1
|
Hermann M, Schuijt L, Albini D, Amekor MK, Belgers D, Boerwinkel MC, Evarita AM, Huang A, Jackson MC, Peeters ETHM, Roessink I, van Smeden J, Van den Brink PJ. Heatwaves, elevated temperature, and insecticide-induced effects at different trophic levels of a freshwater ecosystem. ENVIRONMENTAL RESEARCH 2025; 277:121566. [PMID: 40203980 DOI: 10.1016/j.envres.2025.121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025]
Abstract
Heatwaves and increasing average temperatures associated with climate change pose severe stress on nature, including freshwater ecosystems. As these thermal stressors do not act in isolation over temporal or spatial scales, interactions with other stressors, like pesticides, may lead to unpredictable combined effects. Empirical studies investigating multiple stressor effects across different trophic levels are scarce and often lack environmental realism. Here, we performed a multiple stressor experiment using outdoor freshwater mesocosms and realistic pond assemblages including microbes, phytoplankton, macrophytes, and invertebrates. The effects of the pesticide imidacloprid at three dosings (0, 1, 10 μg/L) were examined in combination with three temperature scenarios comprising natural ambient, elevated temperatures (+4 °C), and repeated heatwaves (+8 °C). Our results reveal fast imidacloprid dissipation for all temperature treatments with the lowest average dissipation half-lives (DT50: 6 days) in the heatwave treatment. Imidacloprid induced a series of significant effects on the macroinvertebrate community at 10 μg/L across the temperature treatments. Significant declines in abundance appeared throughout the experiment for the most sensitive taxa Cloeon dipterum, Caenis sp., Chironomini, and Dero sp., whereas significant imidacloprid effects on Tanytarsini, Chironomus, and Gammarus pulex occurred only after each dosing. Only Zygoptera showed an imidacloprid-related increase in abundance, whereas significantly adverse time-cumulative effects on abundance occurred for Asellus aquaticus. The zooplankton community showed imidacloprid tolerance (10 μg/L) with increasing abundances of Chydorus sphaericus, Acroperus harpae, and Ascomorpha. Heatwaves induced significantly meliorating effects on Dero sp. and adverse effects on Caenis sp., Tanytarsini, G. pulex, and A. harpae. The macroinvertebrate community demonstrated faster post-exposure recovery dynamics in the highest imidacloprid treatment when previously exposed to heatwaves and elevated temperatures compared to ambient conditions. Overall, heatwaves amplified the effects of imidacloprid on the invertebrate community, manifesting in manifold effects that adversely impacted multiple trophic levels.
Collapse
Affiliation(s)
- Markus Hermann
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands; Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| | - Lara Schuijt
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Dania Albini
- University of Oxford, Biology Department, 11a Mansfield Road, OX1 3SZ, UK; School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Mawuli K Amekor
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands; Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK, S7N 5B3, Canada
| | - Dick Belgers
- Wageningen Environmental Research, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Marie-Claire Boerwinkel
- Wageningen Environmental Research, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Ann M Evarita
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Anna Huang
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Michelle C Jackson
- University of Oxford, Biology Department, 11a Mansfield Road, OX1 3SZ, UK
| | - Edwin T H M Peeters
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Ivo Roessink
- Wageningen Environmental Research, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Jasper van Smeden
- Wageningen Environmental Research, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands; Rijksinstituut voor Volksgezondheid en Milieu (RIVM), Antonie v. leeuwenhoeklaan 9, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
2
|
Shi X, Huang Z, Liu L, Feng H, Lan R, Hong J. Electrocatalytic coupled biofilter for treating cyclohexanone-containing wastewater: Degradation, mechanism and optimization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124533. [PMID: 38996994 DOI: 10.1016/j.envpol.2024.124533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/14/2024]
Abstract
Electrocatalytic coupled biofilter (EBF) technology organically integrates the characteristics of electrochemistry and microbial redox, providing ideas for effectively improving biological treatment performance. In this study, an EBF system was developed for enhanced degradation of cyclohexanone in contaminated water. Experimental results show that the system can effectively remove cyclohexanone in contaminated water. Under the optimal parameters, the removal rates of cyclohexanone, TP, NH4+-N and TN were 97.61 ± 1.31%, 76.31 ± 1.67%, 94.14 ± 2.13% and 95.87 ± 1.01% respectively. Degradation kinetics studies found that electrolysis, adsorption, and biodegradation pathways play a major role in the degradation of cyclohexanone. Microbial community analysis indicates that voltage can affect the structure of the microbial community, with the dominant genera shifting from Acidovorax (0 V) to Brevundimonas (0.7 V). Additionally, Acidovorax, Cupriavidus, Ralstonia, and Hydrogenophaga have high abundance in the biofilm and can effectively metabolize cyclohexanone and its intermediates, facilitating the removal of cyclohexanone. In summary, this research can guide the development and construction of highly stable EBF systems and is expected to be used for advanced treatment of industrial wastewater containing cyclohexanone.
Collapse
Affiliation(s)
- Xiuding Shi
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Zhi Huang
- Xiamen Research Academy of Environmental Science, Xiamen 361021, China
| | - Lihua Liu
- Fujian Xiamen Environmental Monitoring Central Station, Xiamen 361102, China
| | - Han Feng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Ruisong Lan
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Junming Hong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China.
| |
Collapse
|
3
|
Ni JB, Jia XF, Zhang JY, Ding CJ, Tian WL, Peng WJ, Zielinska S, Xiao HW, Fang XM. Efficient degradation of imidacloprid by surface discharge cold plasma: Mechanism of interaction between ROS and molecular structure and evaluation of residual toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133066. [PMID: 38042007 DOI: 10.1016/j.jhazmat.2023.133066] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Incorrect use of neonicotinoid pesticides poses a serious threat to human and pollinator health, as these substances are commonly present in bee products and even drinking water. To combat this threat, the study developed a new method of degrading the pesticide imidacloprid using surface discharge cold plasma oxidation technology. The study showed that this method achieved a very high efficiency of imidacloprid degradation of 91.4%. The main reactive oxygen species (H2O2, O3, ·OH, O2-, 1O2) effectively participated in the decomposition reaction of imidacloprid. Reactive oxygen species were more sensitive to the structure of the nitroimine group. Density functional theory (DFT) further explored the sites of reactive oxygen species attack on imidacloprid and revealed the process of energy change of attacking imidacloprid. In addition, a degradation pathway for imidacloprid was proposed, mainly involving reactive oxygen species chemisorption, a ring-opening intermediate, and complete cleavage of the nitroimine group structure. Model predictions indicated that acute oral and developmental toxicity were significantly reduced after cold plasma treatment, as confirmed by insect experiments. Animal experiments have shown that plasma treatment reduces imidacloprid damage to mice hippocampal tissue structure and inhibits the reduction of brain-derived neurotrophic factor content, thus revealing the detoxification mechanism of the body.
Collapse
Affiliation(s)
- Jia-Bao Ni
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China; College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Xiao-Fang Jia
- School of Physics, Beihang University, Beijing, China
| | | | - Chang-Jiang Ding
- College of Science, Inner Mongolia University of Technology, Hohhot, China
| | - Wen-Li Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Wen-Jun Peng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Sara Zielinska
- Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| | - Xiao-Ming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China.
| |
Collapse
|
4
|
Mourikes VE, Santacruz-Márquez R, Deviney A, Laws MJ, Ulanov AV, La Frano MR, Flaws JA. Ovarian antral follicles metabolize imidacloprid in vitro. Toxicol Sci 2023; 196:229-237. [PMID: 37632782 PMCID: PMC10682976 DOI: 10.1093/toxsci/kfad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023] Open
Abstract
Neonicotinoid insecticides are synthetic nicotine derivatives that have high affinity for invertebrate nicotine receptors and low affinity for mammalian nicotine receptors. However, imidacloprid (IMI), the most commonly used neonicotinoid, can be bioactivated by the liver in mammals to desnitro-imidacloprid, an intermediate metabolite that effectively binds and activates mammalian receptors. However, it is not known if other tissues such as the ovaries can metabolize IMI. Thus, the present study tested the hypothesis that ovarian antral follicles metabolize and bioactivate IMI. Antral follicles were dissected from the ovaries of CD-1 mice and cultured in media containing dimethyl sulfoxide or IMI (0.2-200 µg/ml) for 48 and 96 h. Media were subjected to liquid chromatography-mass spectrometry for detection of phase I IMI metabolites. Follicles from the cultures were used for gene expression analysis of metabolic enzymes associated with IMI metabolism. All IMI metabolites were detected at 48 and 96 h. Oxidized IMI intermediates were detected in media from cultured follicles, but not environmental controls. Reduced IMI intermediates were detected in media from cultured follicles and the environmental controls. At 48 h, IMI did not affect expression of any metabolic enzymes compared with control. At 96 h, IMI induced Cyp2e1 and Cyp4f18 compared with control. These data indicate that mouse ovarian follicles metabolize IMI and that IMI induces ovarian Cyp expression over time.
Collapse
Affiliation(s)
- Vasiliki E Mourikes
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Ramsés Santacruz-Márquez
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Ashley Deviney
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Mary J Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Michael R La Frano
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| |
Collapse
|
5
|
Li X, Fan S, Zhang Y, Li D, Su C, Qi Z, Liang H, Gao S, Chen M. Performance and microbial metabolic mechanism of imidacloprid removal in a microbial electrolysis cell-integrated adsorption biological coupling system. BIORESOURCE TECHNOLOGY 2023; 386:129513. [PMID: 37468017 DOI: 10.1016/j.biortech.2023.129513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Coke used as a filler to treat imidacloprid (IMI) wastewater by both adsorption biological coupling and microbial electrolysis cells (MEC)-adsorption biological coupling technologies, the removal efficiencies on pollutions in wastewater containing IMI were investigated, and the key functional genes related to IMI degradation pathways were also revealed. Results showed that the removal rates of COD, ammonia nitrogen, TP, and IMI under the adsorption biological coupling treatment and MEC-adsorption biological coupling treatment were 94.61-95.54%, 93.37-95.79%, 73.69-83.80%, and 100%, respectively. MEC increased the relative abundance of Proteobacteria by 9.01% and transformed the dominant bacteria from Lysobacter and Reyranella to Brevundimonas and Aquincola. Moreover, MEC up-regulated the abundance of the coding genes PK (9.30%), narG (2.26%), pstS (3.63%), and phnD (1.32%), and converted the IMI degradation products to smaller molecular weight C6H8N2 and C6H6ClNO. This study provided an important reference information for efficient treatment of IMI wastewater using the MEC-adsorption biological coupling technology.
Collapse
Affiliation(s)
- Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shuo Fan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yunnan Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Daoning Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Zhifei Qi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Huayu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shu Gao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
6
|
Feng Y, Xu H, Fan Y, Ma F, Du B, Li Y, Xia R, Hou Z, Xin G. Effects of different monochromatic lights on umami and aroma of dried Suillus granulatus. Food Chem 2023; 404:134524. [DOI: 10.1016/j.foodchem.2022.134524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/17/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022]
|
7
|
Elumalai P, Yi X, Chen Z, Rajasekar A, Brazil de Paiva TC, Hassaan MA, Ying GG, Huang M. Detection of Neonicotinoids in agriculture soil and degradation of thiacloprid through photo degradation, biodegradation and photo-biodegradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119452. [PMID: 35561799 DOI: 10.1016/j.envpol.2022.119452] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The social and ecological influence of Neonicotinoids (NEOs) usage in agriculture sector is progressively higher. There are seven NEOs insecticides widely used for the insects control. Among the NEOs, thiacloprid (THD) was extensively used for insect control during crop cultivation. This study targets to analyse the contamination levels of NEOs in agricultural soil and identify photo-biodegradation of THD degradation using pure isolates and mixed consortium. The photo degradation (PD), biodegradation (BD) and photo-biodegradation (PBD) of THD were compared. The corn field agricultural soils were polluted by four NEOs, among them THD had greater contamination level (surface soil: 3901.2 ± 0.04 μg/g) and (sub-surface soil: 3988.6 ± 0.05 μg/g). Three soil free enriched bacterial strains following Bacillus atrophaeus (PB-2), Priestia megaterium (PB-3) (formerly known as Bacillus megaterium), and Peribacillus simplex (PB-4) (formerly known as Bacillus simplex) were identified by microbiological and molecular 16s rRNA gene sequencing. The PD, BD and PBD of THD were conducted and degradation rate was detected by instrument UPLC-MS-MS. The PBD process with blue-LEDs showed better THD degradation efficiency than PD and BD, where the specific THD degradation rate was 85 ± 0.2%, 87 ± 0.5%, and 89 ± 0.3%, respectively for PB-2, PB-3 and PB-4. Then, the photo-biodegradation performance is greater at 150, 175, 200 rpm, pH 7.0-9.0, and temperature 30-35 °C. After the PBD system deliver four intermediate metabolites, the THD degradation process maybe through nitro reduction, hydroxylation and oxidative cleavage pathway.
Collapse
Affiliation(s)
- Punniyakotti Elumalai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Xiaohui Yi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; South China Intelligence Environment Tecnology (Qingyuan) Co.,Ltd, SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd, Qingyuan 511517, PR China
| | - Zhenguo Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; South China Intelligence Environment Tecnology (Qingyuan) Co.,Ltd, SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd, Qingyuan 511517, PR China
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| | | | - Mohamed A Hassaan
- National Institute of Oceanography and Fisheries, NIOF, Kayed Bey, El-Anfoushy P.O., 21556, Alexandria, Egypt
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Mingzhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; South China Intelligence Environment Tecnology (Qingyuan) Co.,Ltd, SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd, Qingyuan 511517, PR China; School of Resources and Environmental Sciences, Quanzhou Normal University, Quanzhou, Fujian 362000, PR China.
| |
Collapse
|
8
|
Piao M, Sun Y, Wang Y, Teng H. Preparation of BiVO
4
/RGO‐TNT Nanomaterials for Efficient and Recyclable Photocatalysis of Imidacloprid Insecticide. ChemistrySelect 2022. [DOI: 10.1002/slct.202200182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control the Education Department of Jilin Province Jilin Normal University Siping China
- College of Environmental Science and Engineering Jilin Normal University Siping China
| | - Yuwei Sun
- Key Laboratory of Environmental Materials and Pollution Control the Education Department of Jilin Province Jilin Normal University Siping China
- College of Environmental Science and Engineering Jilin Normal University Siping China
| | - Yixuan Wang
- College of Environmental Science and Engineering Jilin Normal University Siping China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control the Education Department of Jilin Province Jilin Normal University Siping China
- College of Environmental Science and Engineering Jilin Normal University Siping China
| |
Collapse
|
9
|
Zhang C, Dionysiou DD, Li F, Zhang H, Fang X, Fu H, He J, Chen L, Ying GG, Huang M. Designing NAZO@BC electrodes for enhanced elimination of hydrophilic organic pollutants in heterogeneous electro-Fenton system: Insights into the detoxification mediated by 1O 2 and •OH. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128598. [PMID: 35278962 DOI: 10.1016/j.jhazmat.2022.128598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Hydrophilic organic pollutants (HLOPs) in effluents of wastewater treatment plants are more prevalent than hydrophobic counterparts, therefore development of upstream processes that can effectively enhance the removal of HLOPs can substantially enhance overall treatment performance. To bridge this gap, 3D electrodes made of biochar-supported Al-ZnO nanoparticles (NAZO@BC) applied in heterogeneous electro-Fenton (EF) system, abbreviated as NBE-EF system, is rationally designed for enhanced elimination of HLOPs in wastewater. Our analysis indicates the NBE-EF system results in an efficient THM elimination, 42.4 times greater than that of conventional EF system. MoS2 as an efficient cocatalyst plays an important role in the conversion from Fe(III) to Fe(II). Singlet oxygen (1O2) and hydroxyl radical (•OH) are identified as the primary reactive oxygen species (ROS) in the NBE-EF system. NAZO@BC electrodes could concentrate HLOPs on their surface and degrade it effectively, achieving also a self-cleaning effect. Effective elimination of four HLOPs, i.e., thiamethoxam (THM), dinotefuran (DIN), nitenpyram (NIT), and acetamiprid (ACE), demonstrated the high degradation performance of the NBE-EF system, even at neutral and alkaline conditions. This study provides a new approach for enhanced elimination of HLOPs in wastewater treatment and mechanical insights into degradation pathways and toxicity attenuation.
Collapse
Affiliation(s)
- Chao Zhang
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, PR China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Feng Li
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, PR China.
| | - Huike Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China; SCNU Qingyuan Institute of Science and Technology Innovation Co, Ltd, Qingyuan 511517, PR China
| | - Xiaozhou Fang
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, PR China
| | - Hengyi Fu
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, PR China
| | - Junyi He
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, PR China
| | - Long Chen
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Mingzhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China; School of Resources and Environmental Sciences, Quanzhou Normal University, Quanzhou, Fujian 362000, PR China; SCNU Qingyuan Institute of Science and Technology Innovation Co, Ltd, Qingyuan 511517, PR China.
| |
Collapse
|
10
|
Zhang C, Li X, Li F, Li G, Niu G, Chen H, Ying GG, Huang M. Accurate prediction and further dissection of neonicotinoid elimination in the water treatment by CTS@AgBC using multihead attention-based convolutional neural network combined with the time-dependent Cox regression model. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127029. [PMID: 34479086 DOI: 10.1016/j.jhazmat.2021.127029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Imidacloprid (IMI), as the most widely used neonicotinoid insecticide, poses a serious threat to the water ecosystem due to the inefficient elimination in the traditional water treatment. Chitosan (CTS)-stabilized biochar (BC)-supported Ag nanoparticles (CTS@AgBC) are applied to eliminate the IMI in the water treatment effectively. Batch experiments depict that the modification of BC by CTS and Ag nanoparticles remarkably improve its adsorption performance. The pseudo-second-order and Elovich models have good performance in simulating the adsorption processes of CTS@AgBC and BC. This indicates that the chemical adsorption on real surfaces plays the dominant role in the adsorption of IMI by CTS@AgBC and BC. In addition, the multihead attention (MHA)-based convolutional neural network (CNN) combined with the time-dependent Cox regression model are initially applied to predict and dissect the adsorption elimination processes of IMI by CTS@AgBC. The proposed MHA-CNN model achieves more accurate concentration prediction of IMI than traditional models. According to influence weights by MHA module, biochar category, pH, and treatment temperature are considered the three dominant environmental variables to determine the IMI elimination processes. This study provides insights into roles of environmental variables in the elimination of IMI by CTS@AgBC and the accurate prediction of IMI concentration.
Collapse
Affiliation(s)
- Chao Zhang
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, PR China
| | - Xiaoyong Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Feng Li
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, PR China.
| | - Gugong Li
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, PR China
| | - Guoqiang Niu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Hongyu Chen
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, PR China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Mingzhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China; School of Resources and Environmental Sciences, Quanzhou Normal University, Quanzhou, Fujian 362000, PR China; SCNU Qingyuan Institute of Science and Technology Innovation Co, Ltd, Qingyuan 511517, China.
| |
Collapse
|