1
|
Ren Y, Wang Y, Wang Y, Ning X, Li G, Sang N. Exposure to oxygenated polycyclic aromatic hydrocarbons and endocrine dysfunction: Multi-level study based on hormone receptor responses. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136855. [PMID: 39700954 DOI: 10.1016/j.jhazmat.2024.136855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are a class of emerging environmental contaminants that exhibit high toxicity compared to parent PAHs. In addition to carcinogenic, teratogenic and mutagenic effects, recent studies show their potential to cause endocrine disruption, but the reports are controversial. In this study, we employed hormone receptors (ERα/AR/GRα/TRβ)-mediated dual luciferase reporter gene assay and molecular docking, and found that five typical OPAHs exhibited agonistic activity towards hormone receptors, and hydrogen bonding and hydrophobic interactions were the primary binding forces involved in OPAHs-receptor interactions. Then, we developed a weighted scoring system coupled with computerized screening and clarified that 1,2-benzanthraquinone (BAQ) had the strongest hormonal effects, while anthraquinone (AQ) exhibited the weakest effects. Using the in vivo exposure model, we clarified that BAQ induced hormone receptor-coupled developmental toxicity in zebrafish larvae, evidenced by increased expression of androgen receptors and key genes involved in hormone synthesis, pericardial edema and reduced body length. Importantly, we successfully constructed androgen response element-enhanced green fluorescent protein (ARE-EGFP) transient transfection zebrafish embryos, and confirmed the androgenic potency of BAQ, but not AQ. These findings highlight the endocrine-disrupting effects in the risk management of OPAHs.
Collapse
Affiliation(s)
- Ying Ren
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yue Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Resources and Environmental Engineering, Shanxi Institute of Energy, Taiyuan, Shanxi 030600, PR China
| | - Yang Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xia Ning
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Resources and Environmental Engineering, Shanxi Institute of Energy, Taiyuan, Shanxi 030600, PR China
| |
Collapse
|
2
|
Neumann O, Ju Y, Sanchez-Alvarado AB, Zhou G, Jiang W, Moorthy B, Suter MA, Patel A, Nordlander P, Halas NJ. Machine learning-enhanced surface-enhanced spectroscopic detection of polycyclic aromatic hydrocarbons in the human placenta. Proc Natl Acad Sci U S A 2025; 122:e2422537122. [PMID: 39928861 PMCID: PMC11848310 DOI: 10.1073/pnas.2422537122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/27/2024] [Indexed: 02/12/2025] Open
Abstract
The detection and identification of polycyclic aromatic hydrocarbons (PAHs) and their derivatives, polycyclic aromatic compounds (PACs), are essential for environmental and health monitoring, for assessing toxicological exposure and their associated health risks. PAHs/PACs are the most dangerous chemicals found in tobacco smoke, and cigarette use during pregnancy can convey these molecules to the developing fetus through the placenta. This exposure is associated with many negative health outcomes, from premature birth to sudden infant death syndrome and adverse neurodevelopmental disorders. This study demonstrates the use of surface-enhanced Raman and surface-enhanced infrared absorption spectroscopies for direct detection of PAHs/PACs in human placental tissue. We applied two spectroscopy-informed machine learning algorithms, Characteristic Peak Extraction (CaPE) and Characteristic Peak Similarity (CaPSim), to identify the specific PAHs and PACs present in the placenta of women who smoked tobacco cigarettes in pregnancy compared to spectra of the placenta from self-reported nonsmokers. CaPE and CaPSim analysis enabled a clear distinction between these two groups. Independent verification was accomplished by detecting PAH-DNA and PAC-DNA adducts in the smoking group by means of a 32P-postlabeling assay. These findings highlight the effectiveness of combining surface-enhanced spectroscopies with informed ML analysis for the streamlined detection of hazardous environmental compounds in human tissues, suggesting broader applications in clinical diagnostics and public health surveillance.
Collapse
Affiliation(s)
- Oara Neumann
- Department of Electrical and Computer Engineering, Rice University, Houston, TX77005
- Laboratory for Nanophotonics, Rice University, Houston, TX77005
| | - Yilong Ju
- Department of Computer Science, Rice University, Houston, TX77005
| | - Andres B. Sanchez-Alvarado
- Laboratory for Nanophotonics, Rice University, Houston, TX77005
- Department of Chemistry, Rice University, Houston, TX77005
| | - Guodong Zhou
- Institute of Biotechnology, Texas A&M University Health Sciences, Houston, TX77030
| | - Weiwu Jiang
- Department of Pediatrics, Baylor College of Medicine, Houston, TX77030
| | | | - Melissa A. Suter
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX77030
| | - Ankit Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Peter Nordlander
- Laboratory for Nanophotonics, Rice University, Houston, TX77005
- Department of Physics and Astronomy, Rice University, Houston, TX77005
| | - Naomi J. Halas
- Department of Electrical and Computer Engineering, Rice University, Houston, TX77005
- Laboratory for Nanophotonics, Rice University, Houston, TX77005
- Department of Computer Science, Rice University, Houston, TX77005
- Department of Physics and Astronomy, Rice University, Houston, TX77005
| |
Collapse
|
3
|
Joseph-Thekkudan T, Kang JC, Kaltcheva MM, Venugopal PD. Screening for Endocrine Bioactivity Potential of Tobacco Product Chemicals Including Flavor Chemicals. ENVIRONMENTAL TOXICOLOGY 2025. [PMID: 39888242 DOI: 10.1002/tox.24472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/14/2024] [Accepted: 01/12/2025] [Indexed: 02/01/2025]
Abstract
Adolescence and pregnancy involve elevated levels of hormones (e.g., estrogen, androgen) during which exposure to endocrine disruptors could have long-term developmental and reproductive toxicity (DART) effects. Therefore, the use prevalence and abuse liability of electronic nicotine delivery systems (ENDS) among adolescents and youth, and during pregnancy, raises concerns about possible exposure to endocrine disruptors. In addition, endocrine disruptors have adverse effects on wildlife and environmental health. While many studies focus on carcinogenicity and mutagenicity of tobacco products, research efforts screening chemicals in tobacco products for endocrine disruption potential are few. In this study, we curated 5179 chemicals in tobacco and tobacco smoke, 2803 flavor chemicals, and 156 e-liquid chemicals from literature or openly available databases. We screened the chemicals for endocrine bioactivity using new approach methodologies (NAMs) developed through US Environmental Protection Agency's Endocrine Disruptor Screening Program. The specific NAMs, estrogenic and androgenic pathway models, identified 137 tobacco chemicals, 34 flavor chemicals, and three e-liquid chemicals (Veratraldehyde, (2E)-3-Phenylprop-2-enal, and 2'-Acetonaphthone) as "active," indicating potential endocrine bioactivity. Further, among the tobacco chemicals with endocrine bioactivity potential, 48 were environmentally persistent, 29 bioaccumulative, and 19 both persistent and bioaccumulative. Our findings document many chemicals in tobacco products with potential endocrine bioactivity, which raises concerns for both human and environmental health. These results also underscore the importance of DART potential of tobacco products and flavors. Overall, our study characterizes the endocrine bioactivity potential of tobacco and flavor chemicals and provides a list of chemicals to consider in future ecological and health risk assessments.
Collapse
Affiliation(s)
| | - Jueichuan Connie Kang
- Center for Tobacco Products, US Food and Drug Administration, Silver Spring, Maryland, USA
- United States Public Health Service Commissioned Corps, Rockville, Maryland, USA
| | - Maria M Kaltcheva
- Center for Tobacco Products, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - P Dilip Venugopal
- Center for Tobacco Products, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
4
|
Ben S, Li S, Gu D, Zhao L, Xu S, Ding Z, Chen S, Cheng Y, Xin J, Du M, Wang M. Benzo[a]pyrene exposure affects colorectal cancer susceptibility by regulating ERβ-mediated LINC02977 transcription. ENVIRONMENT INTERNATIONAL 2024; 184:108443. [PMID: 38277997 DOI: 10.1016/j.envint.2024.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Environmental pollutants known as polycyclic aromatic hydrocarbons (PAHs) are produced through the incomplete combustion of organic material. While PAHs have been investigated as genotoxicants, they can also operate through nongenotoxic pathways in estrogen-dependent malignancies, such as breast, cervical and ovarian cancer. However, whether PAHs induce colorectal cancer (CRC) risk through estrogenic effects is still illusive. Here, we systematically investigated the abnormal expression and activation of estrogen receptor beta (ERβ) regulated by PAHs in CRC as well as the underlying mechanisms of ERβ-mediated CRC risk. Based on the 300 plasma samples from CRC patients and healthy controls detected by GC-MS/MS, we found that the plasma concentrations of benzo[a]pyrene (BaP) were significantly higher in CRC cases than in healthy controls, with significant estrogenic effects. Moreover, histone deacetylase 2 (HDAC2)-induced deacetylation of the promoter decreases ERβ expression, which is associated with poor overall survival and advanced tumor stage. The study also revealed that BaP and estradiol (E2) had different carcinogenic effects, with BaP promoting cell proliferation and inhibiting apoptosis, while E2 had the opposite effects. Additionally, this study mapped ERβ genomic binding regions by performing ChIP-seq and ATAC-seq and identified genetic variants of rs1411680 and its high linkage disequilibrium SNP rs6477937, which were significantly associated with CRC risk through meta-analysis of two independent Chinese population genome-wide association studies comprising 2,248 cases and 3,173 controls and then validation in a large-scale European population. By integrating data from functional genomics, we validated the regulatory effect of rs6477937 as an ERβ binding-disrupting SNP that mediated allele-specific expression of LINC02977 in a long-range chromosomal interaction manner, which was found to be highly expressed in CRC tissues. Overall, this study suggests that the different active effects on ERβ by PAHs and endogenous E2 may play a crucial role in the development and progression of CRC and highlights the potential of targeting ERβ and its downstream targets for CRC prevention and treatment.
Collapse
Affiliation(s)
- Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210000, Jiangsu, China
| | - Lingyan Zhao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shenya Xu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhutao Ding
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yifei Cheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mulong Du
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
5
|
Lichtiger L, Jezioro J, Rivera J, McDonald JD, Terry MB, Sahay D, Miller RL. Prenatal airborne polycyclic aromatic hydrocarbon exposure, altered regulation of peroxisome proliferator-activated receptor gamma (Ppar)γ, and links with mammary cancer. ENVIRONMENTAL RESEARCH 2023; 231:116213. [PMID: 37224940 PMCID: PMC10330651 DOI: 10.1016/j.envres.2023.116213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Environmental exposure to polycyclic aromatic hydrocarbons (PAH) has been shown to be associated with chronic disease outcomes through multiple mechanisms including altered regulation of the transcription factor peroxisome proliferator-activated receptor gamma (Ppar) γ. Because PAH exposure and Pparγ each have been associated with mammary cancer, we asked whether PAH would induce altered regulation of Pparγ in mammary tissue, and whether this association may underlie the association between PAH and mammary cancer. Pregnant mice were exposed to aerosolized PAH at proportions that mimic equivalent human exposures in New York City air. We hypothesized that prenatal PAH exposure would alter Pparγ DNA methylation and gene expression and induce the epithelial to mesenchymal transition (EMT) in mammary tissue of offspring (F1) and grandoffspring (F2) mice. We also hypothesized that altered regulation of Pparγ in mammary tissue would associate with biomarkers of EMT, and examined associations with whole body weight. We found that prenatal PAH exposure lowered Pparγ mammary tissue methylation among grandoffspring mice at postnatal day (PND) 28. However, PAH exposure did not associate with altered Pparγ gene expression or consistently with biomarkers of EMT. Finally, lower Pparγ methylation, but not gene expression, was associated with higher body weight among offspring and grandoffspring mice at PND28 and PND60. Findings suggest additional evidence of multi-generational adverse epigenetic effects of prenatal PAH exposure among grandoffspring mice.
Collapse
Affiliation(s)
- Lydia Lichtiger
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine, Mount Sinai, New York City, NY, United States
| | - Jacqueline Jezioro
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine, Mount Sinai, New York City, NY, United States
| | - Janelle Rivera
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine, Mount Sinai, New York City, NY, United States
| | - Jacob D McDonald
- Department of Toxicology, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City, NY, United States; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York City, NY, United States
| | - Debashish Sahay
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine, Mount Sinai, New York City, NY, United States
| | - Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine, Mount Sinai, New York City, NY, United States.
| |
Collapse
|
6
|
Wang H, Liu B, Chen H, Xu P, Xue H, Yuan J. Dynamic changes of DNA methylation induced by benzo(a)pyrene in cancer. Genes Environ 2023; 45:21. [PMID: 37391844 DOI: 10.1186/s41021-023-00278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
Benzo(a)pyrene (BaP), the earliest and most significant carcinogen among polycyclic aromatic hydrocarbons (PAHs), has been found in foods, tobacco smoke, and automobiles exhaust, etc. Exposure to BaP induced DNA damage directly, or oxidative stress-related damage, resulting in cell apoptosis and carcinogenesis in human respiratory system, digestive system, reproductive system, etc. Moreover, BaP triggered genome-wide epigenetic alterations by methylation, which might cause disturbances in regulation of gene expression, and thereby induced cancer. It has been proved that BaP reduced genome-wide DNA methylation, and activated proto-oncogene by hypomethylation in the promoter region, but silenced tumor suppressor genes by promoter hypermethylation, resulting in cancer initiation and progression. Here we summarized the changes in DNA methylation in BaP exposure, and revealed the methylation of DNA plays a role in cancer development.
Collapse
Affiliation(s)
- Huizeng Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Bingchun Liu
- Stem Cell Research Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Hong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Peixin Xu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Huiting Xue
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010010, China.
| | - Jianlong Yuan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| |
Collapse
|
7
|
Pedersen JE, Hansen J. Parental occupational exposure to chemicals and risk of breast cancer in female offspring. ENVIRONMENTAL RESEARCH 2023; 227:115817. [PMID: 37011793 DOI: 10.1016/j.envres.2023.115817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVES Parental exposure to chemicals at work has been hypothesized to be a potential predisposing factor for breast cancer in next generations. The objective of the present nationwide nested case-control study was to contribute with evidence to this area. METHODS Women with primary breast cancer were identified using the Danish Cancer Registry and they were required to have information on either maternal or paternal employment history, which resulted in the inclusion of 5587 cases. For each case, 20 female cancer free controls were matched on year of birth using the Danish Civil Registration System. Employment history was linked to job exposure matrices to assess specific occupational chemical exposures. RESULTS For maternal exposures, we observed an association between ever exposure to diesel exhaust (OR = 1.13, 95% CI: 1.01-1.27) and exposure to bitumen fumes in the perinatal period (OR = 1.51, 95% CI: 1.00-2.26) and breast cancer in female offspring. Highest cumulative exposure to benzo(a)pyrene, diesel exhaust, gasoline and bitumen fumes was further indicated to increase the risk. Results further indicated a stronger association between diesel exhaust (OR = 1.23, 95% CI: 1.01-1.50) and benzo(a)pyrene exposure (OR = 1.23, 95% CI: 0.96-1.57) and estrogen receptor negative tumors than tumors with ER expression, while bitumen fumes seemed to elevate the risk of both hormonal subtypes. For paternal exposures, the main results did not indicate any associations with breast cancer in female offspring. CONCLUSIONS Our study suggests an elevated breast cancer risk in daughters of women occupational exposed to some occupational pollutants, including diesel exhaust, benzo(a)pyrene and bitumen fumes. These findings need to be confirmed in future large-scale studies before any firm conclusions can be reached.
Collapse
Affiliation(s)
| | - Johnni Hansen
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| |
Collapse
|
8
|
Zhu X, Meng Y, Ju Y, Yang Y, Zhang S, Miao L, Liu Z. Association of the urinary polycyclic aromatic hydrocarbons with sex hormones stratified by menopausal status older than 20 years: a mixture analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57717-57727. [PMID: 36971937 DOI: 10.1007/s11356-023-26099-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
We examined the relationships between exposure to polycyclic aromatic hydrocarbons (PAH) metabolites and sex hormones in pre- and postmenopausal women from the 2013-2016 National Health and Nutrition Examination Survey. The study comprised 648 premenopausal and 370 postmenopausal women (aged 20 years or older) with comprehensive data on PAH metabolites and sex steroid hormones. To evaluate the correlations between individual or mixture of the PAH metabolites and sex hormones stratified by menopausal status, we used linear regression and Bayesian kernel machine regression (BKMR). After controlling for confounders, 1-Hydroxynaphthalene (1-NAP) was inversely associated with total testosterone (TT), and 1-NAP, 3-Hydroxyfluorene (3-FLU), and 2-Hydroxyfluorene (2-FLU) were inversely associated with estradiol (E2). 3-FLU was positively associated with sex hormone-binding globulin (SHBG) and TT/E2, whereas 1-NAP and 2-FLU were inversely associated with free androgen index (FAI). In the BKMR analyses, chemical combination concentrations at or above the 55th percentile were inversely connected to E2, TT, and FAI values but positively correlated with SHBG when compared with the matching 50th percentile. In addition, we only found that mixed exposure to PAHs was positively associated with TT and SHBG in premenopausal women. Exposure to PAH metabolites, either alone or as a mixture, was negatively associated with E2, TT, FAI, and TT/E2 but positively associated with SHBG. These associations were stronger among postmenopausal women.
Collapse
Affiliation(s)
- Xihui Zhu
- Department of Perinatal Center, The Fourth Hospital of Shijiazhuang/Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Yancen Meng
- Department of Perinatal Center, The Fourth Hospital of Shijiazhuang/Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Yaru Ju
- Department of Perinatal Center, The Fourth Hospital of Shijiazhuang/Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Yanjing Yang
- Department of Perinatal Center, The Fourth Hospital of Shijiazhuang/Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Su'e Zhang
- Department of Perinatal Center, The Fourth Hospital of Shijiazhuang/Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Liye Miao
- Department of Perinatal Center, The Fourth Hospital of Shijiazhuang/Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Zhan Liu
- Department of Perinatal Center, The Fourth Hospital of Shijiazhuang/Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China.
| |
Collapse
|
9
|
Pryor JT, Cowley LO, Simonds SE. The Physiological Effects of Air Pollution: Particulate Matter, Physiology and Disease. Front Public Health 2022; 10:882569. [PMID: 35910891 PMCID: PMC9329703 DOI: 10.3389/fpubh.2022.882569] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
Nine out of 10 people breathe air that does not meet World Health Organization pollution limits. Air pollutants include gasses and particulate matter and collectively are responsible for ~8 million annual deaths. Particulate matter is the most dangerous form of air pollution, causing inflammatory and oxidative tissue damage. A deeper understanding of the physiological effects of particulate matter is needed for effective disease prevention and treatment. This review will summarize the impact of particulate matter on physiological systems, and where possible will refer to apposite epidemiological and toxicological studies. By discussing a broad cross-section of available data, we hope this review appeals to a wide readership and provides some insight on the impacts of particulate matter on human health.
Collapse
Affiliation(s)
- Jack T. Pryor
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Woodrudge LTD, London, United Kingdom
| | - Lachlan O. Cowley
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephanie E. Simonds
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- *Correspondence: Stephanie E. Simonds
| |
Collapse
|
10
|
Montjean D, Neyroud AS, Yefimova MG, Benkhalifa M, Cabry R, Ravel C. Impact of Endocrine Disruptors upon Non-Genetic Inheritance. Int J Mol Sci 2022; 23:3350. [PMID: 35328771 PMCID: PMC8950994 DOI: 10.3390/ijms23063350] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Similar to environmental factors, EDCs (endocrine-disrupting chemicals) can influence gene expression without modifying the DNA sequence. It is commonly accepted that the transgenerational inheritance of parentally acquired traits is conveyed by epigenetic alterations also known as "epimutations". DNA methylation, acetylation, histone modification, RNA-mediated effects and extracellular vesicle effects are the mechanisms that have been described so far to be responsible for these epimutations. They may lead to the transgenerational inheritance of diverse phenotypes in the progeny when they occur in the germ cells of an affected individual. While EDC-induced health effects have dramatically increased over the past decade, limited effects on sperm epigenetics have been described. However, there has been a gain of interest in this issue in recent years. The gametes (sperm and oocyte) represent targets for EDCs and thus a route for environmentally induced changes over several generations. This review aims at providing an overview of the epigenetic mechanisms that might be implicated in this transgenerational inheritance.
Collapse
Affiliation(s)
- Debbie Montjean
- Fertilys Fertility Center, 1950 Rue Maurice-Gauvin #103, Laval, QC H7S 1Z5, Canada;
| | - Anne-Sophie Neyroud
- CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 Boulevard de Bulgarie, 35000 Rennes, France;
| | - Marina G. Yefimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St-Petersburg, Russia;
| | - Moncef Benkhalifa
- Fertilys Fertility Center, 1950 Rue Maurice-Gauvin #103, Laval, QC H7S 1Z5, Canada;
- Médecine et Biologie de la Reproduction, CECOS de Picardie, CHU Amiens, 80054 Amiens, France;
- UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France
- Peritox, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Rosalie Cabry
- Médecine et Biologie de la Reproduction, CECOS de Picardie, CHU Amiens, 80054 Amiens, France;
- UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France
- Peritox, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Célia Ravel
- CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 Boulevard de Bulgarie, 35000 Rennes, France;
- CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, University Rennes, 35000 Rennes, France
| |
Collapse
|
11
|
Bolte EE, Moorshead D, Aagaard KM. Maternal and early life exposures and their potential to influence development of the microbiome. Genome Med 2022; 14:4. [PMID: 35016706 PMCID: PMC8751292 DOI: 10.1186/s13073-021-01005-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
At the dawn of the twentieth century, the medical care of mothers and children was largely relegated to family members and informally trained birth attendants. As the industrial era progressed, early and key public health observations among women and children linked the persistence of adverse health outcomes to poverty and poor nutrition. In the time hence, numerous studies connecting genetics ("nature") to public health and epidemiologic data on the role of the environment ("nurture") have yielded insights into the importance of early life exposures in relation to the occurrence of common diseases, such as diabetes, allergic and atopic disease, cardiovascular disease, and obesity. As a result of these parallel efforts in science, medicine, and public health, the developing brain, immune system, and metabolic physiology are now recognized as being particularly vulnerable to poor nutrition and stressful environments from the start of pregnancy to 3 years of age. In particular, compelling evidence arising from a diverse array of studies across mammalian lineages suggest that modifications to our metagenome and/or microbiome occur following certain environmental exposures during pregnancy and lactation, which in turn render risk of childhood and adult diseases. In this review, we will consider the evidence suggesting that development of the offspring microbiome may be vulnerable to maternal exposures, including an analysis of the data regarding the presence or absence of a low-biomass intrauterine microbiome.
Collapse
Affiliation(s)
- Erin E Bolte
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA
| | - David Moorshead
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA
| | - Kjersti M Aagaard
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, USA.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA.
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA.
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA.
- Department of Molecular & Cell Biology, Baylor College of Medicine, Houston, USA.
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
12
|
Kehm RD, Walter EJ, Oskar S, White ML, Tehranifar P, Herbstman JB, Perera F, Lilge L, Miller RL, Terry MB. Exposure to polycyclic aromatic hydrocarbons during pregnancy and breast tissue composition in adolescent daughters and their mothers: a prospective cohort study. Breast Cancer Res 2022; 24:47. [PMID: 35821060 PMCID: PMC9277813 DOI: 10.1186/s13058-022-01546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/01/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAH), which are found in air pollution, have carcinogenic and endocrine disrupting properties that might increase breast cancer risk. PAH exposure might be particularly detrimental during pregnancy, as this is a time when the breast tissue of both the mother and daughter is undergoing structural and functional changes. In this study, we tested the hypothesis that ambient PAH exposure during pregnancy is associated with breast tissue composition, measured one to two decades later, in adolescent daughters and their mothers. METHODS We conducted a prospective analysis using data from a New York City cohort of non-Hispanic Black and Hispanic mother-daughter dyads (recruited 1998-2006). During the third trimester of pregnancy, women wore backpacks containing a continuously operating air sampling pump for two consecutive days that measured ambient exposure to eight carcinogenic higher molecular weight nonvolatile PAH compounds (Σ8 PAH) and pyrene. When daughters (n = 186) and mothers (n = 175) reached ages 11-20 and 29-55 years, respectively, optical spectroscopy (OS) was used to evaluate measures of breast tissue composition (BTC) that positively (water content, collagen content, optical index) and negatively (lipid content) correlate with mammographic breast density, a recognized risk factor for breast cancer. Multivariable linear regression was used to evaluate associations between ambient PAH exposure and BTC, overall and by exposure to household tobacco smoke during pregnancy (yes/no). Models were adjusted for race/ethnicity, age, and percent body fat at OS. RESULTS No overall associations were found between ambient PAH exposure (Σ8 PAH or pyrene) and BTC, but statistically significant additive interactions between Σ8 PAH and household tobacco smoke exposure were identified for water content and optical index in both daughters and mothers (interaction p values < 0.05). Σ8 PAH exposure was associated with higher water content (βdaughters = 0.42, 95% CI = 0.15-0.68; βmothers = 0.32, 95% CI = 0.05-0.61) and higher optical index (βdaughters = 0.38, 95% CI = 0.12-0.64; βmothers = 0.38, 95% CI = 0.12-0.65) in those exposed to household tobacco smoke during pregnancy; no associations were found in non-smoking households (interaction p values < 0.05). CONCLUSIONS Exposure to ambient Σ8 PAH and tobacco smoke during pregnancy might interact synergistically to impact BTC in mothers and daughters. If replicated in other cohorts, these findings might have important implications for breast cancer risk across generations.
Collapse
Affiliation(s)
- Rebecca D. Kehm
- grid.21729.3f0000000419368729Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, Room 1605, New York, NY 10032 USA
| | - E. Jane Walter
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, ON M5G 0A3 Canada
| | - Sabine Oskar
- grid.21729.3f0000000419368729Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, Room 1605, New York, NY 10032 USA
| | - Melissa L. White
- grid.21729.3f0000000419368729Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, Room 1605, New York, NY 10032 USA
| | - Parisa Tehranifar
- grid.21729.3f0000000419368729Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, Room 1605, New York, NY 10032 USA ,grid.239585.00000 0001 2285 2675Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Julie B. Herbstman
- grid.21729.3f0000000419368729Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032 USA
| | - Frederica Perera
- grid.21729.3f0000000419368729Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032 USA
| | - Lothar Lilge
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, ON M5G 0A3 Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College St, Toronto, ON M5G 0A3 Canada
| | - Rachel L. Miller
- grid.59734.3c0000 0001 0670 2351Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029 USA
| | - Mary Beth Terry
- grid.21729.3f0000000419368729Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, Room 1605, New York, NY 10032 USA ,grid.239585.00000 0001 2285 2675Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| |
Collapse
|
13
|
Barrett ES, Workman T, Hazlehurst MF, Kauderer S, Loftus C, Kannan K, Robinson M, Smith AK, Smith R, Zhao Q, LeWinn KZ, Sathyanarayana S, Bush NR. Prenatal polycyclic aromatic hydrocarbon (PAH) exposure in relation to placental corticotropin releasing hormone (pCRH) in the CANDLE pregnancy cohort. Front Endocrinol (Lausanne) 2022; 13:1011689. [PMID: 36440232 PMCID: PMC9691680 DOI: 10.3389/fendo.2022.1011689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous endocrine-disrupting combustion by-products that have been linked to preterm birth. One possible mechanism is through disruption of placental corticotropin releasing hormone (pCRH), a key hormone implicated in parturition. As an extension of recent research identifying pCRH as a potential target of endocrine disruption, we examined maternal PAH exposure in relation to pCRH in a large, diverse sample. Participants, drawn from the CANDLE cohort, part of the ECHO-PATHWAYS Consortium, completed study visits at 16-29 weeks (V1) and 22-39 weeks (V2) gestation (n=812). Seven urinary mono-hydroxylated PAH metabolites (OH-PAHs) were measured at V1 and serum pCRH at V1 and V2. Associations between individual log-transformed OH-PAHs (as well as two summed PAH measures) and log(pCRH) concentrations across visits were estimated using mixed effects models. Minimally-adjusted models included gestational age and urinary specific gravity, while fully-adjusted models also included sociodemographic characteristics. We additionally evaluated effect modification by pregnancy complications, fetal sex, and maternal childhood trauma history. We observed associations between 2-OH-Phenanthrene (2-OH-PHEN) and rate of pCRH change that persisted in fully adjusted models (β=0.0009, 0.00006, 0.0017), however, positive associations with other metabolites (most notably 3-OH-Phenanthrene and 1-Hydroxypyrene) were attenuated after adjustment for sociodemographic characteristics. Associations tended to be stronger at V1 compared to V2 and we observed no evidence of effect modification by pregnancy complications, fetal sex, or maternal childhood trauma history. In conclusion, we observed modest evidence of association between OH-PAHs, most notably 2-OH-PHEN, and pCRH in this sample. Additional research using serial measures of PAH exposure is warranted, as is investigation of alternative mechanisms that may link PAHs and timing of birth, such as inflammatory, epigenetic, or oxidative stress pathways.
Collapse
Affiliation(s)
- Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers University, Rutgers School of Public Health, Piscataway, NJ, United States
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Emily S. Barrett,
| | - Tomomi Workman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Marnie F. Hazlehurst
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Sophie Kauderer
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Christine Loftus
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Morgan Robinson
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Alicia K. Smith
- Department of Gynecology and Obstetrics, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Roger Smith
- Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Qi Zhao
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kaja Z. LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, United States
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
- Seattle Children’s Research Institute, University of Washington, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Nicole R. Bush
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, United States
- Department of Pediatrics, Division of Developmental Medicine, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
14
|
Lichtiger L, Rivera J, Sahay D, Miller RL. Polycyclic Aromatic Hydrocarbons and Mammary Cancer Risk: Does Obesity Matter too? JOURNAL OF CANCER IMMUNOLOGY 2021; 3:154-162. [PMID: 34734210 PMCID: PMC8561337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Breast cancer risk remains incompletely explained, and higher incidence rates of breast cancer over recent times and in urban and industrialized areas suggest environmental causes. Polycyclic aromatic hydrocarbons (PAH) are ubiquitous in the environment and epidemiological and rodent studies have shown associations between exposure to PAH and breast cancer incidence as well as mammary tumorigenesis. In addition, in vitro and rodent studies have implicated alterations in estrogen receptor alpha (Erα) signaling pathways following PAH exposure in limited experimental studies. However, our understanding of these mechanisms is incomplete. Sahay et al. addressed this gap by examining the effect of PAH exposure on epigenetic and transcriptional regulation of genes in the Erα pathway in a mouse cohort exposed to aerosolized PAH at proportions measured in urban air. In addition to alterations in the Erα signaling pathway in the pregnant mice and in their offspring and grandoffspring, the investigators observed higher body weights in mice exposed to PAH compared to the control. Given that associations between mammary tissue adiposity, systemic adiposity, and breast cancer risk have been observed previously, the finding of higher body weight in the PAH exposure group raises the possibility that body weight might influence the association between PAH exposure and breast cancer risk. Along with new analyses, we discuss the possibility that body weight may modify the association between PAH exposure, mammary cellular proliferation, and mammary gland ductal hyperplasia in offspring and grandoffspring mice and future research that may be needed to delineate these associations.
Collapse
Affiliation(s)
| | | | | | - Rachel L. Miller
- Correspondence should be addressed to Rachel L. Miller MD, FAAAAI;
| |
Collapse
|