1
|
Li Z, Liu C, Ren Z, Liu J, Ma X, Ning Z, Meng J, Liu A, Ma H, Wang L, Chen L, Wang H, Kong S. Unintended side effect of the coal-to-gas policy in North China Plain: Migration of the sources and health risks of ambient PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178050. [PMID: 39671942 DOI: 10.1016/j.scitotenv.2024.178050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Ongoing coal-to-gas (CTG) largely cut down both coal consumption and associated PM2.5. However, a knowledge gap still existed in CTG impacts on the other energy and organic pollutant emissions. Coupling on-site investigation with statistical yearbooks, we provided a more realistic energy evolutions before (BCTG), during (DCTG), and after (ACTG) the CTG for Hebei Province. Together, we examined the impacts of CTG derived energy conversion on PM2.5-bound PAHs at urban (UA)/suburban rural (SRA)/remote rural (RRA) sites in winter 2022. As expected, the consumptions of coal and natural gas (NG) far decreased and increased from BCTG to ACTG, respectively. Accidentally, biomass usage rose by 60.7%, and rural CTG acted as a main driver. Specially, SRA's NG-shortage and coal-stove demolition should be the main inducements, and RRA's coal-sale ban was another trigger in the early stage of CTG. ∑18PAHs and ∑8TPAHs stand for the sum of 18 PAHs and 8 toxic PAHs, respectively. ∑18PAHs (ng/m3) presented as SRA (81.8) > RRA (46.4) > UA (19.4). Biomass burning (BB) and NG combustion (NGC) contributed most to∑18PAHs of 31.0% and 23.1% at SRA, resulting in the highest ∑18PAHs, ∑18PAHs/PM2.5, and ∑8TPAHs/PM2.5, and incremental lifetime cancer risk values. Also, NGC has become the second largest contributor at UA. Variations in both diagnostic ratios and source-depend isomers further proved the prominence of NGC related PAHs at UA vs. SRA. Notably, RRA was least affected by the CTG, coal combustion (CC, 40.4%) and BB (32.6%) still occupied the top positions. In short, CTG gave rise to an upsurge in biomass usage, and the incremental PAHs emissions from BB vs. NGC. This study underlined that the priorities should be given to rural NG guarantee and subsidy retention, and biomass prohibition for further air quality improvement.
Collapse
Affiliation(s)
- Zhiyong Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Chen Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Zhuangzhuang Ren
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Jinming Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Xiaohua Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Zhi Ning
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Jianwei Meng
- Hebei Key Lab of Mineral Resources and Ecological Environment Monitoring, Hebei Research Center for Geoanalysis, Baoding 071051, China
| | - Aiqin Liu
- Hebei Key Lab of Mineral Resources and Ecological Environment Monitoring, Hebei Research Center for Geoanalysis, Baoding 071051, China
| | - Huichun Ma
- Hebei Key Lab of Mineral Resources and Ecological Environment Monitoring, Hebei Research Center for Geoanalysis, Baoding 071051, China
| | - Lei Wang
- Hebei Key Lab of Mineral Resources and Ecological Environment Monitoring, Hebei Research Center for Geoanalysis, Baoding 071051, China
| | - Lan Chen
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hao Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
2
|
Wu D, Ma Z, Diao H, Wang W, Chen L, Zhou D, Yang J, Zhen Q. Characteristics, potential sources, and cancer risk apportionment of PM 10-bound polycyclic aromatic hydrocarbons in Bengbu, Central China. Front Public Health 2024; 12:1445782. [PMID: 39583078 PMCID: PMC11582039 DOI: 10.3389/fpubh.2024.1445782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were measured in 342 daily PM10 samples collected in four seasons at a site in Bengbu, China. This study was a qualitative and quantitative investigation of the emission sources of atmospheric PAHs in Bengbu and the spatial distribution of regional PAH sources in PM10 samples. The annual concentrations of the 16 EPA priority PAHs ranged from 1.45 to 62.16 ng/m3, with an annual mean of 7.63 ± 7.38 ng/m3. The seasonal trends during the year were: winter (6.13-62.16 ng/m3, median = 14.99 ng/m3) > autumn (2.01-18.78 ng/m3, median = 4.90 ng/m3) > spring (1.45-19.34 ng/m3, median = 3.32 ng/m3) > summer (1.57-4.27 ng/m3, median = 2.12 ng/m3). The PAHs over the year were dominated by medium-molecular-weight PAHs (39.81%), followed by high-molecular-weight PAHs (35.77%), and low-molecular-weight PAHs (24.42%). The diagnostic ratio method and positive matrix factorization revealed that the PAH sources in Bengbu in spring and summer were industrial emissions, coal and biomass combustion, and traffic emissions; while the sources in autumn and winter were coal and biomass combustion and traffic emissions. According to a backward trajectory clustering analysis and potential source contribution function analysis, Bengbu City was mainly affected by pollution from the northern and northwestern regions in spring, autumn, and winter, while it was more affected by the coastal monsoon in summer. The PAH pollution in Bengbu was most severe in spring, autumn, and winter, and the health risk to the population was also most severe at that time. The health risk to adult males (3.35 × 10-4) was greater than the risk to adult females (3.14 × 10-4), and the health risk to adults was greater than the risk to children (2.52 × 10-4).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Quan Zhen
- School of Public Health, Bengbu Medical University, Bengbu, China
| |
Collapse
|
3
|
Amarandei C, Negru AG, Iancu C, Olariu RI, Arsene C. Seasonality, sources apportionment, human health risks assessments, and potential implications on the atmospheric chemistry of polycyclic aromatic hydrocarbons in size-segregated aerosols from a Romanian metropolitan area. CHEMOSPHERE 2024; 368:143738. [PMID: 39542375 DOI: 10.1016/j.chemosphere.2024.143738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Urbanization and industrialization are important transformations shaping the current statement of the society, enhancing significantly the combustion emissions which are threatening the global climate system, air quality, and human health. These emissions contain polycyclic aromatic hydrocarbons (PAHs) which are well known for their high toxicity. The present study is the first assessing the seasonal variation of 17 PAHs in size segregated fractions of atmospheric aerosol particles from a Romanian metropolitan area. In addition to sources apportionment and health risks, the potential role of PAHs on the atmospheric chemistry in the area was also addressed. Higher PAHs concentrations were determined in winter season, the highest values being quantified for benzo[b]fluoranthene, benzo[a]pyrene, and indeno[1,2,3-cd]pyrene. Each analyzed PAH exhibited a dominant peak in the accumulation mode (0.1-1.0 μm), with maxima at 381 nm. Gasoline combustion was identified as a significant contributor to the PAHs levels in the atmospheric aerosols from the area. Biomass-burning contributions were highlighted during the winter and autumn seasons. The positive matrix factorization (PMF) model apportioned four PAHs sources, as follows: vehicular (31%), mixed combustion (33%), biomass and wood burning (19%), and coal and natural gas combustion (18%) sources. Concentration-weighted trajectory (CWT) analysis method revealed clear contributions to PAHs abundances from local and regional air masses. Alveolar region of adults seems to have the highest susceptibility for PAHs deposition. Values exceeding acceptable limits for carcinogenic risk throughout the year are associated with benzo[a]pyrene, benzo[b]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[a]anthracene etc. The present study can be considered as a reference in the region in order measures of mitigation and control for PAHs emission sources to be introduced.
Collapse
Affiliation(s)
- Cornelia Amarandei
- "Alexandru Ioan Cuza" University of Iasi, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), 11 Carol I, 700506, Iasi, Romania
| | - Alina Giorgiana Negru
- "Alexandru Ioan Cuza" University of Iasi, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), 11 Carol I, 700506, Iasi, Romania
| | - Cristina Iancu
- "Alexandru Ioan Cuza" University of Iasi, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Faculty of Chemistry, 11 Carol I, 700506, Iasi, Romania
| | - Romeo Iulian Olariu
- "Alexandru Ioan Cuza" University of Iasi, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Faculty of Chemistry, 11 Carol I, 700506, Iasi, Romania
| | - Cecilia Arsene
- "Alexandru Ioan Cuza" University of Iasi, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Faculty of Chemistry, 11 Carol I, 700506, Iasi, Romania.
| |
Collapse
|
4
|
Duan H, Wang Y, Shen H, Ren C, Li J, Li J, Wang Y, Su Y. Source-specific probabilistic health risk assessment of dust PAHs in urban parks based on positive matrix factorization and Monte Carlo simulation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:451. [PMID: 39316207 DOI: 10.1007/s10653-024-02236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Understanding the health risks of polycyclic aromatic hydrocarbons (PAHs) in dust from city parks and prioritizing sources for control are essential for public health and pollution management. The combination of Source-specific and Monte Carlo not only reduces management costs, but also improves the accuracy of assessments. To evaluate the sources of PAHs in urban park dust and the possible health risks caused by different sources, dust samples from 13 popular parks in Kaifeng City were analyzed for PAHs using gas chromatograph-mass spectrometer (GC-MS). The results showed that the surface dust PAH content in the study area ranged from 332.34 µg·kg-1 to 7823.03 µg·kg-1, with a mean value of 1756.59 µg·kg-1. Nemerow Composite Pollution Index in the study area ranged from 0.32 to 14.41, with a mean of 2.24, indicating that the overall pollution warrants attention. Four pollution sources were identified using the positive matrix factorization (PMF) model: transportation source, transportation-coal and biomass combustion source, coke oven emission source, and petroleum source, with contributions of 33.74%, 25.59%, 22.14%, and 18.54%, respectively. The Monte Carlo cancer risk simulation results indicated that park dust PAHs pose a potential cancer risk to all three populations (children, adult male and adult female). Additionally, the cancer risk for children was generally higher than that for adult males and females, with transportation sources being the main contributor to the carcinogenic risk. Lastly, sensitivity analyses results showed that the toxic equivalent concentration (CS) is the parameter contributing the most to carcinogenic risk, followed by Exposure duration (ED).
Collapse
Affiliation(s)
- Haijing Duan
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yanfeng Wang
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Haoxin Shen
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Chong Ren
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Jing Li
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Jiaheng Li
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yangyang Wang
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yanxia Su
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China.
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
5
|
Wu C, Huang F, Wei L, Yi S, Wu Y, Huang Z, Yi M, Li F. Do the residual metals in multiple environmental media surrounding mines pose ecological and health risks? A case of an abandoned mining area in central south China. ENVIRONMENTAL RESEARCH 2024; 257:119279. [PMID: 38821461 DOI: 10.1016/j.envres.2024.119279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Despite effective mining environmental regulations, residual metal pollution persists, leading to significant ecological harm and posing substantial risks to human well-being. This study employed multiple-criteria methods to investigate the ecological and health risks caused by metals in multiple environmental media (e.g., arable soil, indoor dust, PM10, homegrown vegetables, and rice) around abandoned mine areas (MA) in central south China. The study also aimed to identify predominant risk factors and the main exposure pathway. The findings revealed that metal levels and risks in the environmental media surrounding the MA were significantly higher than those in the control areas (away from abandoned mines, CA). This indicates that the accumulation of metals in the environmental media surrounding the MA was attributed to the previous mining activities. Variations in metal content were observed among different environmental media in MA, with Cd from mining source being the primary pollutant in arable soil, indoor dust, PM10, and vegetables, while As from agricultural source was the main pollutant in rice. Additionally, the consumption of Cd-contaminated vegetables and As-contaminated rice emerged as the primary routes of health hazards for the local population, leading to significant non-carcinogenic and carcinogenic risks. Consequently, it is imperative for the government and mining companies to promptly establish risk control and remedial strategies for mitigating residual metal levels in multiple environmental media surrounding the MA.
Collapse
Affiliation(s)
- Chen Wu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan, 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Fenglian Huang
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha, 410014, China; Changsha Environmental Protection Vocational College, Changsha, 410004, China
| | - Lanlan Wei
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan, 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Shengwei Yi
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan, 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Yujun Wu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan, 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Zhongting Huang
- Changsha Environmental Protection Vocational College, Changsha, 410004, China
| | - Min Yi
- Hunan Ecological and Environmental Monitoring Center, Changsha, 410014, China
| | - Feng Li
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan, 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
6
|
Tripathi DP, Nema AK. Assessment of metals and metalloids agglutinated to airborne suspended particulate matter in selected plant species during the pre-and post-monsoon in the urban area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124300. [PMID: 38848956 DOI: 10.1016/j.envpol.2024.124300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
The elemental accumulation has emerged as a major environmental concern due to various anthropogenic sources such as vehicles, road dust, and industrial activities, contributing to the agglutination of elements to airborne Suspended Particulate Matter (SPM). SPM-bound elements accumulate on plant surfaces impact air quality and human health due to their noxiousness. Therefore, plants' ability to capture and mitigate air pollutants plays a crucial role in urban areas. This study aimed to investigate the levels and distribution of twenty-six elements, comprised of heavy metals (Cd, Pb, Cr, Cu Zn, Co, Ni, Fe, Mn, Ag, Mo, V, Ga, and Bi), light metals (B, As, Te, and Se), and metalloids (Al, Li, Sr, K, Mg, Na, Ca, and Ba) accumulated on the surface and inside the leaves of dominant plant species during the pre-and post-monsoon at six categorized (commercial, traffic-prone, residential, educational, greenbelt and industrial areas) locations in Delhi, India. In addition, the Metal Accumulation Index (MAI) was determined, and the statistical analysis was conducted using two-way ANOVA, Principal Component Analysis (PCA), and Hierarchical Cluster Analysis (HCA). In the pre-and post-monsoon, two-way ANOVA revealed significant differences (P < 0.05) in metal concentrations. During the pre-monsoon plants exhibited the highest metal accumulation (∼21%) at the Anand Vihar (commercial) in Delhi, with the maximum average concentrations of Cr (118.25 mg/kg), Cu (204.38 mg/kg), Zn (293.27 mg/kg), and Fe (2721.17 mg/kg). Ficus benghalensis L exhibited the maximum 213.73 MAI at the Anand Vihar in the pre-monsoon. Ni and Cr indicated the highest correlation (P < 0.05, r = 0.82) in the PCA test. HCA test revealed similarity (∼87.7%) at ITO (traffic-prone) and Okhla Phase-2 (industrial) in F. religiosa regarding metal concentration patterns. Findings highlighted seasonal elemental pollutants uptake dynamics of plant species and explored species-specific metal accumulation, revealing potential implications of metal-tolerant plants for urban greenbelt.
Collapse
Affiliation(s)
- Durga Prasad Tripathi
- Department of Civil Engineering, Indian Institute of Technology Delhi, Delhi, India, 110016
| | - Arvind Kumar Nema
- Department of Civil Engineering, Indian Institute of Technology Delhi, Delhi, India, 110016.
| |
Collapse
|
7
|
Deng W, Wen M, Wang C, Huang J, Zhang S, Ma S, Xiong J, Wang W, Zhang X, An T. Atmospheric occurrences and health risk assessment of polycyclic aromatic hydrocarbons and their derivatives in a typical coking facility and surrounding areas. CHEMOSPHERE 2023; 341:139994. [PMID: 37652242 DOI: 10.1016/j.chemosphere.2023.139994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Coking facilities release large quantities of polycyclic aromatic hydrocarbons (PAHs) and their derivatives into the ambient air. Here we examined the profiles, spatial distributions, and potential sources of atmospheric PAHs and their derivatives in an industrial coking plant and its surrounding environment (gaseous and particulate). The mean concentrations of PAHs, nitrated PAHs (NPAHs), chlorinated PAHs (ClPAHs), and brominated PAHs (BrPAHs) in the air of the coking facility were 923, 23.8, 16.7 and 4.25 ng m-³, respectively, 1-2 orders of magnitude higher than those in the surrounding area and the control area. Linear regressions between contaminant concentrations and distance from the coking facility suggested that the concentrations of PAHs (r2 = 0.82, p < 0.05), NPAHs (r2 = 0.77, p < 0.01), and BrPAHs (r2 = 0.62, p < 0.01) were negatively correlated with distance. Additionally, the particle-bound fractions of PAHs and their derivatives were significantly correlated with their molecular weights (p < 0.01). Based on the calculation of the gas/particle partitioning coefficients (log KP) for PAHs and their derivatives and the corresponding subcooled liquid vapor pressures (log PL), the slope values for PAHs, NPAHs, ClPAHs, and BrPAHs ranged from -1 to -0.6, indicating that deposition of PAHs and their derivatives occurred through both adsorption and absorption. Five emissions sources were identified by positive matrix factorization (PMF), including coking emissions, oil pollution, industrial and combustion sources, secondary formation, and traffic emissions, with coking emissions accounting for more than 50% of total emissions. Furthermore, the results of the health risks assessment suggested that atmospheric PAHs and their derivatives in the coke plant and surrounding area negatively impacted human health.
Collapse
Affiliation(s)
- Weiqiang Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Meicheng Wen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Chao Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jin Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shu Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jukun Xiong
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
8
|
Cheng Y, Kong D, Ci M, Guan Y, Luo C, Zhang X, Gao F, Li M, Deng G. Oxidative Stress Effects of Multiple Pollutants in an Indoor Environment on Human Bronchial Epithelial Cells. TOXICS 2023; 11:251. [PMID: 36977016 PMCID: PMC10051724 DOI: 10.3390/toxics11030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Benzene, toluene, and xylene (denoted as BTX) are normally used in coatings, sealants, curing agents and other home decoration products, which can cause harm to human health. However, traditional studies mostly focus on the toxicity evaluation of a single pollution source, and little attention has been paid to the toxicity reports of multiple pollutants in a complex system. To evaluate the impact of indoor BTX on human health at the cellular level, the oxidative stress effect of BTX on human bronchial epithelial cells was assessed, including cell cytotoxicity, intracellular ROS, cell mitochondrial membrane potential, cell apoptosis, and CYP2E1 expression. The concentrations of BTX introduced into the human bronchial epithelial cell culture medium were determined based on both the tested distribution in 143 newly decorated rooms and the limited concentrations in the indoor air quality (denoted as IAQ) standards. Our study showed that the concentration in line with the standard limit may still pose a serious risk to health. The cellular biology effect studies of BTX showed that BTX, even at concentrations lower than the national standard limit, can still induce observable oxidative stress effects which warrant attention.
Collapse
Affiliation(s)
- Yao Cheng
- State Key Laboratory of Building Safety and Environment, China Academy of Building Research, Beijing 100013, China
| | - Dexuan Kong
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Ci
- China National Accreditation Insitute of Conformity Assessment, Beijing 100010, China
| | - Yunlong Guan
- State Key Laboratory of Building Safety and Environment, China Academy of Building Research, Beijing 100013, China
| | - Changyi Luo
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xianglan Zhang
- State Key Laboratory of Building Safety and Environment, China Academy of Building Research, Beijing 100013, China
| | - Fuping Gao
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Min Li
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Gaofeng Deng
- State Key Laboratory of Building Safety and Environment, China Academy of Building Research, Beijing 100013, China
| |
Collapse
|
9
|
Zhang B, Wei W, Zhu H, Liu X, Lv L, Chen H. Polycyclic aromatic hydrocarbons in soils of Central Plains Urban Agglomeration, China: The bidirectional effects of urbanization and anthropogenic activities. ENVIRONMENTAL RESEARCH 2022; 214:113930. [PMID: 35868582 DOI: 10.1016/j.envres.2022.113930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
To investigate the variations in environmental behavior (levels, distribution, sources, and soil toxicity) of polycyclic aromatic hydrocarbons (PAHs) under the impact of anthropogenic activities during the urbanization process, we collected soil samples from 195 sites in the Central Plains Urban Agglomeration (CPUA), North China, and analyzed 16 U.S. Environmental Protection Agency (EPA) PAH priority pollutants. We divided the sampling sites into three groups (urban area, industrial area, and farmland) and collected soil samples (0-20 cm surface layer). ∑16PAHs concentrations in the soils of the urban area, industrial area, and farmland ranged from 24.2 to 4400 ng/g, 12.3-8780 ng/g, and 20.9-852 ng/g (the average value of 349, 634, and 186 ng/g), respectively. The 4 to 5 ring PAHs were dominant compounds in three soil types, accounting for 65-80% of the ∑16PAHs. The results of the source analysis showed that the PAHs in the soils of CPUA were mainly from energy consumption. PAH levels in urban and industrial soils had a potential low cancer risk. The impact of urbanization on PAHs in the soil was bidirectional. On the one hand, the level of PAHs in the farmland soil might increase due to burning coal and agricultural machinery, which releases diesel or petrol fumes. On the other hand, in the urbanization process, the PAH content in urban soil and industrial soil showed a downward trend due to the implementation of environmental protection policies in China, which have reduced the atmospheric input of PAHs into the soil.
Collapse
Affiliation(s)
- Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan Province, People's Republic of China.
| | - Wenhao Wei
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Huina Zhu
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Xiaolong Liu
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Lina Lv
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Hanyu Chen
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| |
Collapse
|
10
|
Faridi S, Yousefian F, Roostaei V, Harrison RM, Azimi F, Niazi S, Naddafi K, Momeniha F, Malkawi M, Moh'd Safi HA, Rad MK, Hassanvand MS. Source apportionment, identification and characterization, and emission inventory of ambient particulate matter in 22 Eastern Mediterranean Region countries: A systematic review and recommendations for good practice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119889. [PMID: 35932896 DOI: 10.1016/j.envpol.2022.119889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/16/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Little is known about the main sources of ambient particulate matter (PM) in the 22 Eastern Mediterranean Region (EMR) countries. We designed this study to systematically review all published and unpublished source apportionment (SA), identification and characterization studies as well as emission inventories in the EMR. Of 440 articles identified, 82 (11 emission inventory ones) met our inclusion criteria for final analyses. Of 22 EMR countries, Iran with 30 articles had the highest number of studies on source specific PM followed by Pakistan (n = 15 articles) and Saudi Arabia (n = 8 papers). By contrast, there were no studies in Afghanistan, Bahrain, Djibouti, Libya, Somalia, Sudan, Syria, Tunisia, United Arab Emirates and Yemen. Approximately 72% of studies (51) were published within a span of 2015-2021.48 studies identified the sources of PM2.5 and its constituents. Positive matrix factorization (PMF), principal component analysis (PCA) and chemical mass balance (CMB) were the most common approaches to identify the source contributions of ambient PM. Both secondary aerosols and dust, with 12-51% and 8-80% (33% and 30% for all EMR countries, on average) had the greatest contributions in ambient PM2.5. The remaining sources for ambient PM2.5, including mixed sources (traffic, industry and residential (TIR)), traffic, industries, biomass burning, and sea salt were in the range of approximately 4-69%, 4-49%, 1-53%, 7-25% and 3-29%, respectively. For PM10, the most dominant source was dust with 7-95% (49% for all EMR countries, on average). The limited number of SA studies in the EMR countries (one study per approximately 9.6 million people) in comparison to Europe and North America (1 study per 4.3 and 2.1 million people respectively) can be augmented by future studies that will provide a better understanding of emission sources in the urban environment.
Collapse
Affiliation(s)
- Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Vahid Roostaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Roy M Harrison
- School of Geography Earth and Environmental Science, University of Birmingham, Birmingham, UK; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faramarz Azimi
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sadegh Niazi
- International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Momeniha
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazen Malkawi
- Environmental Health Exposures Centre for Environmental Health Action (CEHA), World Health Organization (WHO), Jordan
| | - Heba Adel Moh'd Safi
- Environmental Health Exposures Centre for Environmental Health Action (CEHA), World Health Organization (WHO), Jordan
| | - Mona Khaleghy Rad
- Environmental Health Exposures Centre for Environmental Health Action (CEHA), World Health Organization (WHO), Jordan
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
From dust to the sources: The first quantitative assessment of the relative contributions of emissions sources to elements (toxic and non-toxic) in the urban roads of Tehran, Iran. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
12
|
Liu W, Mao Y, Hu T, Shi M, Zhang J, Zhang Y, Kong S, Qi S, Xing X. Variation of pollution sources and health effects on air pollution before and during COVID-19 pandemic in Linfen, Fenwei Plain. ENVIRONMENTAL RESEARCH 2022; 213:113719. [PMID: 35753370 PMCID: PMC9225942 DOI: 10.1016/j.envres.2022.113719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Stringent pollution control measures are generally applied to improve air quality, especially in the Spring Festival in China. Meanwhile, human activities are reduced significantly due to nationwide lockdown measures to curtail the COVID-19 spreading in 2020. Herein, to better understand the influence of control measures and meteorology on air pollution, this study compared the variation of pollution source and their health risk during the 2019 and 2020 Spring Festival in Linfen, China. Results revealed that the average concentration of PM2.5 in 2020 decreased by 39.0% when compared to the 2019 Spring Festival. Organic carbon (OC) and SO42- were the primary contributor to PM2.5 with the value of 19.5% (21.1%) and 23.5% (25.5%) in 2019 (2020) Spring Festival, respectively. Based on the positive matrix factorization (PMF) model, six pollution sources of PM2.5 were indicated. Vehicle emissions (VE) had the maximum reduction in pollution source concentration (28.39 μg· m-3), followed by dust fall (DF) (11.47 μg· m-3), firework burning (FB) (10.39 μg· m-3), coal combustion (CC) (8.54 μg· m-3), and secondary inorganic aerosol (SIA) (3.95 μg· m-3). However, the apportionment concentration of biomass burning (BB) increased by 78.7%, indicating a significant increase in biomass combustion under control measures. PAHs-lifetime lung cancer risk (ILCR) of VE, CC, FB, BB, and DF, decreased by 44.6%, 43.2%, 34.1%, 21.3%, and 2.0%, respectively. Additionally, the average contribution of meteorological conditions on PM2.5 in 2020 increased by 20.21% compared to 2019 Spring Festival, demonstrating that meteorological conditions played a crucial role in located air pollution. This study revealed that the existing control measures in Linfen were efficient to reduce air pollution and health risk, whereas more BB emissions were worthy of further attention. Furthermore, the result was conducive to developing more effective control measures and putting more attention into unfavorable meteorological conditions in Linfen.
Collapse
Affiliation(s)
- Weijie Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yao Mao
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Tianpeng Hu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Mingming Shi
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jiaquan Zhang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yuan Zhang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Shaofei Kong
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Shihua Qi
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Xinli Xing
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China.
| |
Collapse
|
13
|
Jiang Q, Zhang X, Liu T, Shi J, Gu X, Xiao J, Fang J. Assessment of the temporal variability and health risk of atmospheric particle-phase polycyclic aromatic hydrocarbons in a northeastern city in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64536-64546. [PMID: 35471760 DOI: 10.1007/s11356-022-20378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
In this study, we examined the sources and temporal variability of 16 polycyclic aromatic hydrocarbons (PAHs) found in fine particulate matter (PM2.5) in a typical industrial city in northern China. We also evaluated the incremental lifetime cancer risk (ILCR) from the inhalation of these PAHs. Atmospheric PM2.5 samples were collected for 7 consecutive days each month from 2014 to 2019, and the 16 PAHs were measured using multiplex gas chromatography-tandem mass spectrometry. The carcinogenic risk of PAH exposure was assessed using the inhalation unit risk (IUR) and cancer slope factor (CSF) methods. The annual average concentrations of PM2.5 for each year from 2014 to 2019 were 102.87±55.25, 86.92±60.43, 69.17±37.74, 58.20±59.15, 56.01±34.52, and 52.54±58.15 µg m-3, and the annual average ΣPAH concentrations were 56.03±81.09, 47.99±79.30, 40.41±57.31, 33.57±51.79, 43.23±74.80, and 25.20±50.91 ng m-3, respectively. Source identification, using diagnostic ratio analysis, indicated that the major PAH sources were coal/biomass combustion, fuel combustion, and traffic emissions. A health risk assessment showed that the ILCR from PAH inhalation decreased throughout the study period and varied with age. The IUR and CSF methods both showed that the adult ILCR exceeded 1.0×10-6. These findings demonstrate the importance of addressing the carcinogenic risk of PM2.5-bound PAHs, particularly in adults.
Collapse
Affiliation(s)
- Qizheng Jiang
- Hebei University of Science & Technology, No. 26 Yuxiangjie, Yuhua District, Shijiazhuang, 050018, China
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xianhui Zhang
- Jinan Center for Disease Control and Prevention, Jinan, 250021, China
| | - Tong Liu
- Harbin Center for Disease Control and Prevention, Harbin, 150056, China
| | - Jie Shi
- Harbin Center for Disease Control and Prevention, Harbin, 150056, China
| | - Xiaolin Gu
- Harbin Center for Disease Control and Prevention, Harbin, 150056, China
| | - Jieying Xiao
- Hebei University of Science & Technology, No. 26 Yuxiangjie, Yuhua District, Shijiazhuang, 050018, China.
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| |
Collapse
|
14
|
Živančev J, Antić I, Buljovčić M, Đurišić-Mladenović N. A case study on the occurrence of polycyclic aromatic hydrocarbons in indoor dust of Serbian households: Distribution, source apportionment and health risk assessment. CHEMOSPHERE 2022; 295:133856. [PMID: 35122819 DOI: 10.1016/j.chemosphere.2022.133856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
This study was conducted in order to obtain the first insight into the occurrence, potential sources, and health risks of polycyclic aromatic hydrocarbons (PAHs) in indoor dust. Samples (n = 47) were collected from households in four settlements in the northern Serbian province of Vojvodina. Total concentrations of 16 EPA priority PAHs in the dust samples varied from 140 to 8265 μg kg-1. Mean and median values for all samples were 1825 and 1404 μg kg-1, respectively. According to the international guidelines for indoor environment, PAH content can be regarded as normal (<500 μg kg-1) for ∼6% of the samples, high (500-5000 μg kg-1) for ∼87% of the samples, and very high (5000-50000 μg kg1) for ∼6% of the samples. In all settlements, PAHs with 4 rings were the most prevalent (accounting for 40-53% of the total PAHs). They were followed by 3-ringed PAHs (29-40%), which indicates rather uniform PAH profiles in the analyzed dust. Based on diagnostic ratios, principal component analysis (PCA), and positive matrix factorization (PMF), pyrogenic sources, such as vehicle emissions and wood combustion were the dominant sources of PAHs in analyzed samples. Health risk assessment, which included incidental ingesting, inhaling and skin contact with PAHs in the analyzed dust, was evaluated by using the incremental lifetime cancer risk (ILCR) model. Median total ILCR was 3.88E-04 for children, and 3.73E-04 for adults. Results revealed that major contribution to quite high total ILCRs was brought by dermal contact and ingestion. Total cancer risk for indoor dust indicated that 85% of the studied locations exceeded 10-4. This implies risk of high concern, with potential adverse health effects. The results are valuable for future observation of PAHs in indoor environment. They are also useful for regional authorities who can use them to create policies which control sources of pollution.
Collapse
Affiliation(s)
- Jelena Živančev
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia.
| | - Igor Antić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Maja Buljovčić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Nataša Đurišić-Mladenović
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| |
Collapse
|
15
|
Spatial occurrence and sources of PAHs in sediments drive the ecological and health risk of Taihu Lake in China. Sci Rep 2022; 12:3668. [PMID: 35256642 PMCID: PMC8901641 DOI: 10.1038/s41598-022-07507-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/16/2022] [Indexed: 11/11/2022] Open
Abstract
To study the spatial occurrence, sources, and ecological risks of 16 PAHs, surface sediments had been collected from seven major areas of Taihu Lake, China in April 2021. Results showed that the concentrations of ∑16PAHs varied between 1381.48 and 4682.16 ng g−1, and the contents of BghiP in each sample were the highest. The PAHs concentrations in the sediments near the lakeshore were much higher than those in the central area of the lake. The sedimentary ∑16PAHs were mainly composed of molecular-weight monomers and 4-ring PAHs showed superiority (35.69–45.02%). According to the ratio of PAH monomer, the sedimentary PAHs in Taihu Lake were dominantly derived from the combustion. Through the biological toxicity assessment and the BaP equivalent (BaPE), great biological risks of PAHs monomers i.e. DahA and IcdP were found. Both concentrations of ∑16PAHs and dominant 4–6-ring monomers accompanied by carcinogenic risks in many areas of Taihu Lake increased. It is necessary to strengthen monitoring and take measures to control the input of organic pollutants.
Collapse
|