1
|
Zhang W, Zhang L, Jiang W, Yang H, Yang T, Zhao Y, Zhang Z, Ma Y. DNA methylation regulates somatic stress memory and mediates plasticity during acclimation to repeated sulfide stress in Urechis unicinctus. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137264. [PMID: 39842111 DOI: 10.1016/j.jhazmat.2025.137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Stress memory is an adaptive mechanism that enables organisms to develop resilience in response to environmental changes. Among them, somatic stress memory is an important means for organisms to cope with contemporary repeated stress, and is accompanied by transcription memory. Sulfide is a common environmental pollutant; however, some organisms have adapted to survive in sulfur-rich environments. Urechis unicinctus is a sulfur-tolerant organism that enhances sulfide stress tolerance by establishing a somatic sulfide stress memory mechanism. However, the molecular mechanisms that regulate sulfide stress memory remain unclear. To explore whether epigenetics, which plays a role in the response of organisms to environmental stress, is involved in regulating somatic sulfide stress memory, we performed a combined analysis of DNA methylation and transcriptome data. We found that elevated levels of DNA methylation under repetitive sulfide stress regulated gene expression and resulted in enhanced sulfide stress tolerance in U. unicinctus, a phenomenon verified using DNA methylase inhibitors. Transcriptional memory can be induced in genes related to oxidative stress, regulation of autophagy, and maintenance of protein homeostasis by altering the level of DNA methylation to facilitate sulfide stress acclimation. Our results provide new insights into adaptive mechanisms to cope with environmental fluctuations.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Wenwen Jiang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Heran Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Tianya Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yongzheng Zhao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China.
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Zhang W, Liu D, Yang H, Yang T, Zhang Z, Ma Y. Transcriptional memories mediate the plasticity of sulfide stress responses to enable acclimation in Urechis unicinctus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118020. [PMID: 40068552 DOI: 10.1016/j.ecoenv.2025.118020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/16/2025] [Accepted: 03/05/2025] [Indexed: 03/23/2025]
Abstract
To cope with environmental stresses, organisms often adopt a memory response upon primary stress exposure to facilitate a quicker and/or stronger reaction to recurring stresses. Somatic stress memory is essential in dealing with contemporary stress. The earliest sign of somatic stress memory is a change in gene transcription levels, which alters physiology and phenotype to better cope with stress. Sulfide is a common environmental pollutant; however, some organisms have successfully colonized sulfur-rich environments. Whether stress memory plays important role in sulfide stress adaptation remains unclear. In this study, to determine whether Urechis unicinctus, a sulfur-tolerant organism, retains the memory of previous sulfide stress, we simulated a repetitive sulfide stress/recovery system. The results showed that the tolerance of U. unicinctus to sulfide stress was significantly increased after priming with 50 µM sulfide. Further, transcriptional memory genes (TMGs) involved in regulating sulfide stress memory were identified, classified according to their expression patterns, and functionally analyzed. TMGs involved in sulfide metabolism, sugar metabolism, and protein homeostasis pathway showed an enhanced response, whereas those related to DNA repair pathway demonstrated a modified response pattern. Our study indicated that U. unicinctus retains memory of sulfide stress priming, which mediates plasticity to accelerate sulfide stress adaptation.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Heran Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Tianya Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China; Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Liu S, Gao Y, Long X, Li K, Gutang Q, Xie H, Wang J, Tian J, Liang B, Lin J, Liu W. A Possible More Precise Management Unit Delineation Based on Epigenomic Differentiation of a Long-Distance-Migratory Marine Fish Scomberomorus niphonius. Mol Ecol Resour 2025:e14103. [PMID: 40084530 DOI: 10.1111/1755-0998.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Understanding population structure and adaptive history is critical for designing appropriate management regulations for fisheries and conserving adaptive potential for the future. However, this is not easy for marine fish, especially those with long-distance migration abilities. In this study, we constructed a high-quality reference genome for Japanese Spanish mackerel (Scomberomorus niphonius) and explored its population structure using whole genomic and epigenomic data. Despite the high depth of the sequence data, we failed to identify geographical genetic differentiation of Japanese Spanish mackerel across Chinese coastal waters. However, whole-genome bisulphite sequencing can classify this species into the Bohai-Yellow Sea group and the East China Sea-South China Sea group. Genes involved in embryonic skeletal system development, limb morphogenesis functions, and adult locomotory behaviour were differentially methylated in the southern (Zhanjiang, ZJ) and northern (Western Dalian, WDL) populations and may play important roles as drivers of population structure in Japanese Spanish mackerel. Our study not only provides the first reference genome of the Japanese Spanish mackerel and sheds light on population differentiation at the epigenomic level, but also provides a methylome-based framework for population structure analyses of marine fish with long-distance migration ability. These findings are expected to facilitate the development of scientific programmes for the successful conservation of marine fishery resources.
Collapse
Affiliation(s)
- Sailan Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yan Gao
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Xinrui Long
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Kunhuan Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Qilin Gutang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Huiying Xie
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Jingzhen Wang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, China
| | - Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Bo Liang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Jianqing Lin
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| |
Collapse
|
4
|
Jiang L, Guo Y, Li T, Song W, Chen S, Liu Y, Zheng J. Environmental influence on single methylation variation sites (SMVs) in the large yellow croaker (Larimichthys crocea): identification and correlation analysis. Mol Biol Rep 2024; 52:93. [PMID: 39738908 DOI: 10.1007/s11033-024-10154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Larimichthys crocea is an important aquaculture species along the southeastern coast of China, with diverse environment and farming practices since artificial breeding, these different aquatic habitats are subject to significant variations in environmental factors that may involve modulation of gene expression through epigenetic mechanisms to enable species to survive and reproduce. METHODS AND RESULTS This study aimed to identify methylation variation sites (SMVs) in different sequence contexts (CG, CHG, and CHH) within populations of L. crocea in different habitats. All SMV sites were subjected to linear regression with environmental factors to identify candidate genes involved environmental stress. The results indicate a significant correlation between SMV sites and various environmental factors. For the wild populations in Jinmen and Zhanjiang, the primary environmental pressures for adapting are temperature and salinity. In contrast, for the domesticated populations in Zhoushan and farmed population in Xiangshan, the main environmental pressures are nitrate and dissolved oxygen. Furthermore, genes related to temperature adaptation in different aquatic environments were identified, including nr3c2, igf1, hsp70, trpm3, and fgf1. The gene rasa3 was found to be associated with pH adaptation, while genes such as atp6ap1lb, slc15a4, and gpr39 were linked to salinity, ammonia nitrogen, and dissolved oxygen. Research on the association between single methylation variation sites (SMVs) and environmental factors in aquatic organisms is scarce. CONCLUSIONS These results suggest that selection pressures can influence a significant proportion of methylation sites in this species, indirectly implying that epigenetic variation is not solely attributed to patterns of genetic variation, but is also closely linked to environmental differences. These results highlight the complex interactions between epigenetic regulation and environmental influences. Hence, this study provides preliminary evidence for a new perspective on the role of methylation patterns in L. crocea in environmental adaptation.
Collapse
Affiliation(s)
- Lihua Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Fisheries, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, 316022, Zhejiang Province, China.
| | - Yongqi Guo
- National Engineering Research Center of Marine Facilities Aquaculture, College of Fisheries, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, 316022, Zhejiang Province, China
| | - Tianyu Li
- National Engineering Research Center of Marine Facilities Aquaculture, College of Fisheries, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, 316022, Zhejiang Province, China
| | - Weihua Song
- National Engineering Research Center of Marine Facilities Aquaculture, College of Fisheries, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, 316022, Zhejiang Province, China
| | - Shun Chen
- National Engineering Research Center of Marine Facilities Aquaculture, College of Fisheries, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, 316022, Zhejiang Province, China
| | - Yifan Liu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Fisheries, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, 316022, Zhejiang Province, China
| | - Jialang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, College of Fisheries, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, 316022, Zhejiang Province, China
| |
Collapse
|
5
|
Zhang W, Zhang L, Feng Y, Lin D, Yang Z, Zhang Z, Ma Y. Genome-wide profiling of DNA methylome and transcriptome reveals epigenetic regulation of Urechis unicinctus response to sulfide stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172238. [PMID: 38582121 DOI: 10.1016/j.scitotenv.2024.172238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Sulfide is a well-known environmental pollutant that can have detrimental effects on most organisms. However, few metazoans living in sulfide-rich environments have developed mechanisms to tolerate and adapt to sulfide stress. Epigenetic mechanisms, including DNA methylation, have been shown to play a vital role in environmental stress adaptation. Nevertheless, the precise function of DNA methylation in biological sulfide adaptation remains unclear. Urechis unicinctus, a benthic organism inhabiting sulfide-rich intertidal environments, is an ideal model organism for studying adaptation to sulfide environments. In this study, we conducted a comprehensive analysis of the DNA methylome and transcriptome of U. unicinctus after exposure to 50 μM sulfide. The results revealed dynamic changes in the DNA methylation (5-methylcytosine) landscape in response to sulfide stress, with U. unicinctus exhibiting elevated DNA methylation levels following stress exposure. Integrating differentially expressed genes (DEGs) and differentially methylated regions (DMRs), we identified a crucial role of gene body methylation in predicting gene expression. Furthermore, using a DNA methyltransferase inhibitor, we validated the involvement of DNA methylation in the sulfide stress response and the gene regulatory network influenced by DNA methylation. The results indicated that by modulating DNA methylation levels during sulfide stress, the expression of glutathione S-transferase, glutamyl aminopeptidase, and cytochrome c oxidase could be up-regulated, thereby facilitating the metabolism and detoxification of exogenous sulfides. Moreover, DNA methylation was found to regulate and enhance the oxidative phosphorylation pathway, including NADH dehydrogenase, isocitrate dehydrogenase, and ATP synthase. Additionally, DNA methylation influenced the regulation of Cytochrome P450 and macrophage migration inhibitory factor, both of which are closely associated with oxidative stress and stress resistance. Our findings not only emphasize the role of DNA methylation in sulfide adaptation but also provide novel insights into the potential mechanisms through which marine organisms adapt to environmental changes.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Yuxin Feng
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Dawei Lin
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Zhi Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China; Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
Rahman MS, Billah MM, Rangel V, Cantu E. Elevated temperature triggers increase in global DNA methylation, 5-methylcytosine expression levels, apoptosis and NOx levels in the gonads of Atlantic sea urchin. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110899. [PMID: 37673203 DOI: 10.1016/j.cbpb.2023.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Global warming is one of the greatest threats to living organisms. Among them, marine invertebrates are severely impacted on reproductive fitness by rising seawater surface temperatures due to climate change (e.g., massive heat waves). In this study, we used highly sensitive radioimmunoassay, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), in situ TUNEL assay, luminescence assay, and colorimetric assay techniques to investigate the impacts of high temperatures on global DNA methylation, cellular apoptosis, and nitrative stress in gonads of Atlantic sea urchin (Arbacia punctulata, a commercially important species). Young adult sea urchins were exposed to 24, 28, and 32 °C for one week in a controlled laboratory setting. High temperatures (28 and 32 °C) markedly increased global DNA methylation (around 1.1-1.5-fold in testes and ~ 1.7-fold in ovaries) and 5-methylcytosine (5-mC) levels in gonads (around 2.7- to ~5.1-fold in ovaries and ~ 3.5- to ~6.2-fold in testes) compared with controls (24 °C). The number of apoptotic nuclei in gonads was much higher in high-temperature groups. The caspase activity also increased significantly (P < 0.05) in gonads in high-temperature groups. Nitrate/nitrites (NOx, a biomarker of reactive nitrogen species) levels were increased around 2.6- to ~5.2-fold in testes and ~ 1.9- to ~3.8-fold in ovaries in high-temperature groups. Collectively, these outcomes indicate that high temperatures drastically induce global DNA methylation, 5-mC expression levels, cellular apoptosis, and NOx levels in the gonads of Atlantic sea urchin.
Collapse
Affiliation(s)
- Md Saydur Rahman
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| | - Mohammad Maruf Billah
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Victor Rangel
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Esmirna Cantu
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
7
|
Gawra J, Valdivieso A, Roux F, Laporte M, de Lorgeril J, Gueguen Y, Saccas M, Escoubas JM, Montagnani C, Destoumieux-Garzόn D, Lagarde F, Leroy MA, Haffner P, Petton B, Cosseau C, Morga B, Dégremont L, Mitta G, Grunau C, Vidal-Dupiol J. Epigenetic variations are more substantial than genetic variations in rapid adaptation of oyster to Pacific oyster mortality syndrome. SCIENCE ADVANCES 2023; 9:eadh8990. [PMID: 37683000 PMCID: PMC10491289 DOI: 10.1126/sciadv.adh8990] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Disease emergence is accelerating with global changes. Understanding by which mechanisms host populations can rapidly adapt will be crucial for management practices. Pacific oyster mortality syndrome (POMS) imposes a substantial and recurrent selective pressure on oyster populations, and rapid adaptation may arise through genetics and epigenetics. In this study, we used (epi)genome-wide association mapping to show that oysters differentially exposed to POMS displayed genetic and epigenetic signatures of selection. Consistent with higher resistance to POMS, the genes targeted included many genes in several pathways related to immunity. By combining correlation, DNA methylation quantitative trait loci, and variance partitioning, we revealed that a third of phenotypic variation was explained by interactions between the genetic and epigenetic information, ~14% by the genome, and up to 25% by the epigenome alone. Similar to genetically based adaptation, epigenetic mechanisms notably governing immune responses can contribute substantially to the rapid adaptation of hosts to emerging infectious diseases.
Collapse
Affiliation(s)
- Janan Gawra
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Alejandro Valdivieso
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Fabrice Roux
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Martin Laporte
- Division de l'expertise sur la faune Aquatique, Ministère des Forêts, de la Faune et des Parcs (MFFP), 880 chemin Sainte-Foy, G1S 4X4 Québec, Québec, Canada
| | - Julien de Lorgeril
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, ENTROPIE, Nouméa, Nouvelle-Calédonie, France
| | - Yannick Gueguen
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Mathilde Saccas
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | | | - Franck Lagarde
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Marc A. Leroy
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Philippe Haffner
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Bruno Petton
- Université de Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Céline Cosseau
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Benjamin Morga
- Ifremer, ASIM, Adaptation Santé des Invertébrés Marins, La Tremblade, France
| | - Lionel Dégremont
- Ifremer, ASIM, Adaptation Santé des Invertébrés Marins, La Tremblade, France
| | - Guillaume Mitta
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
- Université de la Polynésie Française, ILM, IRD, Ifremer, F-98719 Tahiti, French Polynesia, France
| | - Christoph Grunau
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
8
|
Li A, Zhao M, Zhang Z, Wang C, Zhang K, Zhang X, De Wit PR, Wang W, Gao J, Guo X, Zhang G, Li L. Genome architecture and selective signals compensatorily shape plastic response to a new environment. Innovation (N Y) 2023; 4:100464. [PMID: 37485076 PMCID: PMC10362523 DOI: 10.1016/j.xinn.2023.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Transcriptional plasticity interacts with natural selection in complex ways and is crucial for the survival of species under rapid climate change. How 3D genome architecture affects transcriptional plasticity and its interaction with genetic adaptation are unclear. We transplanted estuarine oysters to a new environment and found that genes located in active chromatin regions exhibited greater transcriptional plasticity, and changes in these regions were negatively correlated with selective signals. This indicates a trade-off between 3D active regions and selective signals in shaping plastic responses to a new environment. Specifically, a mutation, lincRNA, and changes in the accessibility of a distal enhancer potentially affect its interaction with the ManⅡa gene, which regulates the muscle function and survival of oysters. Our findings reveal that 3D genome architecture compensates for the role of genetic adaptation in environmental response to new environments and provide insights into synergetic genetic and epigenetic interactions critical for fitness-related trait and survival in a model marine species.
Collapse
Affiliation(s)
- Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mingjie Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaogang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kexin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zhang
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Pierre Raoul De Wit
- Department of Marine Sciences, University of Gothenburg, Stromstad 45296, Sweden
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao 266000, China
| | - Juntao Gao
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ 08349, USA
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao 266000, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao 266000, China
| |
Collapse
|
9
|
Wang X, Cong R, Li A, Wang W, Zhang G, Li L. Transgenerational effects of intertidal environment on physiological phenotypes and DNA methylation in Pacific oysters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162112. [PMID: 36764539 DOI: 10.1016/j.scitotenv.2023.162112] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/16/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Climate change and intensifying human activity are posing serious threats to marine organisms. The fluctuating intertidal zone forms a miniature ecosystem of a rapidly changing environment for studying biological adaptation. Transgenerational plasticity (TGP), an evolutionary phenomenon in which parental experience influences offspring phenotypes, provides an avenue for adaptation, but the molecular mechanism was poorly understood in marine molluscs. In this study, wild Pacific oysters (Crassostrea gigas), which were collected from intertidal zones, were used to conduct two-generation breeding in a subtidal area combined with a heat shock experiment in the laboratory to investigate the intertidal environment-induced TGP under temperate subtidal condition and thermally exposed condition, respectively. We showed that TGP could influence the physiological phenotypes related to the status of oxidation and energy in non-stress-exposed subtidal offspring for at least two generations. Genomic DNA methylation exhibited heritable divergence between intertidal and subtidal oysters, and 1655 (or 42.83 %) differentially methylated genes (DMGs) in F0 were continuously reserved to F2, which may mediate physiological TGP by participating in biological processes including macromolecule metabolism, cellular responses to stress, and the positive regulation of molecular function, especially fatty acid metabolism. The intertidal experience also influenced the thermal plasticity of physiological phenotypes within and across generations. Totally, 320 (or 14.74 %) specific thermal response DMGs in the intertidal F0 generation were identified in F1 and F2, participating in pathways including carbohydrate, lipid, and energy metabolism, signal transduction, and the organismal immune system, which suggested transgenerational intertidal effect mediated by these genes could positively contribute to stress adaptation and had potential applications for aquaculture. This study demonstrates an epigenetic mechanism for TGP in stress adaptation in marine molluscs, and provides new avenues to improve the stress adaptation for marine resource conservation and aquaculture.
Collapse
Affiliation(s)
- Xinxing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China.
| |
Collapse
|
10
|
Silliman K, Spencer LH, White SJ, Roberts SB. Epigenetic and Genetic Population Structure is Coupled in a Marine Invertebrate. Genome Biol Evol 2023; 15:evad013. [PMID: 36740242 PMCID: PMC10468963 DOI: 10.1093/gbe/evad013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 02/07/2023] Open
Abstract
Delineating the relative influence of genotype and the environment on DNA methylation is critical for characterizing the spectrum of organism fitness as driven by adaptation and phenotypic plasticity. In this study, we integrated genomic and DNA methylation data for two distinct Olympia oyster (Ostrea lurida) populations while controlling for within-generation environmental influences. In addition to providing the first characterization of genome-wide DNA methylation patterns in the oyster genus Ostrea, we identified 3,963 differentially methylated loci between populations. Our results show a clear coupling between genetic and epigenetic patterns of variation, with 27% of variation in interindividual methylation differences explained by genotype. Underlying this association are both direct genetic changes in CpGs (CpG-SNPs) and genetic variation with indirect influence on methylation (mQTLs). When comparing measures of genetic and epigenetic population divergence at specific genomic regions this relationship surprisingly breaks down, which has implications for the methods commonly used to study epigenetic and genetic coupling in marine invertebrates.
Collapse
Affiliation(s)
- Katherine Silliman
- South Carolina Department of Natural Resources, Marine Resources Research
Institute, Charleston, South Carolina
| | - Laura H Spencer
- School of Aquatic and Fishery Sciences, University of
Washington, Seattle
| | - Samuel J White
- School of Aquatic and Fishery Sciences, University of
Washington, Seattle
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of
Washington, Seattle
| |
Collapse
|
11
|
Wang ST, Wang W, Wang LP, Li L, Zhang GF. Tidal emersion effects on universal metrics, elemental contents, and health conditions of Pacific oyster (Crassostrea gigas) on artificial reefs in Yellow River Delta, China. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
12
|
Chapelle V, Silvestre F. Population Epigenetics: The Extent of DNA Methylation Variation in Wild Animal Populations. EPIGENOMES 2022; 6:31. [PMID: 36278677 PMCID: PMC9589984 DOI: 10.3390/epigenomes6040031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Population epigenetics explores the extent of epigenetic variation and its dynamics in natural populations encountering changing environmental conditions. In contrast to population genetics, the basic concepts of this field are still in their early stages, especially in animal populations. Epigenetic variation may play a crucial role in phenotypic plasticity and local adaptation as it can be affected by the environment, it is likely to have higher spontaneous mutation rate than nucleotide sequences do, and it may be inherited via non-mendelian processes. In this review, we aim to bring together natural animal population epigenetic studies to generate new insights into ecological epigenetics and its evolutionary implications. We first provide an overview of the extent of DNA methylation variation and its autonomy from genetic variation in wild animal population. Second, we discuss DNA methylation dynamics which create observed epigenetic population structures by including basic population genetics processes. Then, we highlight the relevance of DNA methylation variation as an evolutionary mechanism in the extended evolutionary synthesis. Finally, we suggest new research directions by highlighting gaps in the knowledge of the population epigenetics field. As for our results, DNA methylation diversity was found to reveal parameters that can be used to characterize natural animal populations. Some concepts of population genetics dynamics can be applied to explain the observed epigenetic structure in natural animal populations. The set of recent advancements in ecological epigenetics, especially in transgenerational epigenetic inheritance in wild animal population, might reshape the way ecologists generate predictive models of the capacity of organisms to adapt to changing environments.
Collapse
Affiliation(s)
- Valentine Chapelle
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth, and Environment, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | | |
Collapse
|
13
|
Johnson KM, Sirovy KA, Kelly MW. Differential DNA methylation across environments has no effect on gene expression in the eastern oyster. J Anim Ecol 2021; 91:1135-1147. [PMID: 34882793 DOI: 10.1111/1365-2656.13645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
It has been hypothesized that environmentally induced changes to gene body methylation could facilitate adaptive transgenerational responses to changing environments. We compared patterns of global gene expression (Tag-seq) and gene body methylation (reduced representation bisulfite sequencing) in 80 eastern oysters Crassostrea virginica from six full-sib families, common gardened for 14 months at two sites in the northern Gulf of Mexico that differed in mean salinity. At the time of sampling, oysters from the two sites differed in mass by 60% and in parasite loads by nearly two orders of magnitude. They also differentially expressed 35% of measured transcripts. However, we observed differential methylation at only 1.4% of potentially methylated loci in comparisons between individuals from these different environments, and little correspondence between differential methylation and differential gene expression. Instead, methylation patterns were largely driven by genetic differences among families, with a PERMANOVA analysis indicating nearly a two orders of magnitude greater number of genes differentially methylated between families than between environments. An analysis of CpG observed/expected values (CpG O/E) across the C. virginica genome showed a distinct bimodal distribution, with genes from the first cluster showing the lower CpG O/E values, greater methylation and higher and more stable gene expression, while genes from the second cluster showed lower methylation, and lower and more variable gene expression. Taken together, the differential methylation results suggest that only a small portion of the C. virginica genome is affected by environmentally induced changes in methylation. At this point, there is little evidence to suggest that environmentally induced methylation states would play a leading role in regulating gene expression responses to new environments.
Collapse
Affiliation(s)
- Kevin M Johnson
- Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, USA.,California Sea Grant, University of California San Diego, La Jolla, CA, USA
| | - Kyle A Sirovy
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|