142461. [PMID: 38810808 DOI: 10.1016/j.chemosphere.2024.142461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/28/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
With the restricted use of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), a number of alternatives to PFOS and PFOA have attracted great interest. Most of the alternatives are still characterized by persistence, bioaccumulation, and a variety of toxicity. Due to the production and use of these substances, they can be detected in the atmosphere, soil and water body. They affect human health through several exposure pathways and especially enter the gut by drinking water and eating food, which results in gut toxicity. In this review, we summarized the effects of PFOS, PFOA and 9 alternatives on pathological changes in the gut, the disruption of physical, chemical, biological and immune barriers of the intestine, and the gut-organ axis. This review provides a valuable understanding of the gut toxicity of PFOS, PFOA and their alternatives as well as the human health risks of emerging contaminants.
Collapse
Affiliation(s)
- Boxiang Zhang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Yunhui Yang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Qing Li
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Xiaolin Ding
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Mingming Tian
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Qiao Ma
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| |
Collapse
|
7
|
Karthikeyan BS, Hyötyläinen T, Ghaffarzadegan T, Triplett E, Orešič M, Ludvigsson J. Prenatal exposure to environmental contaminants and cord serum metabolite profiles in future immune-mediated diseases. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:647-658. [PMID: 38678133 PMCID: PMC11303251 DOI: 10.1038/s41370-024-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Prenatal exposure to environmental contaminants is a significant health concern because it has the potential to interfere with host metabolism, leading to adverse health effects in early childhood and later in life. Growing evidence suggests that genetic and environmental factors, as well as their interactions, play a significant role in the development of autoimmune diseases. OBJECTIVE In this study, we hypothesized that prenatal exposure to environmental contaminants impacts cord serum metabolome and contributes to the development of autoimmune diseases. METHODS We selected cord serum samples from All Babies in Southeast Sweden (ABIS) general population cohort, from infants who later developed one or more autoimmune-mediated and inflammatory diseases: celiac disease (CD), Crohn's disease (IBD), hypothyroidism (HT), juvenile idiopathic arthritis (JIA), and type 1 diabetes (T1D) (all cases, N = 62), along with matched controls (N = 268). Using integrated exposomics and metabolomics mass spectrometry (MS) based platforms, we determined the levels of environmental contaminants and metabolites. RESULTS Differences in exposure levels were found between the controls and those who later developed various diseases. High contaminant exposure levels were associated with changes in metabolome, including amino acids and free fatty acids. Specifically, we identified marked associations between metabolite profiles and exposure levels of deoxynivalenol (DON), bisphenol S (BPS), and specific per- and polyfluorinated substances (PFAS). IMPACT STATEMENT Abnormal metabolism is a common feature preceding several autoimmune and inflammatory diseases. However, few studies compared common and specific metabolic patterns preceding these diseases. Here we hypothesized that exposure to environmental contaminants impacts cord serum metabolome, which may contribute to the development of autoimmune diseases. We found differences in exposure levels between the controls and those who later developed various diseases, and importantly, on the metabolic changes associated with the exposures. High contaminant exposure levels were associated with specific changes in metabolome. Our study suggests that prenatal exposure to specific environmental contaminants alters the cord serum metabolomes, which, in turn, might increase the risk of various immune-mediated diseases.
Collapse
Affiliation(s)
- Bagavathy Shanmugam Karthikeyan
- School of Science and Technology, Örebro University, SE-702 81, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-702 81, Örebro, Sweden
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, SE-702 81, Örebro, Sweden
| | | | - Eric Triplett
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences University of Florida, Gainesville, 32611-0700, FL, USA
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-702 81, Örebro, Sweden.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI-20520, Finland.
| | - Johnny Ludvigsson
- Crown Princess Victoria's Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, SE-581 85, Sweden
| |
Collapse
|
8
|
Zhao Y, Pu K, Zheng Y, Wang Y, Wang J, Zhou Y. Association of per- and polyfluoroalkyl substances with constipation: The National Health and Nutrition Examination Survey (2005-2010). PLoS One 2024; 19:e0301129. [PMID: 38557902 PMCID: PMC10984548 DOI: 10.1371/journal.pone.0301129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The impact of per- and polyfluoroalkyl substances (PFAS) on constipation, as mediated through gastrointestinal absorption and perturbations to the intestinal microecology, remains poorly understood. OBJECTIVE This study seeks to explain the relationship between PFAS and constipation. METHODS A total of 2945 adults from the National Health and Nutrition Examination Survey (NHANES) 2005-2010 were included in this study. Constipation was defined using the Bristol Stool Form Scale (BSFS) based on stool consistency. The relationship between PFAS and constipation was evaluated using weighted logistic regression and restricted cubic spline (RCS) analysis, while adjusting for confounding variables. RESULTS The weighted median concentration of total PFAS (ΣPFAS) was significantly lower in individuals with constipation (19.01 μg/L) compared to those without constipation (23.30 μg/L) (p < 0.0001). Subgroup analysis revealed that the cumulative effect of PFAS was more pronounced in the elderly, men, individuals with obesity, high school education or equivalent, and high-income individuals (p < 0.05). After adjusting for confounding factors, multivariable analysis demonstrated an inverse association between PFOA [OR (95% CI), 0.666(0.486,0.914)] and PFHxS [OR (95% CI), 0.699(0.482,1.015)], and constipation. None of the personal and lifestyle factors showed a significant correlation with this negative association, as confirmed by subgroup analysis and interaction testing (p for interaction > 0.05). The RCS analysis demonstrated a linear inverse relationship between PFAS levels and constipation. CONCLUSION The findings of this study provide evidence of a significant inverse correlation between serum concentrations of PFAS, particularly PFOA and PFHxS, and constipation.
Collapse
Affiliation(s)
- Yifan Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ke Pu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jun Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Stahl M, Koletzko S, Andrén Aronsson C, Lindfors K, Liu E, Agardh D. Coeliac disease: what can we learn from prospective studies about disease risk? THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:63-74. [PMID: 37972632 PMCID: PMC10965251 DOI: 10.1016/s2352-4642(23)00232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 11/19/2023]
Abstract
Paediatric prospective studies of coeliac disease with longitudinal collection of biological samples and clinical data offer a unique perspective on disease risk. This Review highlights the information now available from international paediatric prospective studies on genetic and environmental risk factors for coeliac disease. In addition, recent omics studies have made it possible to study complex interactions between genetic and environmental factors and thereby further our insight into the causes of the disease. In the future, paediatric prospective studies will be able to provide more detailed risk prediction models combining genes, the environment, and biological corroboration from multiomics. Such studies could also contribute to biomarker development and an improved understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Marisa Stahl
- Pediatric Gastroenterology, Hepatology, and Nutrition, Digestive Health Institute, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Sibylle Koletzko
- Department of Pediatrics, Dr von Hauner Kinderspital, LMU University Hospital, LMU Munich, Munich, Germany; Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Carin Andrén Aronsson
- Unit of Celiac Disease and Diabetes, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Katri Lindfors
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Edwin Liu
- Pediatric Gastroenterology, Hepatology, and Nutrition, Digestive Health Institute, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel Agardh
- Unit of Celiac Disease and Diabetes, Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
10
|
Yang L, Chen Y, Ji H, Zhang X, Zhou Y, Li J, Wang Y, Xie Z, Yuan W, Liang H, Miao M. Per- and Poly-fluoroalkyl Substances and Bile Acid Profiles in Pregnant Women. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15869-15881. [PMID: 37821457 DOI: 10.1021/acs.est.3c05106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Alterations in bile acid (BA) profiles are closely associated with adverse outcomes in pregnant women and their offspring and may be one potential pathway underlying the related metabolic effects of per- and poly-fluoroalkyl substances (PFAS) exposure. However, evidence of associations between PFAS exposure and BA profiles in pregnant women is scarce. This study examined the associations of individual PFAS and PFAS mixture with BA profiles of pregnant women. We obtained quantitative data on the plasma concentrations of 13 PFAS and 15 BAs in 645 pregnant women from the Jiashan birth cohort. In Bayesian kernel machine regression models, the PFAS mixture was associated with increased plasma CA, TCA, TCDCA, and GLCA levels but with decreased GCA and LCA concentrations. Furthermore, the PFAS mixture was associated with increased concentrations of total BAs and the secondary/primary BA ratio but with decreased conjugated/unconjugated and glycine/taurine-conjugated BA ratios. PFHxS, PFUdA, PFOS, PFNA, and PFDA were the dominant contributors. The results of the linear regression analysis of individual PFAS were generally similar. Our findings provide the first epidemiological evidence for the associations of a PFAS mixture with BA profiles in pregnant women and may provide explanatory insights into the biological pathways underlying the related metabolic effects of PFAS exposure.
Collapse
Affiliation(s)
- Lan Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Yao Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Xi Zhang
- Clinical Research Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China
| | - Yan Zhou
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Jianhui Li
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Hospital of SIPPR, Shanghai 200032, China
| | - Yan Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenzhen Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| |
Collapse
|
11
|
India-Aldana S, Yao M, Midya V, Colicino E, Chatzi L, Chu J, Gennings C, Jones DP, Loos RJF, Setiawan VW, Smith MR, Walker RW, Barupal D, Walker DI, Valvi D. PFAS Exposures and the Human Metabolome: A Systematic Review of Epidemiological Studies. CURRENT POLLUTION REPORTS 2023; 9:510-568. [PMID: 37753190 PMCID: PMC10520990 DOI: 10.1007/s40726-023-00269-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 09/28/2023]
Abstract
Purpose of Review There is a growing interest in understanding the health effects of exposure to per- and polyfluoroalkyl substances (PFAS) through the study of the human metabolome. In this systematic review, we aimed to identify consistent findings between PFAS and metabolomic signatures. We conducted a search matching specific keywords that was independently reviewed by two authors on two databases (EMBASE and PubMed) from their inception through July 19, 2022 following PRISMA guidelines. Recent Findings We identified a total of 28 eligible observational studies that evaluated the associations between 31 different PFAS exposures and metabolomics in humans. The most common exposure evaluated was legacy long-chain PFAS. Population sample sizes ranged from 40 to 1,105 participants at different stages across the lifespan. A total of 19 studies used a non-targeted metabolomics approach, 7 used targeted approaches, and 2 included both. The majority of studies were cross-sectional (n = 25), including four with prospective analyses of PFAS measured prior to metabolomics. Summary Most frequently reported associations across studies were observed between PFAS and amino acids, fatty acids, glycerophospholipids, glycerolipids, phosphosphingolipids, bile acids, ceramides, purines, and acylcarnitines. Corresponding metabolic pathways were also altered, including lipid, amino acid, carbohydrate, nucleotide, energy metabolism, glycan biosynthesis and metabolism, and metabolism of cofactors and vitamins. We found consistent evidence across studies indicating PFAS-induced alterations in lipid and amino acid metabolites, which may be involved in energy and cell membrane disruption.
Collapse
Affiliation(s)
- Sandra India-Aldana
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Meizhen Yao
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Vishal Midya
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Ruth J. F. Loos
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
- Faculty of Health and Medical Sciences, Novo Nordisk
Foundation Center for Basic Metabolic Research, University of Copenhagen,
Copenhagen, Denmark
| | - Veronica W. Setiawan
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mathew Ryan Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
- Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ryan W. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dinesh Barupal
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| |
Collapse
|
12
|
Taibl KR, Dunlop AL, Barr DB, Li YY, Eick SM, Kannan K, Ryan PB, Schroder M, Rushing B, Fennell T, Chang CJ, Tan Y, Marsit CJ, Jones DP, Liang D. Newborn metabolomic signatures of maternal per- and polyfluoroalkyl substance exposure and reduced length of gestation. Nat Commun 2023; 14:3120. [PMID: 37253729 PMCID: PMC10229585 DOI: 10.1038/s41467-023-38710-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Marginalized populations experience disproportionate rates of preterm birth and early term birth. Exposure to per- and polyfluoroalkyl substances (PFAS) has been reported to reduce length of gestation, but the underlying mechanisms are unknown. In the present study, we characterized the molecular signatures of prenatal PFAS exposure and gestational age at birth outcomes in the newborn dried blood spot metabolome among 267 African American dyads in Atlanta, Georgia between 2016 and 2020. Pregnant people with higher serum perfluorooctanoic acid and perfluorohexane sulfonic acid concentrations had increased odds of an early birth. After false discovery rate correction, the effect of prenatal PFAS exposure on reduced length of gestation was associated with 8 metabolomic pathways and 52 metabolites in newborn dried blood spots, which suggested perturbed tissue neogenesis, neuroendocrine function, and redox homeostasis. These mechanisms explain how prenatal PFAS exposure gives rise to the leading cause of infant death in the United States.
Collapse
Grants
- R01 NR014800 NINR NIH HHS
- U2C ES026542 NIEHS NIH HHS
- P50 ES026071 NIEHS NIH HHS
- R01 MD009064 NIMHD NIH HHS
- R01 MD009746 NIMHD NIH HHS
- R21 ES032117 NIEHS NIH HHS
- U2C ES026560 NIEHS NIH HHS
- P30 ES019776 NIEHS NIH HHS
- R24 ES029490 NIEHS NIH HHS
- U24 ES029490 NIEHS NIH HHS
- UG3 OD023318 NIH HHS
- T32 ES012870 NIEHS NIH HHS
- UH3 OD023318 NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences (NIEHS)
- U.S. Department of Health & Human Services | NIH | National Institute of Nursing Research (NINR)
- U.S. Department of Health & Human Services | NIH | National Institute on Minority Health and Health Disparities (NIMHD)
- Research reported in this publication was supported by the Environmental Influences on Child Health Outcomes (ECHO) program, Office of the Director, National Institutes of Health, under Award Numbers 5U2COD023375-05/A03-3824, the National Institute of Health (NIH) research grants [R21ES032117, R01NR014800, R01MD009064, R24ES029490, R01MD009746], NIH Center Grants [P50ES02607, P30ES019776, UH3OD023318, U2CES026560, U2CES026542], and Environmental Protection Agency (USEPA) center grant [83615301].
Collapse
Affiliation(s)
- Kaitlin R Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yuan-Yuan Li
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Madison Schroder
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Blake Rushing
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy Fennell
- Analytical Chemistry and Pharmaceuticals, RTI International, Research Triangle Park, Durham, NC, USA
| | - Che-Jung Chang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Dragon J, Hoaglund M, Badireddy AR, Nielsen G, Schlezinger J, Shukla A. Perfluoroalkyl Substances (PFAS) Affect Inflammation in Lung Cells and Tissues. Int J Mol Sci 2023; 24:8539. [PMID: 37239886 PMCID: PMC10218140 DOI: 10.3390/ijms24108539] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Adverse lung outcomes from exposure to per-and polyfluoroalkyl substances (PFAS) are known; however, the mechanism of action is poorly understood. To explore this, human bronchial epithelial cells were grown and exposed to varied concentrations of short-chain (perfluorobutanoic acid, perflurobutane sulfonic acid and GenX) or long-chain (PFOA and perfluorooctane sulfonic acid (PFOS)) PFAS, alone or in a mixture to identify cytotoxic concentrations. Non-cytotoxic concentrations of PFAS from this experiment were selected to assess NLRP3 inflammasome activation and priming. We found that PFOA and PFOS alone or in a mixture primed and activated the inflammasome compared with vehicle control. Atomic force microscopy showed that PFOA but not PFOS significantly altered the membrane properties of cells. RNA sequencing was performed on the lungs of mice that had consumed PFOA in drinking water for 14 weeks. Wild type (WT), PPARα knock-out (KO) and humanized PPARα (KI) were exposed to PFOA. We found that multiple inflammation- and immune-related genes were affected. Taken together, our study demonstrated that PFAS exposure could alter lung biology in a significant manner and may contribute to asthma/airway hyper-responsiveness.
Collapse
Affiliation(s)
- Julie Dragon
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (J.D.); (M.H.); (A.R.B.); (G.N.); (J.S.)
| | - Michael Hoaglund
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (J.D.); (M.H.); (A.R.B.); (G.N.); (J.S.)
| | - Appala Raju Badireddy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (J.D.); (M.H.); (A.R.B.); (G.N.); (J.S.)
| | - Greylin Nielsen
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Jennifer Schlezinger
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Arti Shukla
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (J.D.); (M.H.); (A.R.B.); (G.N.); (J.S.)
| |
Collapse
|
14
|
Li J, Wang L, Zhang X, Liu P, Deji Z, Xing Y, Zhou Y, Lin X, Huang Z. Per- and polyfluoroalkyl substances exposure and its influence on the intestinal barrier: An overview on the advances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158362. [PMID: 36055502 DOI: 10.1016/j.scitotenv.2022.158362] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of artificially synthetic organic compounds that are hardly degraded in the natural environment. PFAS have been widely used for many decades, and the persistence and potential toxicity of PFAS are an emerging concern in the world. PFAS exposed via diet can be readily absorbed by the intestine and enter the circulatory system or accumulate directly at intestinal sites, which could interact with the intestine and cause the destruction of intestinal barrier. This review summarizes current relationships between PFAS exposure and intestinal barrier damage with a focus on more recent toxicological studies. Exposure to PFAS could cause inflammation in the gut, destruction of the gut epithelium and tight junction structure, reduction of the mucus layer, and induction of the toxicity of immune cells. PFAS accumulation could also induce microbial disorders and metabolic products changes. In addition, there are limited studies currently, and most available studies converge on the health risk of PFAS exposure for human intestinal disease. Therefore, more efforts are deserved to further understand potential associations between PFAS exposure and intestinal dysfunction and enable better assessment of exposomic toxicology and health risks for humans in the future.
Collapse
Affiliation(s)
- Jiaoyang Li
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xin Zhang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Peng Liu
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Zhuoma Deji
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Yudong Xing
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Yan Zhou
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xia Lin
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Zhenzhen Huang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
15
|
Sinioja T, Bodin J, Duberg D, Dirven H, Berntsen HF, Zimmer K, Nygaard UC, Orešič M, Hyötyläinen T. Exposure to persistent organic pollutants alters the serum metabolome in non-obese diabetic mice. Metabolomics 2022; 18:87. [PMID: 36329300 PMCID: PMC9633531 DOI: 10.1007/s11306-022-01945-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Autoimmune disorders such as type 1 diabetes (T1D) are believed to be caused by the interplay between several genetic and environmental factors. Elucidation of the role of environmental factors in metabolic and immune dysfunction leading to autoimmune disease is not yet well characterized. OBJECTIVES Here we investigated the impact of exposure to a mixture of persistent organic pollutants (POPs) on the metabolome in non-obese diabetic (NOD) mice, an experimental model of T1D. The mixture contained organochlorides, organobromides, and per- and polyfluoroalkyl substances (PFAS). METHODS Analysis of molecular lipids (lipidomics) and bile acids in serum samples was performed by UPLC-Q-TOF/MS, while polar metabolites were analyzed by GC-Q-TOF/MS. RESULTS Experimental exposure to the POP mixture in these mice led to several metabolic changes, which were similar to those previously reported as associated with PFAS exposure, as well as risk of T1D in human studies. This included an increase in the levels of sugar derivatives, triacylglycerols and lithocholic acid, and a decrease in long chain fatty acids and several lipid classes, including phosphatidylcholines, lysophosphatidylcholines and sphingomyelins. CONCLUSION Taken together, our study demonstrates that exposure to POPs results in an altered metabolic signature previously associated with autoimmunity.
Collapse
Affiliation(s)
- Tim Sinioja
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden
| | - Johanna Bodin
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Daniel Duberg
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden
| | - Hubert Dirven
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Hanne Friis Berntsen
- Norwegian University of Life Sciences, 1432, Ås, Norway
- National Institute of Occupational Health, 0363, Oslo, Norway
| | - Karin Zimmer
- Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Unni C Nygaard
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Matej Orešič
- School of Medical Sciences, Örebro University, 702 81, Örebro, Sweden
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden.
| |
Collapse
|
16
|
Barupal DK, Mahajan P, Fakouri-Baygi S, Wright RO, Arora M, Teitelbaum SL. CCDB: A database for exploring inter-chemical correlations in metabolomics and exposomics datasets. ENVIRONMENT INTERNATIONAL 2022; 164:107240. [PMID: 35461097 PMCID: PMC9195052 DOI: 10.1016/j.envint.2022.107240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 05/18/2023]
Abstract
Inter-chemical correlations in metabolomics and exposomics datasets provide valuable information for studying relationships among chemicals reported for human specimens. With an increase in the number of compounds for these datasets, a network graph analysis and visualization of the correlation structure is difficult to interpret. We have developed the Chemical Correlation Database (CCDB), as a systematic catalogue of inter-chemical correlation in publicly available metabolomics and exposomics studies. The database has been provided via an online interface to create single compound-centric views. We have demonstrated various applications of the database to explore: 1) the chemicals from a chemical class such as Per- and Polyfluoroalkyl Substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), phthalates and tobacco smoke related metabolites; 2) xenobiotic metabolites such as caffeine and acetaminophen; 3) endogenous metabolites (acyl-carnitines); and 4) unannotated peaks for PFAS. The database has a rich collection of 35 human studies, including the National Health and Nutrition Examination Survey (NHANES) and high-quality untargeted metabolomics datasets. CCDB is supported by a simple, interactive and user-friendly web-interface to retrieve and visualize the inter-chemical correlation data. The CCDB has the potential to be a key computational resource in metabolomics and exposomics facilitating the expansion of our understanding about biological and chemical relationships among metabolites and chemical exposures in the human body. The database is available at www.ccdb.idsl.me site.
Collapse
Affiliation(s)
- Dinesh Kumar Barupal
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA.
| | - Priyanka Mahajan
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA
| | - Sadjad Fakouri-Baygi
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA
| | - Susan L Teitelbaum
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA
| |
Collapse
|
17
|
Exposomic determinants of immune-mediated diseases. Environ Epidemiol 2022; 6:e212. [PMID: 35702504 PMCID: PMC9187189 DOI: 10.1097/ee9.0000000000000212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
|
18
|
Sinisalu L, Yeung LWY, Wang J, Pan Y, Dai J, Hyötyläinen T. Prenatal exposure to poly-/per-fluoroalkyl substances is associated with alteration of lipid profiles in cord-blood. Metabolomics 2021; 17:103. [PMID: 34816353 PMCID: PMC8610959 DOI: 10.1007/s11306-021-01853-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/03/2021] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Poly-/per-fluoroalkyl substances (PFAS) are widespread environmental pollutants that may induce metabolic perturbations in humans, including particularly alterations in lipid profiles. Prenatal exposure to PFAS can cause lasting effects on offspring metabolic health, however, the underlying mechanisms are still unknown. OBJECTIVES The goal of the study was to investigate the impact of prenatal PFAS exposure on the lipid profiles in cord blood. METHODS Herein, we combined determination of bile acids (BAs) and molecular lipids by liquid chromatography with ultra-high-resolution mass spectrometry, and separately quantified cord blood concentrations of sixteen PFAS in a cohort of Chinese infants (104 subjects) in a cross-sectional study. We then evaluated associations between PFAS concentration and lipidome using partial correlation network analysis, debiased sparse partial correlation, linear regression analysis and correlation analysis. RESULTS PFAS levels showed significant associations with the lipid profiles; specifically, PFAS exposure was positively correlated with triacylgycerols (TG) and several bile acids. Importantly, exposure to perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA) and perfluorohexane sulfonic acid (PFHxS) were associated with increased levels of TGs with saturated fatty acids while multiple classes of phospholipids were decreased. In addition, several free fatty acids showed significant positive correlations with PFOS. CONCLUSIONS Our results indicated that prenatal exposure to PFAS mediated metabolic changes, which may explain the associations reported between PFAS exposure and metabolic health later in life.
Collapse
Affiliation(s)
- Lisanna Sinisalu
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden
| | - Leo W Y Yeung
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden
| | - Jinghua Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden.
| |
Collapse
|
19
|
Hyötyläinen T, Bodin J, Duberg D, Dirven H, Nygaard UC, Orešič M. Lipidomic Analyses Reveal Modulation of Lipid Metabolism by the PFAS Perfluoroundecanoic Acid (PFUnDA) in Non-Obese Diabetic Mice. Front Genet 2021; 12:721507. [PMID: 34646301 PMCID: PMC8502800 DOI: 10.3389/fgene.2021.721507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/01/2021] [Indexed: 01/09/2023] Open
Abstract
Exposure to Per- and polyfluoroalkyl substances (PFAS) has been linked to multiple undesirable health outcomes across a full lifespan, both in animal models as well as in human epidemiological studies. Immunosuppressive effects of PFAS have been reported, including increased risk of infections and suppressed vaccination responses in early childhood, as well as association with immunotoxicity and diabetes. On a mechanistic level, PFAS exposure has been linked with metabolic disturbances, particularly in lipid metabolism, but the underlying mechanisms are poorly characterized. Herein we explore lipidomic signatures of prenatal and early-life exposure to perfluoroundecanoic acid (PFUnDA) in non-obese diabetic (NOD) mice; an experimental model of autoimmune diabetes. Female NOD mice were exposed to four levels of PFUnDA in drinking water at mating, during gestation and lactation, and during the first weeks of life of female offspring. At offspring age of 11-12 weeks, insulitis and immunological endpoints were assessed, and serum samples were collected for comprehensive lipidomic analyses. We investigated the associations between exposure, lipidomic profile, insulitis grade, number of macrophages and apoptotic, active-caspase-3-positive cells in pancreatic islets. Dose-dependent changes in lipidomic profiles in mice exposed to PFUnDA were observed, with most profound changes seen at the highest exposure levels. Overall, PFUnDA exposure caused downregulation of phospholipids and triacylglycerols containing polyunsaturated fatty acids. Our results show that PFUnDA exposure in NOD mice alters lipid metabolism and is associated with pancreatic insulitis grade. Moreover, the results are in line with those reported in human studies, thus suggesting NOD mice as a suitable model to study the impacts of environmental chemicals on T1D.
Collapse
Affiliation(s)
| | - Johanna Bodin
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Daniel Duberg
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Hubert Dirven
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Unni C. Nygaard
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
20
|
Lee SH, Tseng WC, Du ZY, Lin WY, Chen MH, Lin CC, Lien GW, Liang HJ, Wen HJ, Guo YL, Chen PC, Lin CY. Lipid responses to environmental perfluoroalkyl substance exposure in a Taiwanese Child cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117007. [PMID: 33845286 DOI: 10.1016/j.envpol.2021.117007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/03/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Although recent epidemiologic studies have focused on some of the health effects of perfluoroalkyl substance (PFASs) exposure in humans, the associations between PFASs exposure and the lipidome in children are still unclear. The purpose of this study was to assess lipid changes in children to understand possible molecular events of environmental PFASs exposure and suggest potential health effects. A total of 290 Taiwanese children (8-10 years old) were included in this study. Thirteen PFASs were analyzed in their serum by high-performance liquid chromatography-tandem mass spectrometry (LC-MS). MS-based lipidomic approaches were applied to examine lipid patterns in the serum of children exposed to different levels of PFASs. LC coupling with triple quadrupole MS technology was conducted to analyze phosphorylcholine-containing lipids. Multivariate analyses, such as partial least squares analysis along with univariate analyses, including multiple linear regression, were used to analyze associations between s exposure and unique lipid patterns. Our results showed that different lipid patterns were discovered in children exposed to different levels of specific PFASs, such as PFTrDA, PFOS, and PFDA. These changes in lipid levels may be involved in hepatic lipid metabolism, metabolic disorders, and PFASs-membrane interactions. This study showed that lipidomics is a powerful approach to identify critical PFASs that cause metabolite perturbation in the serum of children and suggest possible adverse health effects of these chemicals in children.
Collapse
Affiliation(s)
- Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Tseng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Zhi-Yi Du
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Mei-Huei Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Chun Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Guang-Wen Lien
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yue-Leon Guo
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Office of Occupational Safety and Health, National Taiwan University Hospital, Taipei, Taiwan; Innovation and Policy Center for Population Health and Sustainable Environment, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
21
|
Serrano L, Iribarne-Durán LM, Suárez B, Artacho-Cordón F, Vela-Soria F, Peña-Caballero M, Hurtado JA, Olea N, Fernández MF, Freire C. Concentrations of perfluoroalkyl substances in donor breast milk in Southern Spain and their potential determinants. Int J Hyg Environ Health 2021; 236:113796. [PMID: 34192647 DOI: 10.1016/j.ijheh.2021.113796] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Breast milk is considered to offer the best nutrition to infants; however, it may be a source of exposure to environmental chemicals such as perfluoroalkyl compounds (PFAS) for breastfeeding infants. PFAS are a complex group of synthetic chemicals whose high stability has led to their ubiquitous contamination of the environment. OBJECTIVE To assess the concentrations and profiles of PFAS in breast milk from donors to a human milk bank and explore factors potentially related to this exposure. METHODS Pooled milk samples were collected from 82 donors to the Human Milk Bank of the Virgen de las Nieves University Hospital (Granada, Spain). Ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) was applied to determine milk concentrations of 11 PFAS, including long-chain and short-chain compounds. A questionnaire was used to collect information on donors' socio-demographic characteristics, lifestyle, diet, and use of personal care products (PCPs). Factors related to individual and total PFAS concentrations were evaluated by multivariate regression analysis. RESULTS PFAS were detected in 24-100% of breast milk samples. PFHpA was detected in 100% of samples, followed by PFOA (84%), PFNA (71%), PFHxA (66%), and PFTrDA (62%). Perfluorooctane sulfonate (PFOS) was detected in only 34% of donors. The median concentrations ranged from <0.66 ng/dL (perfluorohexane sulfonic acid [PFHxS]) to 19.39 ng/L (PFHpA). The median of the sum of PFAS concentrations was 87.67 ng/L and was higher for short-chain than long-chain PFAS. Factors most frequently associated with increased PFAS concentrations included intake of creatin animal food items and use of PCPs such as skin care and makeup products. CONCLUSIONS Several PFAS, including short-chain compounds, are detected in pooled donor milk samples. Breast milk may be an important pathway for the PFAS exposure of breastfed infants, including preterm infants in NICUs. Despite the reduced sample size, these data suggest that various lifestyle factors influence PFAS concentrations, highlighting the use of PCPs.
Collapse
Affiliation(s)
- Laura Serrano
- Neonatal Intensive Care Unit, Virgen de las Nieves University Hospital, 18012, Granada, Spain.
| | - Luz Mª Iribarne-Durán
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain.
| | - Beatriz Suárez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Radiology and Physical Medicine Department, University of Granada, 18016, Granada, Spain.
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain.
| | - Manuela Peña-Caballero
- Neonatal Intensive Care Unit, Virgen de las Nieves University Hospital, 18012, Granada, Spain; Human Milk Bank of the Virgen de las Nieves University Hospital, 18012, Granada, Spain.
| | - Jose A Hurtado
- Neonatal Intensive Care Unit, Virgen de las Nieves University Hospital, 18012, Granada, Spain.
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Radiology and Physical Medicine Department, University of Granada, 18016, Granada, Spain; Nuclear Medicine Unit, San Cecilio University Hospital, 18016, Granada, Spain.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Radiology and Physical Medicine Department, University of Granada, 18016, Granada, Spain.
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
22
|
Oikarinen M, Puustinen L, Lehtonen J, Hakola L, Simell S, Toppari J, Ilonen J, Veijola R, Virtanen SM, Knip M, Hyöty H. Enterovirus Infections Are Associated With the Development of Celiac Disease in a Birth Cohort Study. Front Immunol 2021; 11:604529. [PMID: 33603739 PMCID: PMC7884453 DOI: 10.3389/fimmu.2020.604529] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Enterovirus and adenovirus infections have been linked to the development of celiac disease. We evaluated this association in children who developed biopsy-proven celiac disease (N = 41) during prospective observation starting from birth, and in control children (N = 53) matched for the calendar time of birth, sex, and HLA-DQ genotype. Enterovirus and adenovirus infections were diagnosed by seroconversions in virus antibodies in longitudinally collected sera using EIA. Enterovirus infections were more frequent in case children before the appearance of celiac disease-associated tissue transglutaminase autoantibodies compared to the corresponding period in control children (OR 6.3, 95% CI 1.8-22.3; p = 0.005). No difference was observed in the frequency of adenovirus infections. The findings suggest that enterovirus infections may contribute to the process leading to celiac disease.
Collapse
Affiliation(s)
- Maarit Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leena Puustinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi Lehtonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leena Hakola
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland.,Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland
| | - Satu Simell
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland.,Institute of Biomedicine, Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riitta Veijola
- PEDEGO Research Unit, Medical Research Centre, Department of Paediatrics, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Suvi M Virtanen
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland.,Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland.,Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland.,Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mikael Knip
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland.,Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| |
Collapse
|
23
|
Orešič M, McGlinchey A, Wheelock CE, Hyötyläinen T. Metabolic Signatures of the Exposome-Quantifying the Impact of Exposure to Environmental Chemicals on Human Health. Metabolites 2020; 10:metabo10110454. [PMID: 33182712 PMCID: PMC7698239 DOI: 10.3390/metabo10110454] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Human health and well-being are intricately linked to environmental quality. Environmental exposures can have lifelong consequences. In particular, exposures during the vulnerable fetal or early development period can affect structure, physiology and metabolism, causing potential adverse, often permanent, health effects at any point in life. External exposures, such as the “chemical exposome” (exposures to environmental chemicals), affect the host’s metabolism and immune system, which, in turn, mediate the risk of various diseases. Linking such exposures to adverse outcomes, via intermediate phenotypes such as the metabolome, is one of the central themes of exposome research. Much progress has been made in this line of research, including addressing some key challenges such as analytical coverage of the exposome and metabolome, as well as the integration of heterogeneous, multi-omics data. There is strong evidence that chemical exposures have a marked impact on the metabolome, associating with specific disease risks. Herein, we review recent progress in the field of exposome research as related to human health as well as selected metabolic and autoimmune diseases, with specific emphasis on the impacts of chemical exposures on the host metabolome.
Collapse
Affiliation(s)
- Matej Orešič
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Aidan McGlinchey
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
| | - Craig E. Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden;
| | - Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
- Correspondence:
| |
Collapse
|