1
|
Zhang Z, Sheng N, Qu Y, Xue Z, Zhao F, Wu B, Lv C, Dong F, Wang J, Song H, Sun Q, Zhang M, Long F, Li Y, Ji S, Li Z, Zhang X, Fu H, Li K, Cai J, Zhu Y, Cao Z, Tong S, Lv Y, Dai J, Pan Y, Shi X. Dietary Diversity Modified the Association of Per- and Polyfluoroalkyl Substances with Accelerated Biological Aging: Evidence from the China National Human Biomonitoring Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40238466 DOI: 10.1021/acs.est.4c13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) can impact various systems in the human body. However, their influence on biological aging remains unclear. This study aims to investigate the association between PFASs exposure and biological aging based on data from 9756 participants in the China National Human Biomonitoring Program and assesses the potential moderating effect of Dietary Diversity Score (DDS). Biological age indexes were calculated using the Klemera-Doubal method (KDM) and Mahalanobis distance (MD). The DDS was calculated based on the consumption frequency of 13 food groups over the past 12 months. Most PFASs showed positive associations with KDM-age acceleration (KDM-AA), while no statistically significant associations were observed with MD. The dose-response relationships of PFASs with KDM-AA and MD were steeper at low concentrations of PFASs, and then the slope appeared flat at higher concentrations. The weighted quantile sum revealed positive mixture effects of PFASs on biological aging. PFHpS and PFNA were both major contributors to KDM-AA and MD. DDS appeared to potentially modify the association between PFASs and biological aging. Our findings demonstrate that PFASs were significantly associated with accelerated biological aging, whereas higher DDS mitigates these adverse effects, highlighting the importance of this preventive measure.
Collapse
Affiliation(s)
- Zheng Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Nan Sheng
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Pollutants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhanhong Xue
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Bing Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunxian Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fengfeng Dong
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Pollutants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinghua Wang
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Pollutants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qi Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Miao Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fanye Long
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hui Fu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Kexin Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiayi Cai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shilu Tong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- School of Public Health and Social Work, Queensland University of Technology, Brisbane 4001, Australia
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jiayin Dai
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Pollutants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yitao Pan
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Pollutants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
2
|
Noyes TS, Abington LM, van 't Erve TJ, Wang L, McDonald JM, Wasilevich EA, Gray JS, Karrer TA, Smith K, Bailey JM. Per and polyfluoroalkyl substances affect thyroid hormones for people with a history of exposure from drinking water. Sci Rep 2025; 15:12502. [PMID: 40216802 PMCID: PMC11992217 DOI: 10.1038/s41598-025-91977-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/24/2025] [Indexed: 04/14/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) may disrupt thyroid hormones although the literature shows mixed evidence of this effect and exposure to mixtures of PFAS remains poorly understood. We used the Michigan PFAS Exposure and Health Study cohort to examine linear and nonlinear associations between serum PFAS concentrations, both alone and as a mixture, and serum thyroid hormone concentrations. Study participants included 728 adolescents and adults living in an area with past PFAS contamination of drinking water. We quantified 39 individual PFAS and four thyroid hormones in serum from participants between the years 2020 and 2021. Linear regression, weighted quantile sum (WQS) regression, supervised Principal Component Analysis (PCA), and Bayesian Kernel Machine Regression (BKMR) were used. When analyzed individually, a 1% increase in PFUnA serum concentrations was associated with a 0.023% decrease in TT3 concentration (95% CI: -0.04%, -0.01%, p < 0.05). All three mixture analyses consistently indicated an inverse relationship between PFAS mixtures and TT3 concentrations: (1) a one standard deviation increase in the WQS of the PFAS mixture was associated with a 2.0% decrease in TT3 concentration (95% CI= -4%, 0%, p < 0.05) adjusting for covariates, (2) using PCA, one standard deviation increase in a PFAS mixture was associated with a 1.2% decrease in TT3 (95% CI: -2.1%, -0.4%), and (3) BKMR similarly suggested a negative association between the PFAS mixture and TT3. We observed cross-sectional associations between a mixture of serum PFAS concentrations and thyroid hormone dysregulation, largely manifesting as decreased TT3 serum concentrations.
Collapse
Affiliation(s)
- Taylor S Noyes
- Michigan Department of Health and Human Services, Environmental Health Bureau, 333 South Grand Ave., 3rd Floor, Lansing, MI, 48909, USA
| | - Laura M Abington
- Michigan Department of Health and Human Services, Environmental Health Bureau, 333 South Grand Ave., 3rd Floor, Lansing, MI, 48909, USA
| | - T Joost van 't Erve
- Michigan Department of Health and Human Services, Environmental Health Bureau, 333 South Grand Ave., 3rd Floor, Lansing, MI, 48909, USA
| | - Ling Wang
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Jennifer M McDonald
- Michigan Department of Health and Human Services, Environmental Health Bureau, 333 South Grand Ave., 3rd Floor, Lansing, MI, 48909, USA
| | - Elizabeth A Wasilevich
- Michigan Department of Health and Human Services, Environmental Health Bureau, 333 South Grand Ave., 3rd Floor, Lansing, MI, 48909, USA
| | - Jennifer S Gray
- Michigan Department of Health and Human Services, Environmental Health Bureau, 333 South Grand Ave., 3rd Floor, Lansing, MI, 48909, USA
| | - Timothy A Karrer
- Division of Chemistry and Toxicology, Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI, USA
| | - Kristine Smith
- Division of Infectious Disease, Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI, USA
| | - Jordan M Bailey
- Michigan Department of Health and Human Services, Environmental Health Bureau, 333 South Grand Ave., 3rd Floor, Lansing, MI, 48909, USA.
| |
Collapse
|
3
|
Zhang B, Zhao M, Cong X, Liu C, Li C, Qiu Y, Li S, Chen Y, Li X, Li P. The Association Between Per- and Polyfluoroalkyl Substances Exposure and Thyroid Hormones in Men and Non-Pregnant Women: A Systematic Review and Meta-Analysis. TOXICS 2025; 13:214. [PMID: 40137541 PMCID: PMC11946724 DOI: 10.3390/toxics13030214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/08/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Studies have shown that per- and polyfluoroalkyl substances (PFAS) may impact thyroid function in human health. While the consistency between PFAS exposure and thyroid health effects in pregnant women has been validated, the effects on men and non-pregnant women remains inconclusive. To address this, a meta-analysis was carried out in this paper, with 14 eligible studies retrieved from Embase, PubMed, and Web of Science that were published up to 2 June 2024, focusing on the relationship between PFAS exposure and its effect on thyroid hormone levels in the human body. The thyroid function indexes analyzed included thyroid stimulating hormone (TSH), triiodothyronine (T3), thyroxine (T4), free T3 (FT3), and free T4 (FT4). The estimated value (β) and the corresponding confidence interval (95% CI) were extracted from the literature. A heterogeneity test was carried out, and the sensitivity analysis and publication bias of the studies were analyzed using Stata 18.0. The results revealed that in men and non-pregnant women, PFOA was positively correlated with FT3 (β = 0.011, 95% CI = 0.001, 0.02, I2 = 13.4). However, no significant associations were found between exposure to other PFAS and thyroid hormones. A subgroup analysis further indicated that the correlations between PFAS exposure and thyroid hormone levels were more significant in adolescents, in both America and Europe.
Collapse
Affiliation(s)
- Bin Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; (B.Z.); (X.C.); (C.L.)
| | - Meizi Zhao
- Tianjin Eco-Environmental Monitoring Center, Tianjin 300191, China;
| | - Xiangru Cong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; (B.Z.); (X.C.); (C.L.)
| | - Chunyu Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; (B.Z.); (X.C.); (C.L.)
| | - Chaofei Li
- Zhonghuan (Fujian) Environmental Technology Co., Ltd., Fuzhou 350025, China; (C.L.); (S.L.); (Y.C.)
| | - Yu Qiu
- Fujian Jinhuang Environmental Protection Technology Co., Ltd., Fuzhou 350025, China;
| | - Sha Li
- Zhonghuan (Fujian) Environmental Technology Co., Ltd., Fuzhou 350025, China; (C.L.); (S.L.); (Y.C.)
| | - Yanying Chen
- Zhonghuan (Fujian) Environmental Technology Co., Ltd., Fuzhou 350025, China; (C.L.); (S.L.); (Y.C.)
| | - Xiaoxue Li
- Disaster Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; (B.Z.); (X.C.); (C.L.)
| |
Collapse
|
4
|
Du X, Wu Y, Tao G, Xu J, Du Z, Wu M, Gu T, Xiong J, Xiao S, Wei X, Ruan Y, Xiao P, Zhang L, Zheng W. Association between PFAS exposure and thyroid health: A systematic review and meta-analysis for adolescents, pregnant women, adults and toxicological evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175958. [PMID: 39233077 DOI: 10.1016/j.scitotenv.2024.175958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
A burgeoning body of epidemiological and toxicological evidence suggests that thyroid health may be significantly impacted by exposure to both long- and short-chain perfluoroalkyl substances (PFAS) compounds. We conducted a meta-analysis to examine the association between 16 PFAS compounds and five thyroid hormones (TSH, TT3, TT4, FT3, and FT4) in the serum of a pregnant women, adolescents, and adults. The dose-response relationship between some PFAS and thyroid hormones in different population subpopulation was found and the model was fitted. We also amalgamated data from 18 animal experiments with previously published in vitro studies to elucidate the toxicological mechanisms underlying the impact of PFAS on the thyroid gland. The results of the study showed that (a) both conventional and emerging PFAS compounds were identified in human samples and exhibited associations with thyroid health outcomes; (b) in animal studies, PFAS have been found to impact thyroid gland health through two primary mechanisms: by influencing the hypothalamic-pituitary-thyroid axis and by binding to thyroid receptors. This study provides a systematic description of the health effects and risk assessment associated with PFAS exposure on the thyroid gland. Furthermore, dose-response relationships were established through the Hill model in python.
Collapse
Affiliation(s)
- Xiushuai Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Yitian Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Gonghua Tao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jun Xu
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Zhiyuan Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Minjuan Wu
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Tianmin Gu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jiasheng Xiong
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Ling Zhang
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Jia X, Liu W, Ling X, Li J, Ji J, Wang B, Zhao M. Sex and obesity influence the relationship between perfluoroalkyl substances and lean body mass: NHANES 2011-2018. Heliyon 2024; 10:e35888. [PMID: 39319151 PMCID: PMC11419868 DOI: 10.1016/j.heliyon.2024.e35888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
Objective Polyfluoroalkyl substances (PFAS) are known endocrine disruptors, that have been the subject of limited research regarding their impact on human lean body mass. The aim of this study was to investigate the effects of PFAS exposure on lean body mass. Methods We performed a cross-sectional data analysis involving 1022 adolescents and 3274 adults from the National Health and Nutrition Examination Survey (NHANES) 2011-2018, whose lean body mass was measured by dual-energy X-ray absorptiometry. The lean mass index (LMI) was calculated as lean body mass dividing by the square of height. The association between PFAS and LMI was examined through a multivariate-adjusted weighted generalized linear model. Moreover, weighted quantile sum (WQS) regression models were employed to futher examine the relationship between the mixture of PFAS and LMI. Results Regression analyses revealed an inverse correlation between PFAS exposure and LMI after adjusting for potential covariates. Adults with higher serum PFAS concentrations manifested a reduction in whole LMI ( β = -0.193, 95 % confidence interval (CI): -0.325 to -0.06). Notably, this correlation was particularly significant in adult females and individuals with obesity, and it was observed across diverse anatomical regions, including lower limbs, right arm, trunk, and whole lean body mass. In adult females, the association between PFAS and whole LMI was statistically significant ( β = -0.294, 95 % CI: -0.495 to -0.094), and a similar trend was found in obese individuals ( β = -0.512, 95 % CI: -0.762 to -0.261). WQS regression analyses supported the results obtained from weighted linear regression analyses. Conclusions Our study suggests that exposure to PFAS, whether individually or in combination, is associated with decreased lean body mass in specific body areas, with sex and obesity serving as major influencing factors.
Collapse
Affiliation(s)
- Xue Jia
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Wenhui Liu
- Department of Informat and Data Anal Lab, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiaomeng Ling
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Juan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jing Ji
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Baozhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Min Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| |
Collapse
|
6
|
Xie LN, Wang XC, Su LQ, Ji SS, Gu W, Barrett H, Dong XJ, Zhu HJ, Hou SS, Li ZH, Liu YL, Zhang L, Zhu Y. The association between per-/polyfluoroalkyl substances in serum and thyroid function parameters: A cross-sectional study on teenagers living near a Chinese fluorochemical industrial plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170985. [PMID: 38367719 DOI: 10.1016/j.scitotenv.2024.170985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Thyroid hormones (THs) play an important role in a wide range of crucial biological functions related to growth and development, and thyroid antibodies (TAs) can influence the biosynthesis of THs. Epidemiological studies have indicated that per- and polyfluoroalkyl substances (PFAS) could induce thyroid disruption, but studies on teenagers living in areas with high PFAS exposure are limited. This cross-sectional study focused on 836 teenagers (11- 15 years) living near a Chinese fluorochemical industrial plant. Decreased levels of free thyroxine (FT4, ﹤9.6 pmol/L, abnormal rate = 19.0 %) and elevated levels of free triiodothyronine (FT3, ﹥6.15 pmol/L, abnormal rate = 29.8 %) were observed. Correlations of serum PFAS concentrations and TAs/THs were analyzed. Increased PFOA was identified as a risk factor of decreased FT4 by using unadjusted (OR: 11.346; 95 % CI: 6.029, 21.352, p < 0.001) and adjusted (OR: 12.566; 95 % CI: 6.549, 24.115, p < 0.001) logistic regression models. In addition, significantly negative correlations were found between log10 transformed PFOA and FT4 levels using linear (unadjusted: β = -1.543, 95 % CI: -1.937, -1.148, p < 0.001; adjusted: β = -1.534, 95 % CI: -1.930, -1.137, p < 0.001) and BKMR models. For abnormal FT3, a significantly positive association between PFHxS and FT3 levels was observed in a regression model (unadjusted: β = -0.903, 95 % CI: -1.212, -0.595, p < 0.001; adjusted: β = -0.894, 95 % CI: -1.204, -0.583, p < 0.001), and PFHxS was identified as a risk factor (unadjusted: OR: 4.387; 95 % CI: 2.619, 7.346, p < 0.001; adjusted: OR: 4.527; 95 % CI: 2.665, 7.688, p < 0.001). Sensitivity analyses confirmed the robustness of the above results. This study reported the elevated PFAS exposure and thyroid function of teenagers living near a fluorochemical industrial plant from China.
Collapse
Affiliation(s)
- Lin-Na Xie
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiao-Chen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Li-Qin Su
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Sai-Sai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Xiao-Jie Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hui-Juan Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Sha-Sha Hou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhen-Huan Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yi-Lin Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ling Zhang
- Zibo Maternal and Child Health Hospital, Zibo, Shandong Province 255000, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
7
|
Xing Y, Li Z, Wang J, Qu Y, Hu Q, Ji S, Chang X, Zhao F, Lv Y, Pan Y, Shi X, Dai J. Associations between serum per- and polyfluoroalkyl substances and thyroid hormones in Chinese adults: A nationally representative cross-sectional study. ENVIRONMENT INTERNATIONAL 2024; 184:108459. [PMID: 38320373 DOI: 10.1016/j.envint.2024.108459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Disruption of thyroid homeostasis has been indicated in human studies on the effects of per- and polyfluoroalkyl substances (PFASs). However, limited research exists on this topic within the general Chinese population. Based on a substantial and representative sample of the Chinese adult population, our study provides insight into how PFASs specifically affect thyroid homeostasis. The study included 10 853 participants, aged 18 years and above, sampled from nationally representative data provided by the China National Human Biomonitoring (CNHBM). Weighted multiple linear regression and restricted cubic spline (RCS) models were used to explore the associations between eight individual PFAS concentrations and total thyroxine (T4), total triiodothyronine (T3), and the T4/T3 ratio. Bayesian kernel machine regression (BKMR) and quantile-based g-computation (qgcomp) were employed to explore the joint and independent effects of PFASs on thyroid homeostasis. Both individual PFASs and PFAS mixtures exhibited a significant inverse association with serum T3 and T4 levels, and displayed a positive association with the T4/T3 ratio. Perfluoroundecanoic acid (PFUnDA) [-0.07 (95 % confidence interval (CI): -0.08, -0.05)] exhibited the largest change in T3 level. PFUnDA also exhibited a higher weight compared to other PFAS compounds in qgcomp models. Additionally, a critical exposure threshold for each PFAS was identified based on nonlinear dose-response associations; beyond these thresholds, the decreases in T3 and T4 levels plateaued. Specifically, for perfluoroheptane sulfonic acid (PFHpS) and 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), an initial decline in hormone levels was observed, followed by a slight increase when concentrations surpassed 0.7 ng/mL and 2.5 ng/mL, respectively. Sex-specific effects were more pronounced in females, and significant associations were observed predominantly in younger age groups. These insights contribute to our understanding of how PFAS compounds impact thyroid health and emphasize the need for further research and environmental management measures to address these complexities.
Collapse
Affiliation(s)
- Yanan Xing
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinghua Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiongpu Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaochen Chang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Peritore AF, Gugliandolo E, Cuzzocrea S, Crupi R, Britti D. Current Review of Increasing Animal Health Threat of Per- and Polyfluoroalkyl Substances (PFAS): Harms, Limitations, and Alternatives to Manage Their Toxicity. Int J Mol Sci 2023; 24:11707. [PMID: 37511474 PMCID: PMC10380748 DOI: 10.3390/ijms241411707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Perfluorinated and polyfluorinated alkyl substances (PFAS), more than 4700 in number, are a group of widely used man-made chemicals that accumulate in living things and the environment over time. They are known as "forever chemicals" because they are extremely persistent in our environment and body. Because PFAS have been widely used for many decades, their presence is evident globally, and their persistence and potential toxicity create concern for animals, humans and environmental health. They can have multiple adverse health effects, such as liver damage, thyroid disease, obesity, fertility problems, and cancer. The most significant source of living exposure to PFAS is dietary intake (food and water), but given massive industrial and domestic use, these substances are now punctually present not only domestically but also in the outdoor environment. For example, livestock and wildlife can be exposed to PFAS through contaminated water, soil, substrate, air, or food. In this review, we have analyzed and exposed the characteristics of PFAS and their various uses and reported data on their presence in the environment, from industrialized to less populated areas. In several areas of the planet, even in areas far from large population centers, the presence of PFAS was confirmed, both in marine and terrestrial animals (organisms). Among the most common PFAS identified are undoubtedly perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), two of the most widely used and, to date, among the most studied in terms of toxicokinetics and toxicodynamics. The objective of this review is to provide insights into the toxic potential of PFAS, their exposure, and related mechanisms.
Collapse
Affiliation(s)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Domenico Britti
- Department of Health Sciences, Campus Universitario "Salvatore Venuta" Viale Europa, "Magna Græcia University" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
9
|
Yang Z, Liu R, Liu H, Wei J, Lin X, Zhang M, Chen Y, Zhang J, Sun M, Feng Z, Liu J, Liu X, Huo X, Men K, Yang Q, Chen X, Tang NJ. Sex-specific effect of perfluoroalkyl substances exposure on liver and thyroid function biomarkers: A mixture approach. Int J Hyg Environ Health 2023; 251:114189. [PMID: 37210847 DOI: 10.1016/j.ijheh.2023.114189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Although studies have investigated the effects of perfluoroalkyl substances (PFASs) on liver and thyroid function, little is known about its combined and sex-specific effect. A total of 688 participants were interviewed and serum PFASs concentration was measured using liquid chromatography/mass spectrometry. Five biomarkers of liver and thyroid function (ALT, GGT, TSH, FT3 and FT4) were chosen as outcomes. A restriction cubic spline function was applied to capture the dose-response relationship between PFASs and liver enzymes and thyroid hormones. Multivariable regression and Bayesian kernel machine regression (BKMR) models were performed to assess the single and overall associations of PFASs with targeted biomarkers. Single-pollutant analyses indicated that increased PFASs concentrations were associated with elevated ALT and GGT levels. BKMR models suggested positive dose-response relationships between PFASs mixtures and ALT and GGT levels. Significant associations were only detected between several PFASs and thyroid hormones, and joint effect of PFASs mixtures on FT3 levels was found at higher concentrations. Meanwhile, sex differences were found in the associations of PFASs with ALT and GGT levels, with significant results only in males. Our findings provide epidemiological evidence for combined and sex-specific effects of PFASs on ALT and GGT levels.
Collapse
Affiliation(s)
- Ze Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Ruifang Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Hongbo Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Jiemin Wei
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Xiaohui Lin
- Sanitary Inspection Institute, Tianjin Centers for Disease Control and Prevention, Tianjin, 300171, China
| | - Mingyue Zhang
- Sanitary Inspection Institute, Tianjin Centers for Disease Control and Prevention, Tianjin, 300171, China
| | - Yu Chen
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300202, China
| | - Jingyun Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Meiqing Sun
- Wuqing District Center for Disease Control and Prevention, Tianjin, 301700, China
| | - Zhe Feng
- Wuqing District Center for Disease Control and Prevention, Tianjin, 301700, China
| | - Jian Liu
- Wuqing District Center for Disease Control and Prevention, Tianjin, 301700, China
| | - Xiangyang Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaoxu Huo
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Kun Men
- Department of Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, 300202, China
| | - Qiaoyun Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
10
|
Mazumder NUS, Hossain MT, Jahura FT, Girase A, Hall AS, Lu J, Ormond RB. Firefighters' exposure to per-and polyfluoroalkyl substances (PFAS) as an occupational hazard: A review. FRONTIERS IN MATERIALS 2023; 10:10.3389/fmats.2023.1143411. [PMID: 38074949 PMCID: PMC10698640 DOI: 10.3389/fmats.2023.1143411] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
The term "firefighter" and "cancer" have become so intertwined in the past decade that they are now nearly inseparable. Occupational exposure of firefighters to carcinogenic chemicals may increase their risk of developing different types of cancer. PFAS are one of the major classes of carcinogenic chemicals that firefighters are exposed to as occupational hazard. Elevated levels of PFAS have been observed in firefighters' blood serum in recent studies. Possible sources of occupational exposure to PFAS include turnout gear, aqueous film-forming foam, and air and dust at both the fire scene and fire station. Preliminary discussion on PFAS includes definition, classification, and chemical structure. The review is then followed by identifying the sources of PFAS that firefighters may encounter as an occupational hazard. The structural properties of the PFAS used in identified sources, their degradation, and exposure pathways are reviewed. The elevated level of PFAS in the blood serum and how this might associate with an increased risk of cancer is discussed. Our review shows a significant amount of PFAS on turnout gear and their migration to untreated layers, and how turnout gear itself might be a potential source of PFAS exposure. PFAS from aqueous film-forming foams (AFFF), air, and dust of fire stations have been already established as potential exposure sources. Studies on firefighters' cancer suggest that firefighters have a higher cancer risk compared to the general population. This review suggests that increased exposure to PFAS as an occupational hazard could be a potential cancer risk for firefighters.
Collapse
Affiliation(s)
- Nur-Us-Shafa Mazumder
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Md Tanjim Hossain
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Fatema Tuj Jahura
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Arjunsing Girase
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Andrew Stephen Hall
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Jingtian Lu
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - R. Bryan Ormond
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
11
|
Li A, Hou J, Fu J, Wang Y, Hu Y, Zhuang T, Li M, Song M, Jiang G. Association between serum levels of TSH and free T4 and per- and polyfluoroalkyl compounds concentrations in pregnant women. J Environ Sci (China) 2023; 124:11-18. [PMID: 36182121 DOI: 10.1016/j.jes.2021.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/16/2023]
Abstract
Many per- and polyfluoralkyl substances (PFASs) may disrupt maternal thyroid hormone homeostasis in pregnancy. Concerns should be raised regarding the PFASs exposure in pregnant women because thyroid hormones are involved in the early development of the fetus. In this study, we measured the concentrations of 13 PFASs, including five novel short-chain PFASs, in serum from 123 pregnant women in Beijing, China. Linear regression models were used to investigate the association between thyroid-stimulating hormone (TSH) or free thyroxine (FT4) levels and PFASs concentrations under consideration of the impacts of pregnancy-induced physiological factors. We found that perfluorobutanoic acid (PFBA) (β=0.189, 95%CI=-0.039, 0.417, p=0.10) and perfluorodecanoic acid (PFDA) (β=-0.554, 95%CI=-1.16, 0.049, p=0.071) were suggestive of significant association with TSH in thyroid peroxidase antibody (TPOAb) negative women. No association was observed between all PFASs and FT4 levels after controlling for these confounding factors, such as BMI, gestational weight gain and maternal age. These findings suggest that it should pay more attention to the association between thyroid hormone levels and short-chain PFASs concentrations. Future studies could consider a greater sample and the inclusion of other clinical indicators of thyroid function, such as free T3 and total T3.
Collapse
Affiliation(s)
- Aijing Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Yinan Wang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Yifei Hu
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Taifeng Zhuang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Menglong Li
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Bao J, Shao LX, Liu Y, Cui SW, Wang X, Lu GL, Wang X, Jin YH. Target analysis and suspect screening of per- and polyfluoroalkyl substances in paired samples of maternal serum, umbilical cord serum, and placenta near fluorochemical plants in Fuxin, China. CHEMOSPHERE 2022; 307:135731. [PMID: 35843426 DOI: 10.1016/j.chemosphere.2022.135731] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The levels of legacy per- and polyfluoroalkyl substances (PFASs) have been growing in the environmental matrices and blood of residents living around the fluorochemical industrial park (FIP) in Fuxin of China over the past decade. Although some recent studies have reported occurrence of novel PFAS alternatives in biotic and abiotic matrices near fluorochemical facilities worldwide, little is known about novel PFAS congeners in maternal sera, umbilical cord sera, and placentas from the female residents close to the FIP and their related health risks. In this study, 50 paired samples of maternal and cord serum as well as placenta were derived from Fuxin pregnant women at delivery, and 21 target analytes of legacy PFASs in all the samples were analyzed via high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), revealing that PFBS, PFBA, and PFOA were the dominant PFAS contaminants observed in the whole samples. Based upon the suspect screening through high-resolution mass spectrometry (HRMS), 49 novel PFASs assigned to 11 classes were further identified in the Fuxin samples, of which, 20 novel congeners in 4 classes were reported in human blood and placentas for the first time. Moreover, the coefficients for mother-placenta transfer (Rm/p), placenta-newborn transfer (Rp/n), and mother-newborn transfer (Rm/n) of legacy PFASs could be calculated with median values of 1.7, 1.1, and 2.0, respectively, and Rm/p, Rp/n, and Rm/n for each novel PFAS identified were also estimated with the median values of 0.9, 1.2, and 0.8 individually. Accordingly, novel PFASs contributed 90% of all the legacy and novel PFASs in maternal sera and even occupied 96% of the whole PFASs in both placentas and cord sera. In addition, significant associations were determined among the neonate birth outcomes and serum concentrations of thyroid hormone, sex hormone, and glucocorticoid, together with the levels of certain legacy and novel PFASs in cord sera.
Collapse
Affiliation(s)
- Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| | - Li-Xin Shao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Yang Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| | - Shi-Wei Cui
- The National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Xin Wang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Gui-Lin Lu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Xue Wang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Yi-He Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
13
|
Narizzano AM, Lent EM, Hanson JM, East AG, Bohannon ME, Quinn MJ. Reproductive and developmental toxicity of perfluorooctane sulfonate (PFOS) in the white-footed mouse (Peromyscus leucopus). Reprod Toxicol 2022; 113:120-127. [PMID: 35985401 DOI: 10.1016/j.reprotox.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 01/09/2023]
Abstract
Concerns about per- and polyfluoroalkyl substances (PFAS) stem from their ubiquitous presence in the environment, bioaccumulation, resistance to degradation, and toxicity. Previously, toxicity data relevant to ecological risk assessment has largely been aquatic, terrestrial invertebrates, or avian in origin. In this study, repeated oral exposures of perfluorooctane sulfonate (PFOS) were administered to white-footed mice (Peromyscus leucopus) to evaluate effects on reproduction and development. Prenatal exposure to high doses of PFOS caused neonatal mortality, though growth and development were unaffected by low doses. Additionally, parental (P) generation animals exhibited increased liver:body weight, increased hepatocyte cytoplasmic vacuolization, and decreased serum thyroxine (T4) levels. Total litter loss was selected as the protective critical effect in this study resulting in a benchmark dose low (BMDL) of 0.12 mg/kg-d PFOS. Importantly, PFOS exposure has been linked to reduced adult recruitment in myriad species and at similar thresholds to this study. Similarities in critical/toxicologic effects across taxa may add confidence in risk assessments at sites with multiple taxa or environments.
Collapse
Affiliation(s)
- Allison M Narizzano
- Toxicology Directorate, US Army Public Health Center, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA.
| | - Emily May Lent
- Toxicology Directorate, US Army Public Health Center, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - Jarod M Hanson
- Toxicology Directorate, US Army Public Health Center, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - Andrew G East
- Toxicology Directorate, US Army Public Health Center, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - Meredith E Bohannon
- Toxicology Directorate, US Army Public Health Center, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - Michael J Quinn
- Toxicology Directorate, US Army Public Health Center, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| |
Collapse
|
14
|
PFAS Molecules: A Major Concern for the Human Health and the Environment. TOXICS 2022; 10:toxics10020044. [PMID: 35202231 PMCID: PMC8878656 DOI: 10.3390/toxics10020044] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of over 4700 heterogeneous compounds with amphipathic properties and exceptional stability to chemical and thermal degradation. The unique properties of PFAS compounds has been exploited for almost 60 years and has largely contributed to their wide applicability over a vast range of industrial, professional and non-professional uses. However, increasing evidence indicate that these compounds represent also a serious concern for both wildlife and human health as a result of their ubiquitous distribution, their extreme persistence and their bioaccumulative potential. In light of the adverse effects that have been already documented in biota and human populations or that might occur in absence of prompt interventions, the competent authorities in matter of health and environment protection, the industries as well as scientists are cooperating to identify the most appropriate regulatory measures, substitution plans and remediation technologies to mitigate PFAS impacts. In this review, starting from PFAS chemistry, uses and environmental fate, we summarize the current knowledge on PFAS occurrence in different environmental media and their effects on living organisms, with a particular emphasis on humans. Also, we describe present and provisional legislative measures in the European Union framework strategy to regulate PFAS manufacture, import and use as well as some of the most promising treatment technologies designed to remediate PFAS contamination in different environmental compartments.
Collapse
|
15
|
De Toni L, Di Nisio A, Rocca MS, Pedrucci F, Garolla A, Dall’Acqua S, Guidolin D, Ferlin A, Foresta C. Comparative Evaluation of the Effects of Legacy and New Generation Perfluoralkyl Substances (PFAS) on Thyroid Cells In Vitro. Front Endocrinol (Lausanne) 2022; 13:915096. [PMID: 35813651 PMCID: PMC9259843 DOI: 10.3389/fendo.2022.915096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Per- and poly-fluorinated alkyl substances (PFAS) are environment-persitent emerging endocrine disrupting chemicals raising health concerns worldwide. Exposure to PFAS has been associated with the imbalance of thyroid hormones. However, available studies addressing the cell mechanism underlying thyroid disrupting feature of legacy PFAS, such as perfluoro-octanoic acid (PFOA), perfluoro-octane-sulfonic acid (PFOS), and the new generation substitutes, such as C6O4, are still lacking. In this study the potential disrupting effect of PFOA, PFOS, and C6O4 on a murine thyroid cell model was assessed. METHODS A rat FRTL-5 cell line was used as the normal thyroid follicular cell model. Cell iodide-uptake, induced by thyroid stimulating hormone (TSH), was used to assess the functional impact of PFAS exposure on cell function. Tetrazolium salt-based cell viability assay and merocyanine 540-based cell staining were used to address the possible involvement of cell toxicity and membrane biophysical properties on altered cell function. The possible direct interaction of PFAS with TSH-receptor (TSH-R) was investigated by computer-based molecular docking and analysis of molecular dynamics. Evaluation of intracellular cAMP levels and gene expression analysis were used to validate the direct impairment of TSH-R-mediated downstream events upon PFAS exposure. RESULTS Different from PFOS or C6O4, exposure to PFOA at a concentration ≥ 10 ng/mL was associated with significant impairment of the iodide uptake upon TSH stimulation (respectively: basal 100.0 ± 19.0%, CTRL + TSH 188.9 ± 7.8%, PFOA 10 ng/mL + TSH 120.4 ± 20.9%, p= 0.030 vs CTRL + TSH; PFOA 100 ng/mL + TSH 115,6 ± 12,3% p= 0.017 vs CTRL + TSH). No impairment of cell viability or membrane stability was observed. Computational analysis showed a possible direct differential interaction of C6O4, PFOA, and PFOS on a same binding site of the extracellular domain of TSH-R. Finally, exposure to PFOA was associated with a significant reduction of downstream intracellular cAMP levels and both sodium-iodide transporter and thyroperoxidase gene expression upon TSH-R stimulation. CONCLUSIONS Our data suggest that legacy and new generation PFAS can differentially influence TSH dependent signaling pathways through the direct interaction with TSH-R.
Collapse
Affiliation(s)
- Luca De Toni
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Andrea Di Nisio
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Maria Santa Rocca
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| | - Federica Pedrucci
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Andrea Garolla
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Stefano Dall’Acqua
- Department of Pharmaceutical Science, University of Padova, Padova, Italy
| | - Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, Padova, Italy
| | - Alberto Ferlin
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| | - Carlo Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
- *Correspondence: Carlo Foresta,
| |
Collapse
|
16
|
Gallo E, Barbiellini Amidei C, Barbieri G, Fabricio ASC, Gion M, Pitter G, Daprà F, Russo F, Gregori D, Fletcher T, Canova C. Perfluoroalkyl substances and thyroid stimulating hormone levels in a highly exposed population in the Veneto Region. ENVIRONMENTAL RESEARCH 2022; 203:111794. [PMID: 34358507 DOI: 10.1016/j.envres.2021.111794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Per- and poly-fluoroalkyl substances (PFAS) are persistent and widespread environmental pollutants. People living in Veneto Region (Italy) have been exposed from the late 1970s to 2013 to elevated concentrations of PFAS through drinking water. The effect of PFAS on thyroid function is still controversial and studies focusing on thyroid stimulating hormone (TSH) have shown inconsistent results. The aim of this study was to evaluate the association between serum PFAS and TSH levels and its dose-response relationship in a large population of highly exposed individuals. METHODS A cross-sectional study was conducted on 21,424 individuals aged 14-39 living in the contaminated area. In the main analysis, participants with prevalent thyroid disease and pregnant women were excluded. Serum levels of perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS) and perfluorononanoic acid (PFNA) were measured. Generalized Additive Models were used to evaluate the association between TSH levels and serum PFAS, using thin plate spline smooth terms to model the potential non-linear relationship. Models were stratified by sex and age group and adjusted for potential confounders. A secondary analysis was conducted to evaluate the association between PFAS with prevalent self-reported thyroid disorders. RESULTS We found no association between TSH and any type of PFAS among adolescents or women. A decrease in TSH concentration was observed in association with an IQR increase in PFHxS and a mild decrease in TSH at low levels of PFOA, PFOS and PFHxS among male adults. Self-reported thyroid disease was more common among women with higher levels of PFNA concentrations, whereas all other PFAS were not associated with thyroid diseases regardless of sex or age. CONCLUSIONS Overall there is no evidence of an association between TSH and PFAS. However, some results are suggestive of a possible inverse association of TSH with PFOA, PFOS and PFHxS among adult males.
Collapse
Affiliation(s)
- Elisa Gallo
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Claudio Barbiellini Amidei
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Giulia Barbieri
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Aline S C Fabricio
- Regional Center for Biomarkers, Department of Clinical Pathology, Azienda ULSS 3 Serenissima, Venice, Italy; Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Massimo Gion
- Regional Center for Biomarkers, Department of Clinical Pathology, Azienda ULSS 3 Serenissima, Venice, Italy
| | - Gisella Pitter
- Screening and Health Impact Assessment Unit, Azienda Zero-Veneto Region, Padova, Italy
| | - Francesca Daprà
- Laboratory Department-Regional Agency for Environmental Prevention and Protection-Veneto Region, Venice, Italy
| | - Francesca Russo
- Directorate of Prevention, Food Safety and Veterinary Public Health-Veneto Region, Venice, Italy
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| |
Collapse
|
17
|
Birgersson L, Jouve J, Jönsson E, Asker N, Andreasson F, Golovko O, Ahrens L, Sturve J. Thyroid function and immune status in perch (Perca fluviatilis) from lakes contaminated with PFASs or PCBs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112495. [PMID: 34265536 DOI: 10.1016/j.ecoenv.2021.112495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The environment contains a multitude of man-made chemicals, some of which can act as endocrine disruptors (EDCs), while others can be immunotoxic. We evaluated thyroid disruption and immunotoxic effects in wild female perch (Perca fluviatilis) collected from two contaminated areas in Sweden; one site contaminated with per- and polyfluoroalkyl substances (PFASs) and two sites contaminated with polychlorinated biphenyls (PCBs), with one reference site included for each area. The hepatic mRNA expression of thyroid receptors α and β, and the thyroid hormone metabolising iodothyronine deiodinases (dio1, dio2 and dio3) were measured using real-time PCR, while the levels of thyroid hormone T3 in plasma was analysed using a radioimmunoassay. In addition, lymphocytes, granulocytes, and thrombocytes were counted microscopically. Our results showed lower levels of T3 as well as lower amounts of lymphocytes and granulocytes in perch collected from the PFAS-contaminated site compared to reference sites. In addition, expressions of mRNA coding for thyroid hormone metabolising enzymes (dio2 and dio3) and thyroid receptor α (thra) were significantly different in these fish compared to their reference site. For perch collected at the two PCB-contaminated sites, there were no significant differences in T3 levels or in expression levels of the thyroid-related genes, compared to the reference fish. Fish from one of the PCB-contaminated sites had higher levels of thrombocytes compared with both the second PCB lake and their reference lake; hence PCBs are unlikely to be the cause of this effect. The current study suggests that lifelong exposure to PFASs could affect both the thyroid hormone status and immune defence of perch in the wild.
Collapse
Affiliation(s)
- Lina Birgersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | - Justin Jouve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | - Noomi Asker
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | - Fredrik Andreasson
- Department for Nature and Climate, County Administrative Board of Blekinge, SE-371 86 Karlskrona, Sweden
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75 007 Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75 007 Uppsala, Sweden
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden.
| |
Collapse
|
18
|
Sarzo B, Ballesteros V, Iñiguez C, Manzano-Salgado CB, Casas M, Llop S, Murcia M, Guxens M, Vrijheid M, Marina LS, Schettgen T, Espada M, Irizar A, Fernandez-Jimenez N, Ballester F, Lopez-Espinosa MJ. Maternal Perfluoroalkyl Substances, Thyroid Hormones, and DIO Genes: A Spanish Cross-sectional Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11144-11154. [PMID: 34314170 DOI: 10.1021/acs.est.1c01452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Results of studies on perfluoroalkyl substances (PFASs) and thyroid hormones (THs) are heterogeneous, and the mechanisms underlying the action of PFASs to target THs have not been fully characterized. We examined the relation between first-trimester maternal PFAS and TH levels and the role played by polymorphisms in the iodothyronine deiodinase 1 (DIO1) and 2 (DIO2) genes in this association. Our sample comprised 919 pregnant Spanish women (recruitment = 2003-2008) with measurements of perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), thyroid-stimulating hormone (TSH), total triiodothyronine (TT3), and free thyroxine (FT4), and we genotyped for single-nucleotide polymorphisms in the DIO1 (rs2235544) and DIO2 (rs12885300) genes. We performed multivariate regression analyses between PFASs and THs and included the interaction term PFAS-genotypes in the models. PFHxS was associated with an increase in TSH (% change in outcome [95% CI] per 2-fold PFAS increase = 6.09 [-0.71, 13.4]), and PFOA and PFNA were associated with a decrease in TT3 (-7.17 [-13.5, -0.39] and -6.28 [-12.3, 0.12], respectively). We found stronger associations between PFOA, PFNA, and TT3 for DIO1-CC and DIO2-CT genotypes, although interaction p-values were not significant. In conclusion, this study found evidence of an inverse association between PFOA and TT3 levels. No clear effect modification by DIO enzyme genes was observed.
Collapse
Affiliation(s)
- Blanca Sarzo
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
| | - Virginia Ballesteros
- Andalusian Health and Environment Observatory (OSMAN), Andalusian School of Public Health, 18011 Granada, Spain
| | - Carmen Iñiguez
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
- Department of Statistics and Operational Research, University of Valencia, 46100 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | | | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- ISGlobal, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Mario Murcia
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Health Information Systems Analysis Service, Conselleria de Sanitat, Generalitat Valenciana, 46010 Valencia, Spain
| | - Mònica Guxens
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- ISGlobal, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- ISGlobal, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Loreto Santa Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, 20013 Donostia-San Sebastian, Spain
- Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014 Donostia-San Sebastian, Spain
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Mercedes Espada
- Clinical Chemistry Unit, Public Health Laboratory of Bilbao, 8160 Bilbao, Spain
| | - Amaia Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014 Donostia-San Sebastian, Spain
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV-EHU), 20018 San Sebastian, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Ferran Ballester
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Faculty of Nursing and Chiropody, University of Valencia, 46010 Valencia, Spain
| | - Maria-Jose Lopez-Espinosa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Faculty of Nursing and Chiropody, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
19
|
Babić Leko M, Gunjača I, Pleić N, Zemunik T. Environmental Factors Affecting Thyroid-Stimulating Hormone and Thyroid Hormone Levels. Int J Mol Sci 2021; 22:6521. [PMID: 34204586 PMCID: PMC8234807 DOI: 10.3390/ijms22126521] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023] Open
Abstract
Thyroid hormones are necessary for the normal functioning of physiological systems. Therefore, knowledge of any factor (whether genetic, environmental or intrinsic) that alters the levels of thyroid-stimulating hormone (TSH) and thyroid hormones is crucial. Genetic factors contribute up to 65% of interindividual variations in TSH and thyroid hormone levels, but many environmental factors can also affect thyroid function. This review discusses studies that have analyzed the impact of environmental factors on TSH and thyroid hormone levels in healthy adults. We included lifestyle factors (smoking, alcohol consumption, diet and exercise) and pollutants (chemicals and heavy metals). Many inconsistencies in the results have been observed between studies, making it difficult to draw a general conclusion about how a particular environmental factor influences TSH and thyroid hormone levels. However, lifestyle factors that showed the clearest association with TSH and thyroid hormones were smoking, body mass index (BMI) and iodine (micronutrient taken from the diet). Smoking mainly led to a decrease in TSH levels and an increase in triiodothyronine (T3) and thyroxine (T4) levels, while BMI levels were positively correlated with TSH and free T3 levels. Excess iodine led to an increase in TSH levels and a decrease in thyroid hormone levels. Among the pollutants analyzed, most studies observed a decrease in thyroid hormone levels after exposure to perchlorate. Future studies should continue to analyze the impact of environmental factors on thyroid function as they could contribute to understanding the complex background of gene-environment interactions underlying the pathology of thyroid diseases.
Collapse
Affiliation(s)
| | | | | | - Tatijana Zemunik
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (M.B.L.); (I.G.); (N.P.)
| |
Collapse
|