1
|
Murphy MS, Abdulaziz KE, Lavigne É, Erwin E, Guo Y, Dingwall-Harvey AL, Stieb D, Walker MC, Wen SW, Shin HH. Association between prenatal air pollutant exposure and autism spectrum disorders in young children: A matched case-control study in Canada. ENVIRONMENTAL RESEARCH 2024; 261:119706. [PMID: 39084506 DOI: 10.1016/j.envres.2024.119706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The direction and magnitude of association between maternal exposure to ambient air pollutants across gestational windows and offspring risk of autism spectrum disorders (ASD) remains unclear. We sought to evaluate the time-varying effects of prenatal air pollutant exposure on ASD. We conducted a matched case-control study of singleton term children born in Ontario, Canada from 1-Apr-2012 to 31-Dec-2016. Provincial birth registry data were linked with applied behavioural analysis services and ambient air pollutant datasets to ascertain prenatal exposure to nitrogen dioxide (NO2), ground-level ozone (O3), fine particulate matter (PM2.5), and ASD diagnoses. Covariate balance between cases and controls was established using coarsened exact matching. Conditional logistic regression was used to assess the association between prenatal air pollutant exposure and ASD. Distributed lag non-linear models (DLNM) were used to examine the effects of single-pollutant exposure by prenatal week. Sensitivity analyses were conducted to assess the impact of exposure period on the observed findings. The final sample included 1589 ASD cases and 7563 controls. Compared to controls, cases were more likely to be born to mothers living in urban areas, delivered by Caesarean section, and assigned male sex at birth. NO2 was a consistent and significant contributor to ASD risk after accounting for co-exposure to O3, PM2.5 and covariates. The odds ratio per interquartile range increase was 2.1 (95%CI 1.8-2.3) pre-conception, 2.2 (2.0-2.5) for the 1st trimester, 2.2 (1.9-2.5) for the 2nd trimester, and 2.1 (1.9-2.4) for the 3rd trimester. In contrast, findings for O3 and PM2.5 with ASD were inconsistent. Findings from DLNM and sensitivity analyses were similar. Exposure to NO2 before and during pregnancy was significantly associated with ASD in offspring. The relationship between prenatal O3 and PM2.5 exposure and ASD remains unclear. Further investigation into the combined effects of multi-pollutant exposure on child neurodevelopment is warranted.
Collapse
Affiliation(s)
- Malia Sq Murphy
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kasim E Abdulaziz
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Better Outcomes Registry & Network (BORN) Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Éric Lavigne
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Erica Erwin
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Better Outcomes Registry & Network (BORN) Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Yanfang Guo
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Better Outcomes Registry & Network (BORN) Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Alysha Lj Dingwall-Harvey
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - David Stieb
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Mark C Walker
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Better Outcomes Registry & Network (BORN) Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada; Department of Obstetrics, Gynecology & Newborn Care, Ottawa, Canada; International and Global Health Office, University of Ottawa, Ottawa, Canada
| | - Shi Wu Wen
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada; Department of Obstetrics, Gynecology & Newborn Care, Ottawa, Canada
| | - Hwashin Hyun Shin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada; Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
2
|
Knox B, Güil-Oumrait N, Basagaña X, Cserbik D, Dadvand P, Foraster M, Galmes T, Gascon M, Dolores Gómez-Roig M, Gómez-Herrera L, Småstuen Haug L, Llurba E, Márquez S, Rivas I, Sunyer J, Thomsen C, Julia Zanini M, Bustamante M, Vrijheid M. Prenatal exposure to per- and polyfluoroalkyl substances, fetoplacental hemodynamics, and fetal growth. ENVIRONMENT INTERNATIONAL 2024; 193:109090. [PMID: 39454342 DOI: 10.1016/j.envint.2024.109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/25/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION The impact of legacy per- and polyfluoroalkyl substances (PFAS) on fetal growth has been well studied, but assessments of next-generation PFAS and PFAS mixtures are sparse and the potential role of fetoplacental hemodynamics has not been studied. We aimed to evaluate associations between prenatal PFAS exposure and fetal growth and fetoplacental hemodynamics. METHODS We included 747 pregnant women from the BiSC birth cohort (Barcelona, Spain (2018-2021)). Twenty-three PFAS were measured at 32 weeks of pregnancy in maternal plasma, of which 13 were present above detectable levels. Fetal growth was measured by ultrasound, as estimated fetal weight at 32 and 37 weeks of gestation, and weight at birth. Doppler ultrasound measurements for uterine (UtA), umbilical (UmA), and middle cerebral artery (MCA) pulsatility indices (PI), as well as the cerebroplacental ratio (CPR - ratio MCA to UmA), were obtained at 32 weeks to assess fetoplacental hemodynamics. We applied linear mixed effects models to assess the association between singular PFAS and longitudinal fetal growth and PI, and Bayesian Weighted Quantile Sum models to evaluate associations between the PFAS mixture and the aforementioned outcomes, controlled for the relevant covariates. RESULTS Single PFAS and the mixture tended to be associated with reduced fetal growth and CPR PI, but few associations reached statistical significance. Legacy PFAS PFOS, PFHpA, and PFDoDa were associated with statistically significant decreases in fetal weight z-score of 0.13 (95%CI (-0.22, -0.04), 0.06 (-0.10, 0.01), and 0.05 (-0.10, 0.00), respectively, per doubling of concentration. The PFAS mixture was associated with a non-statistically significant 0.09 decrease in birth weight z-score (95%CI -0.22, 0.04) per quartile increase. CONCLUSION This study suggests that legacy PFAS may be associated with reduced fetal growth, but associations for next generation PFAS and for the PFAS mixture were less conclusive. Associations between PFAS and fetoplacental hemodynamics warrant further investigation.
Collapse
Affiliation(s)
- Bethany Knox
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Nuria Güil-Oumrait
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Dora Cserbik
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Maria Foraster
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Toni Galmes
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Mireia Gascon
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Manresa, Spain.
| | - Maria Dolores Gómez-Roig
- BCNatal, Fetal Medicine Research Center, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS), RD21/0012/0003, Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
| | - Laura Gómez-Herrera
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Line Småstuen Haug
- Norwegian Institute of Public Health (NIPH), Department of Food Safety, Oslo, Norway.
| | - Elisa Llurba
- Department of Obstetrics and Gynaecology. Institut d'Investigació Biomèdica Sant Pau - IIB Sant Pau. Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases d Developof Perinatal anmental Origin Network (RICORS), RD21/0012/0001, Instituto de Salud Carlos III, Madrid, Spain.
| | - Sandra Márquez
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Ioar Rivas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Cathrine Thomsen
- Norwegian Institute of Public Health (NIPH), Department of Food Safety, Oslo, Norway.
| | - Maria Julia Zanini
- BCNatal, Fetal Medicine Research Center, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS), RD21/0012/0003, Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Zhang WX, Strodl E, Yang WK, Yin XN, Wen GM, Sun DL, Xian DX, Zhao YF, Chen WQ. Combination effects of environmental tobacco smoke exposure and nutrients supplement during pregnancy on obesity in Chinese preschool children. Front Pediatr 2024; 12:1423556. [PMID: 39346637 PMCID: PMC11427257 DOI: 10.3389/fped.2024.1423556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Objective This study aimed to explore the combination effects of prenatal exposure to environment tobacco smoke (ETS) and nutrients supplement during pregnancy on childhood obesity in preschoolers. Methods A cross-sectional study was conducted with 58,814 child-mother dyads from 235 kindergartens in Longhua District of Shenzhen, China in 2021. A self-administered structured questionnaire was completed by mothers to collect socio-demographic characteristics, prenatal ETS exposure, and nutrients supplement in pregnancy, and preschoolers' heights and weights were measured at the same time. After controlling for potential confounding variables, logistic regression models and cross-analyses were used to examine the independent and combination effects of maternal prenatal ETS exposure and nutrients supplementation during pregnancy on obesity in preschool children. Results The results of our study showed that prenatal ETS exposure increased the risk of childhood obesity (AOR = 1.22, 95% CI = 1.11-1.34) in preschoolers. In addition, risk of childhood obesity was significantly higher when mothers didn't take supplements of multivitamins (AOR = 1.12, 95% CI = 1.05-1.20), folic acid (AOR = 1.23, 95% CI = 1.10-1.37) and iron (AOR = 1.11, 95% CI = 1.04-1.19) during pregnancy. The cross-over analysis showed that the combination of prenatal ETS exposure with mothers taking no multivitamins (AOR = 1.40, 95% CI = 1.21-1.62), no folic acid (AOR = 1.55, 95% CI = 1.12-2.14) and no iron (AOR = 1.38, 95% CI = 1.19-1.59) during pregnancy also increased the risk of obesity among Chinese preschoolers. We also discovered additive interactive effects between prenatal ETS exposure and no maternal multivitamin, folic acid and iron supplementation in pregnancy on the risk of obesity in preschoolers. Conclusion The combination of prenatal exposure to ETS with no supplementation of these nutrients might jointly increase the risk of childhood obesity. Public health interventions are needed to reduce prenatal exposure to ETS and to encourage mothers to take appropriate multivitamin, folic acid and iron supplements during pregnancy.
Collapse
Affiliation(s)
- Wen-Xuan Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Esben Strodl
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wei-Kang Yang
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Xiao-Na Yin
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Guo-Min Wen
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Deng-Li Sun
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Dan-Xia Xian
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Ya-Fen Zhao
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Wei-Qing Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Fussell JC, Jauniaux E, Smith RB, Burton GJ. Ambient air pollution and adverse birth outcomes: A review of underlying mechanisms. BJOG 2024; 131:538-550. [PMID: 38037459 PMCID: PMC7615717 DOI: 10.1111/1471-0528.17727] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Epidemiological data provide varying degrees of evidence for associations between prenatal exposure to ambient air pollutants and adverse birth outcomes (suboptimal measures of fetal growth, preterm birth and stillbirth). To assess further certainty of effects, this review examines the experimental literature base to identify mechanisms by which air pollution (particulate matter, nitrogen dioxide and ozone) could cause adverse effects on the developing fetus. It likely that this environmental insult impacts multiple biological pathways important for sustaining a healthy pregnancy, depending upon the composition of the pollutant mixture and the exposure window owing to changes in physiologic maturity of the placenta, its circulations and the fetus as pregnancy ensues. The current body of evidence indicates that the placenta is a target tissue, impacted by a variety of critical processes including nitrosative/oxidative stress, inflammation, endocrine disruption, epigenetic changes, as well as vascular dysregulation of the maternal-fetal unit. All of the above can disturb placental function and, as a consequence, could contribute to compromised fetal growth as well increasing the risk of stillbirth. Furthermore, given that there is often an increased inflammatory response associated with preterm labour, inflammation is a plausible mechanism mediating the effects of air pollution on premature delivery. In the light of increased urbanisation and an ever-changing climate, both of which increase ambient air pollution and negatively affect vulnerable populations such as pregnant individuals, it is hoped that the collective evidence may contribute to decisions taken to strengthen air quality policies, reductions in exposure to air pollution and subsequent improvements in the health of those not yet born.
Collapse
Affiliation(s)
- Julia C. Fussell
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - Eric Jauniaux
- EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, UK
| | - Rachel B. Smith
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
- Mohn Centre for Children’s Health and Wellbeing, School of Public Health, Imperial College London, London, UK
| | - Graham J. Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge
| |
Collapse
|
5
|
Bongaerts E, Nawrot TS, Wang C, Ameloot M, Bové H, Roeffaers MB, Chavatte-Palmer P, Couturier-Tarrade A, Cassee FR. Placental-fetal distribution of carbon particles in a pregnant rabbit model after repeated exposure to diluted diesel engine exhaust. Part Fibre Toxicol 2023; 20:20. [PMID: 37202804 DOI: 10.1186/s12989-023-00531-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/06/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Airborne pollution particles have been shown to translocate from the mother's lung to the fetal circulation, but their distribution and internal placental-fetal tissue load remain poorly explored. Here, we investigated the placental-fetal load and distribution of diesel engine exhaust particles during gestation under controlled exposure conditions using a pregnant rabbit model. Pregnant dams were exposed by nose-only inhalation to either clean air (controls) or diluted and filtered diesel engine exhaust (1 mg/m3) for 2 h/day, 5 days/week, from gestational day (GD) 3 to GD27. At GD28, placental and fetal tissues (i.e., heart, kidney, liver, lung and gonads) were collected for biometry and to study the presence of carbon particles (CPs) using white light generation by carbonaceous particles under femtosecond pulsed laser illumination. RESULTS CPs were detected in the placenta, fetal heart, kidney, liver, lung and gonads in significantly higher amounts in exposed rabbits compared with controls. Through multiple factor analysis, we were able to discriminate the diesel engine exposed pregnant rabbits from the control group taking all variables related to fetoplacental biometry and CP load into consideration. Our findings did not reveal a sex effect, yet a potential interaction effect might be present between exposure and fetal sex. CONCLUSIONS The results confirmed the translocation of maternally inhaled CPs from diesel engine exhaust to the placenta which could be detected in fetal organs during late-stage pregnancy. The exposed can be clearly discriminated from the control group with respect to fetoplacental biometry and CP load. The differential particle load in the fetal organs may contribute to the effects on fetoplacental biometry and to the malprogramming of the fetal phenotype with long-term effects later in life.
Collapse
Affiliation(s)
- Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
- Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35 blok d-box 7001, Leuven, 3000, Belgium.
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, Diepenbeek, 3590, Belgium
| | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Maarten Bj Roeffaers
- Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan, Leuven, 200F-box 2454, 3001, Belgium
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, 78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Misons-Alfort, 94700, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, 78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Misons-Alfort, 94700, France
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, RIVM, PObox1, Bilthoven, 3720 BA, the Netherlands
- Institute for Risk Assessment Sciences, Division Toxicology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|