1
|
Javed M, Akbar N, Khan AA, Masood A, Ahmed N, Khan MJ, Ahmed N, Khisro SN, Hameed MASA. Tailoring structural and optical properties of Cu(II)-induced MgAl 2O 4 nanoparticles and their response to toxic dyes under solar illumination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53532-53551. [PMID: 39192152 DOI: 10.1007/s11356-024-34753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Worldwide environmental challenges pose critical problems with the growth of the global economy. Addressing these issues requires the development of an eco-friendly and sustainable catalyst for degrading organic dye pollutants. In this study, copper-doped magnesium aluminates (CuxMg1-xAl2O4) with x = 0.0-0.8 were synthesized using a citrate-based combustion route. The inclusion of Cu(II) significantly impacted the structural, microstructural, optical, and photocatalytic activity of the catalyst. Rietveld analysis of X-ray diffraction powder profiles revealed single-phase spinels crystallized in the face-centered cubic unit cell with Fd 3 ¯ m space group. Chemical states of the ions, surface morphology, and elemental investigation were analyzed by X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. UV-visible and diffuse reflectance spectroscopies confirmed the reduction of the band gap due to Cu(II) doping, validated by first-principle investigations using the WIEN2k code. The catalyst with x = 0.8 showed higher photocatalytic efficacy (90% and 93%) for removing two azo organic dye pollutants, rhodamine B and methyl orange, respectively, within 120 min. Degradation kinetics followed a pseudo-first-order mechanism. The doped (0.8) sample was structurally and morphologically stable and reusable under visible irradiation, retaining performance after three runs. Scavenger studies confirmed hydroxyl and superoxide radicals' involvement in the degradation. This work presents an effective approach to enhancing CuxMg1-xAl2O4 catalysts' photodegradation performance, with potential applications in pharmaceuticals and wastewater remediation.
Collapse
Affiliation(s)
- Muhammad Javed
- Department of Physics, University of Kotli Azad Jammu and Kashmir, Kotli, 11100, Pakistan
| | - Naeem Akbar
- Department of Physics, University of Kotli Azad Jammu and Kashmir, Kotli, 11100, Pakistan
| | - Ayaz Arif Khan
- Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Asad Masood
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Naeem Ahmed
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Muhammad Junaid Khan
- Department of Physics and Applied Mathematics (DPAM), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Nisar Ahmed
- Department of Physics and Applied Mathematics (DPAM), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Said Nasir Khisro
- Department of Physics, University of Kotli Azad Jammu and Kashmir, Kotli, 11100, Pakistan
| | | |
Collapse
|
2
|
Hussain S, Rafiq S, Yousaf M, Nosheen S, Binjawhar DN, Abdel-Daim MM. Tuning optical, magnetic, and electrical parameters of CuFe 2O 4 nanoparticles incorporated with GO and ZnO using a facile synthesis. Heliyon 2024; 10:e33709. [PMID: 39050446 PMCID: PMC11268164 DOI: 10.1016/j.heliyon.2024.e33709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Nano-ferrites, metal oxides, and carbon-based nanomaterials have been used frequently to enhance optical and magnetic prospects for latent applications. Copper ferrite/Graphene Oxide and Zinc Oxide (CuFe2O4/GO/ZnO) ternary nanocomposite synthesized by hydrothermal route showed dramatically good outcomes as the band gap energy value of synthesized nanocomposite approaches to 2.4 eV. Furthermore, the light absorbance of CuFe2O4 increases by adding ZnO and GO. The experimental data revealed the face-centered cubic structure (FCC) of pure spinal ferrite (CuFe2O4) nanoparticles even after adding ZnO and GO. The 2θ peak observed at 31.70° with (220) hkl planes indicates the successful addition of ZnO nanoparticles in CuFe2O4/GO nanocomposite. XRD graph, the absence of characteristic peaks of GO revealed the intercalation of CuFe2O4 nanoparticles with GO layers. In SEM images, agglomeration among CuFe2O4 nanoparticles is observed due to the magnetic interaction of nano-crystallite with a high surface-to-volume (S/V) ratio. VSM can be used to determine the magnetic properties of as-synthesized samples at moderate temperatures under 0-0.5 and ± 5 tesla. In CuFe2O4/GO/ZnO ternary nanocomposite, the saturation magnetization value reduces from 2.071 to 1.365 emu/g due to the addition of ZnO nanoparticles. The loops were narrowed showing a decrease in the coercive field with the addition of ZnO nanoparticles in CuFe2O4/GO ternary nanocomposite material. Moreover, the study of electrical properties of pure CuFe2O4 and CuFe2O4/GO/ZnO ternary nanocomposite revealed that the values of dielectric constant and tangent loss decrease at high frequencies owing to surface charge polarization and intrinsic dipole interactions. The study of the electrical properties of both pure CuFe2O4 and the CuFe2O4/GO/ZnO ternary nanocomposite reveals that the dielectric constant (ε') and tangent loss (tanδ) exhibit a decreasing trend as the frequency increases. This behavior is attributed to surface charge polarization and intrinsic dipole interactions. At lower frequencies, both samples display elevated values for these properties, which stabilize as the frequency increases beyond 2 MHz. Notably, high AC conductivity is observed in both samples, attributed to increased capacitance and resistance.
Collapse
Affiliation(s)
- Saddam Hussain
- Department of Applied Sciences, National Textile University, Faisalabad, Pakistan
| | - Samavia Rafiq
- Department of Applied Sciences, National Textile University, Faisalabad, Pakistan
| | - M.I. Yousaf
- Department of Applied Sciences, National Textile University, Faisalabad, Pakistan
| | - Sofia Nosheen
- Department of Environmental Sciences, Lahore College For Women University, Lahore, Pakistan
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231 Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
3
|
Kaushal S, Thakur N, Kumar K. Investigation of the efficacy of Zn/Ce-CuO nanoparticles for enhanced photocatalytic, antibacterial, and antioxidant activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34180-2. [PMID: 38992302 DOI: 10.1007/s11356-024-34180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
The world is dealing with unprecedented environmental challenges, leading to a growing urgency to limit environmental damage. So, this study focuses on the synthesis of pure CuO, Zn, Ce, and Zn/Ce dual-doped CuO nanoparticles (NPs) using extract of Citrus limon leaves as reductant via simple co-precipitation method. The X-ray diffraction (XRD) characterization was employed to analyze structural characteristics of synthesized samples which confirm influence of Zn or Ce doping on crystallite size, dislocation density, and strain. The role of functional groups, changes in force constant, and bond length on addition of dopants was indicated by FTIR results. The SEM and TEM results showed variation in morphology from irregular to spherical. The zeta-potential and BET analysis confirmed surface potential as well as surface area characteristics. The change in energy gap values from 1.81 to 1.45 eV of Zn/Ce-doped CuO NPs computed from UV-vis analysis elevated its photocatalytic performance and reduced the chances of recombination of electron-hole pair due to presence of trapping levels between valence and conduction bands. The enhanced photo-degradation of Congo red (CR) and rhodamine B (RhB) with 91 and 94%, respectively, for Zn/Ce-doped CuO NPs was observed. The so-obtained samples have also exhibited good antibacterial and antioxidant activities.
Collapse
Affiliation(s)
- Shweta Kaushal
- Department of Chemistry, Career Point University, Hamirpur, Himachal Pradesh, 176041, India
- Center for Nano-Science and Technology, Career Point University, Hamirpur, Himachal Pradesh, 176041, India
| | - Naveen Thakur
- Department of Physics, Career Point University, Hamirpur, Himachal Pradesh, 176041, India
- Center for Nano-Science and Technology, Career Point University, Hamirpur, Himachal Pradesh, 176041, India
| | - Kuldeep Kumar
- Department of Chemistry, Career Point University, Hamirpur, Himachal Pradesh, 176041, India.
- Center for Nano-Science and Technology, Career Point University, Hamirpur, Himachal Pradesh, 176041, India.
| |
Collapse
|
4
|
Wang Y, Liu C, Hu H, Lu Q, Wang H, Zhao C, Du F, Tang N. Fabrication of CuFe 2O 4/Bi 12O 17Cl 2 photocatalyst with intrinsic p-n junction for highly efficient bisphenol A degradation. J Environ Sci (China) 2024; 136:547-558. [PMID: 37923463 DOI: 10.1016/j.jes.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/07/2023]
Abstract
The construction and application of novel highly efficient photocatalysts have been the focus in the field of environmental pollutant removal. In this work, a novel CuFe2O4/Bi12O17Cl2 photocatalysts were synthesized by simple hydrothermal and chemical precipitation method. The fabricated CuFe2O4/Bi12O17Cl2 composite exhibited much higher photocatalytic activity than pristine CuFe2O4 and Bi12O17Cl2 in the removal of bisphenol A (BPA) under visible-light illumination, which ascribed to the intrinsic p-n junction of CuFe2O4 and Bi12O17Cl2. The photocatalytic degradation rate of BPA on CuFe2O4/Bi12O17Cl2 with an optimized CuFe2O4 content (1.0 wt.%) reached 93.0% within 30 min. The capture experiments of active species confirmed that the hydroxyl radicals (•OH) and superoxide radicals (•O2-) played crucial roles in photocatalytic BPA degradation process. Furthermore, the possible degradation mechanism and pathways of BPA was proposed according to the detected intermediates in photocatalytic reaction process.
Collapse
Affiliation(s)
- Yong Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Cheng Liu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Haoyun Hu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Qiujun Lu
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Haiyan Wang
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Chenxi Zhao
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Fuyou Du
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China.
| | - Ningli Tang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
5
|
Li M, Li J, Huang J, Wu B, Chen F, Liu X. Binary Metal-Oxide Active Sites Derived from Cu-Doped MIL-88 with Enhanced Electroactivity for Nitrate Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16653-16661. [PMID: 37865968 DOI: 10.1021/acs.est.3c05606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Nitrate-to-ammonia electrochemical conversion is important for decreasing water pollution and increasing the production of valuable ammonia. However, achieving high ammonium production without undesirable byproducts is difficult. Cu-doped MIL-88-derived bimetallic oxide catalysts with electrocatalytically active Fe-O-Cu bridges, which have high NO3- adsorption energy and facilitate N-intermediate hydrogenation, are developed for NH4+ production. Cu doping promotes hybridization between the O 2p of NO3- and Fe-Cu 3d, facilitating the adsorption and reduction of NO3- with a low Tafel slope (62.1 mV dec-1) and high ammonia yield (1698.8 μg·h-1·cm-2). The cathode efficiency is stable for seven cycles. Cu adjacent to Fe sites inhibits hydrogen evolution, promotes NO3- adsorption, and decreases the intermediate adsorption energy barrier. This study provides new opportunities for fabricating diverse binary metal oxides with new interfaces as efficient cathode materials for selective electroreduction.
Collapse
Affiliation(s)
- Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiacheng Li
- School of Environment, Tsinghua University, Beijing 100084, China
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiaxin Huang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Boyang Wu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fei Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Aslam A, Abid MZ, Rafiq K, Rauf A, Hussain E. Tunable sulphur doping on CuFe 2O 4 nanostructures for the selective elimination of organic dyes from water. Sci Rep 2023; 13:6306. [PMID: 37072442 PMCID: PMC10113332 DOI: 10.1038/s41598-023-33185-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/08/2023] [Indexed: 05/03/2023] Open
Abstract
In this work, sulphur doped copper ferrites (S-CuFe2O4) photocatalysts were successfully synthesized for the first time using the facile hydrothermal method. The as-synthesized photocatalysts were characterized through XRD, Raman, TGA, FT-IR, UV-Vis-DRS, SEM, EDX and PL techniques. The results revealed that doping with sulphur has been found to be a suitable alternative that causes strain in the lattices as anions replace the oxygen from the CuFe2O4 nanostructures. Due to sulphur dopants, photocatalysts are able to efficiently trap and transfer the photoinduced charges, which readily suppress charge recombination. A UV-Vis spectrophotometer was used to monitor the degradation of selective toxic organic dyes (RhB, CR, MO, and CV) in aqueous media. The dye degradation results provide evidence for the surprisingly superior performance of S-CuFe2O4 over pristine CuFe2O4. On the basis of its efficiencies, this work can be assigned as an excellent candidate for photocatalysis science.
Collapse
Affiliation(s)
- Anam Aslam
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
7
|
Helmy ET, Soliman UA, Elbasiony AM, Nguyen BS. CuCe-Ferrite/TiO2 Nanocomposite as an Efficient Magnetically Separable Photocatalyst for Dye Pollutants Decolorization. Top Catal 2022. [DOI: 10.1007/s11244-022-01671-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractIn this work, a magnetically separated photocatalyst with great efficiency CuCe-Ferrite/TiO2 composite was prepared and characterized by X-ray diffraction (XRD), UV–Vis spectrophotometry, Fourier transformer infra-red spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray spectroscopy (EDX) and vibrating sample magnetometer (VSM). Single-phase cubic spinel was formed by calcining the prepared sample at a temperature of 550 °C, according to the results. Different concentrations of reactive red 250 (RR250) dye photodegradation was evaluated using different doses of CuCe-ferrite/ TiO2 and TiO2 NPs. Higher efficiency of RR250 photodegradation up to 100% was obtained using CuCe-ferrite/ TiO2. The photodegradation efficiency was confirmed using chemical oxygen demand (COD) test of both treated and untreated samples. The oxidation process was mostly mediated by photogenerated .O2− according to scavenger test results. The catalyst possess higher photodegradation efficiency even after regeneration for ten times.
Graphical Abstract
Collapse
|
8
|
Zhang Y, Liu D, Zhang Y, Qian Y, Li C, Qu Z, Xu R, Wei Q. Highly sensitive photoelectrochemical neuron specific enolase analysis based on cerium and silver Co-Doped Sb 2WO 6. Biosens Bioelectron 2022; 203:114047. [PMID: 35123314 DOI: 10.1016/j.bios.2022.114047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
A signal-enhanced photoelectrochemical immunoassay technique for detecting neuron specific enolase (NSE) was proposed. As a photoactive matrix, (Ce,Ag):Sb2WO6 was firstly investigated via doping Ce and Ag into Sb2WO6. It could be found that the presence of Ce and Ag not only had enormous variation on the morphology of Sb2WO6, but also showed excellent PEC behavior. In order to further improve the visible light utilization rate of (Ce,Ag):Sb2WO6, In2S3 was modified onto the surface of (Ce,Ag):Sb2WO6 to enhance visible light absorption. In addition, the CdS/PDA was served as a secondary antibody marker to further amplify signal. Especially, PDA as an electron donor could effectively remove photogenerated holes. Meanwhile, the good matching cascade band-edge levels between CdS and Sb2WO6 could promote photoelectron migration, improve the PEC response, and achieve sensitive detection of NSE. Under the selected excellent conditions, the photocurrent can linearly increase with the increase of NSE concentration in the operating range from 0.1 pg/mL to 50 ng/mL, and the limit of detection is 1.57 fg/mL. The constructed immunosensor also exhibits satisfactory stability, selectivity, and reproducibility, and it creates conditions for the detection of other biomolecules.
Collapse
Affiliation(s)
- Yong Zhang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, China; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China.
| | - Deling Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| | - Yingying Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| | - Yanrong Qian
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| | - Chenchen Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| | - Zhengfang Qu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| | - Rui Xu
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| |
Collapse
|
9
|
Harit AK, Gupta S, Woo HY, Chandra V. Enhanced photocatalytic degradation of rhodamine B over Ag3PO4/Polyaniline/NiFe2O4 nanocomposite under solar light irradiation. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|