1
|
Lin Y, Cong N, Xiao J, Kou Y, Li Y, Yu X, Qi G, Gou C, Bai Y, Ren P. Projecting future aboveground carbon sequestration rate of alpine forest on the eastern Tibetan Plateau in response to climate change. FRONTIERS IN PLANT SCIENCE 2023; 14:1212406. [PMID: 37484466 PMCID: PMC10359146 DOI: 10.3389/fpls.2023.1212406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
The aboveground carbon sequestration rate (ACSR) of forests serves as an indicator of their carbon sequestration capacity over time, providing insights into the potential carbon sequestration capacity of forest ecosystems. To explore the long-term Spatiotemporal variation of ACSR in the transitional ecotone of the eastern Tibetan Plateau under climate change scenarios, we utilized a forest landscape model that was parameterized with forest inventory data from the eastern Tibetan Plateau to simulate this ecological function changes. The study found that climate warming had significant effect on forests ACSR in different types of forests. ACSR was significantly reduced (p<0.05) in cold temperate coniferous and temperate coniferous forests, whereas it was significantly increased in deciduous broad-leaved forests. However, the impact of climate warming on evergreen broad-leaved forests was found to be negligible. At the species level, climate warming has mostly suppressed the ACSR of coniferous trees, except for Chinese hemlock. The main dominant species, spruce and fir, have been particularly affected. Conversely, the ACSR of most broad-leaved trees has increased due to climate warming. In addition, at the landscape scale, the ACSR within this region is expected to experience a steady decline after 2031s-2036s. Despite the effects of climate warming, this trend is projected to persist. In conclusion, the forests ACSR in this region will be significantly affected by future climate warming. Our research indicates that climate warming will have a noticeable suppressive effect on conifers. It is imperative that this factor be taken into account when devising forest management plans for the future in this region.
Collapse
Affiliation(s)
- Yang Lin
- Key Lab of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, China
- The Faculty of Geography and Resources Sciences, Sichuan Normal University, Chengdu, China
| | - Nan Cong
- Key Laboratory of Ecosystem Network Observation and Modeling, Lhasa Plateau Ecosystem Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jiangtao Xiao
- Key Lab of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, China
- The Faculty of Geography and Resources Sciences, Sichuan Normal University, Chengdu, China
| | - Yongping Kou
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yuanyuan Li
- Key Lab of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, China
- The Faculty of Geography and Resources Sciences, Sichuan Normal University, Chengdu, China
| | - Xinran Yu
- Key Lab of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, China
- The Faculty of Geography and Resources Sciences, Sichuan Normal University, Chengdu, China
| | - Gang Qi
- Key Lab of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, China
- The Faculty of Geography and Resources Sciences, Sichuan Normal University, Chengdu, China
| | - Chaolong Gou
- Forestry and Grassland Bureau in Mao Country, Aba Tibetan and Qiang Autonomous Prefecture, China
| | - Yongping Bai
- Forestry and Grassland Bureau in Mao Country, Aba Tibetan and Qiang Autonomous Prefecture, China
| | - Ping Ren
- The Faculty of Geography and Resources Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
2
|
Ye C, Wang S, Wang Y, Zhou T, Li R. Impacts of human pressure and climate on biodiversity-multifunctionality relationships on the Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2023; 14:1106035. [PMID: 37332689 PMCID: PMC10270690 DOI: 10.3389/fpls.2023.1106035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/28/2023] [Indexed: 06/20/2023]
Abstract
Many studies have investigated the effects of environmental context on biodiversity or multifunctionality in alpine regions, but it is uncertain how human pressure and climate may affect their relationships. Here, we combined the comparative map profile method with multivariate datasets to assess the spatial pattern of ecosystem multifunctionality and further identify the effects of human pressure and climate on the spatial distribution of biodiversity-multifunctionality relationships in alpine ecosystems of the Qinghai-Tibetan Plateau (QTP). Our results indicate that at least 93% of the areas in the study region show a positive correlation between biodiversity and ecosystem multifunctionality across the QTP. Biodiversity-multifunctionality relationships with increasing human pressure show a decreasing trend in the forest, alpine meadow, and alpine steppe ecosystems, while an opposite pattern was found in the alpine desert steppe ecosystem. More importantly, aridity significantly strengthened the synergistic relationship between biodiversity and ecosystem multifunctionality in forest and alpine meadow ecosystems. Taken together, our results provide insights into the importance of protecting and maintaining biodiversity and ecosystem multifunctionality in response to climate change and human pressure in the alpine region.
Collapse
Affiliation(s)
- Chongchong Ye
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Shuai Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yi Wang
- School of Life Sciences and State Key Lab of Biological Control, Sun Yat-sen University, Guangzhou, China
| | - Tiancai Zhou
- Synthesis Research Centre of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Ruowei Li
- College of Grassland, Resource and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
3
|
Yong Z, Wang Z, Xiong J, Tian J. Tropical volcanic eruptions reduce vegetation net carbon uptake on the Qinghai-Tibet Plateau under background climate conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1122959. [PMID: 37008501 PMCID: PMC10061027 DOI: 10.3389/fpls.2023.1122959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The vegetation carbon uptake plays an important role in the terrestrial carbon cycle on the Qinghai-Tibet Plateau (QTP), while it is extremely sensitive to the impact of natural external forcings. Until now, there is limited knowledge on the spatial-temporal patterns of vegetation net carbon uptake (VNCU) after the force that caused by tropical volcanic eruptions. Here, we conducted an exhaustive reconstruction of VNCU on the QTP over the last millennium, and used a superposed epoch analysis to characterize the VNCU response of the QTP after the tropical volcanic eruptions. We then further investigated the divergent changes of VNCU response across different elevation gradients and vegetation types, and the impact of teleconnection forcing on VNCU after volcanic eruptions. Within a climatic background, we found that VNCU of the QTP tends to decrease after large volcanic eruptions, lasting until about 3 years, with a maximum decrease value occurring in the following 1 year. The spatial and temporal patterns of the VNCU were mainly driven by the post-eruption climate and moderated by the negative phase trends of El Niño-Southern Oscillation and the Atlantic multidecadal oscillation. In addition, elevation and vegetation types were undeniable driving forces associated with VNCU on QTP. Different water-heat conditions and vegetation types contributed to significant differences in the response and recovery processes of VNCU. Our results emphasized the response and recovery processes of VNCU to volcanic eruptions without the strong anthropogenic forcings, while the influence mechanisms of natural forcing on VNCU should receive more attention.
Collapse
Affiliation(s)
- Zhiwei Yong
- School of Geoscience and Technology, Southwest Petroleum University, Chengdu, China
| | - Zegen Wang
- School of Geoscience and Technology, Southwest Petroleum University, Chengdu, China
| | - Junnan Xiong
- School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, China
- Institute of Oil and Gas Spatial Information Engineering, Southwest Petroleum University, Chengdu, China
| | - Jie Tian
- School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, China
| |
Collapse
|
4
|
Elevation dependence of climate effects on ecosystem multifunctionality states over the Qinghai-Tibet Plateau. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
5
|
Analyzing the Spatiotemporal Vegetation Dynamics and Their Responses to Climate Change along the Ya’an–Linzhi Section of the Sichuan–Tibet Railway. REMOTE SENSING 2022. [DOI: 10.3390/rs14153584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vegetation dynamics and their responses to climate change are of significant spatial and temporal heterogeneity. The Sichuan–Tibet Railway (STR) is a major construction project of the 14th Five-Year Plan for Economic and Social Development of the People’s Republic of China that is of great significance to promoting the social and economic development of Sichuan–Tibet areas. The planned railway line crosses areas with a complex geological condition and fragile ecological environment, where the regional vegetation dynamics are sensitive to climate change, topographic conditions and human activities. So, analyzing the vegetation variations in the complex vertical ecosystem and exploring their responses to hydrothermal factors are critical for providing technical support for the ecological program’s implementation along the route of the planned railway line. Based on MOD13Q1 Normalized Difference Vegetation Index (NDVI) data for the growing season (May to October) during 2001–2020, a Theil-Sen trend analysis, Mann–Kendall test, Hurst exponent analysis and partial correlation analysis were used to detect the vegetation dynamics, predict the vegetation sustainability, examine the relationship between vegetation change and hydrothermal factors, regionalize the driving forces for vegetation growth and explore the interannual variation pattern of driving factors. The growing season NDVI along the Ya’an–Linzhi section of the STR showed a marked rate of increase (0.0009/year) during the past 20 years, and the vegetation’s slight improvement areas accounted for the largest proportion (47.53%). Among the three hydrothermal parameters (temperature, precipitation and radiation), the correlation between vegetation growth and the temperature was the most significant, and the vegetation response to precipitation was the most immediate. The vegetation changes were affected by the combined impact of climatic and non-climatic factors, and the proportion of hydrothermal factors’ combined driving force slightly increased during the study period. Based on the Hurst exponent, the future vegetation sustainability of the area along the Ya’an–Linzhi section of the STR faces a risk of degradation, and more effective conservations should be implemented during the railway construction period to protect the regional ecological environment.
Collapse
|
6
|
Jiang S, Li Y, Wang F, Sun H, Wang H, Yao Z. A state-of-the-art review of CO 2 enhanced oil recovery as a promising technology to achieve carbon neutrality in China. ENVIRONMENTAL RESEARCH 2022; 210:112986. [PMID: 35192806 DOI: 10.1016/j.envres.2022.112986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/25/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Although there are some review papers on carbon capture, utilization and storage (CCUS), hardly any of these reviews are focused on the role of CO2 enhanced oil recovery (EOR) in accelerating carbon neutrality in China. In this review, strategies to achieve carbon neutrality is briefly but critically discussed, followed by a review of CO2-EOR as a promising technology. Especially, data analysis, including the number of publications on China's carbon neutrality, per capita CO2 emissions, China's power generation, and the crude oil production of China's large oilfields, is carried out to make the discussion more comprehensive. Given the large amount of coal consumed in China, the high percent of electricity generated with coal, and the slow penetration of renewables already observed, it seems unlikely that 2060 targets will be met without CCUS. In order to achieve carbon neutrality, both reduction in carbon emissions and increase in carbon sequestration are inevitable. Furthermore, it is concluded that CO2 storage through EOR is likely to have a bright future. However, there are some critical issues to be solved, including the technical issues, leakage and safety issues, cost issues, policy issues, etc. In order to turn CO2-EOR into a reliable and more favorable technology, more research and efforts are needed to solve these issues, including advancing carbon capture technologies, improving storage technologies, developing effective monitoring technologies, deploying government support and incentive policies, etc.
Collapse
Affiliation(s)
- Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Yuening Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265, Military Trail, Toronto, Ontario, Canada
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
7
|
Effect of Climate Change on CO 2 Flux in Temperate Grassland, Subtropical Artificial Coniferous Forest and Tropical Rain Forest Ecosystems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413056. [PMID: 34948666 PMCID: PMC8702204 DOI: 10.3390/ijerph182413056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022]
Abstract
The interactions between CO2 flux, an important component of ecosystem carbon flux, and climate change vary significantly among different ecosystems. In this research, the inter-annual variation characteristics of ecosystem respiration (RE), gross ecosystem exchange (GEE), and net ecosystem exchange (NEE) were explored in the temperate grassland (TG) of Xilinhot (2004–2010), the subtropical artificial coniferous forest (SACF) of Qianyanzhou (2003–2010), and the tropical rain forest (TRF) of Xishuangbanna (2003–2010). The main factors of climate change affecting ecosystem CO2 flux were identified by redundancy analysis, and exponential models and temperature indicators were constructed to consider the relationship between climate change and CO2 flux. Every year from 2003 to 2010, RE and GEE first increased and then decreased, and NEE showed no significant change pattern. TG was a carbon source, whereas SACF and TRF were carbon sinks. The influence of air temperature on RE and GEE was greater than that of soil temperature, but the influence of soil moisture on RE and GEE was greater than that of air moisture. Compared with moisture and photosynthetically active radiation, temperature had the greatest impact on CO2 flux and the exponential model had the best fitting effect. In TG and SACF, the average temperature was the most influential factor, and in TRF, the accumulated temperature was the most influential factor. These results provide theoretical support for mitigating and managing climate change and provide references for achieving carbon neutrality.
Collapse
|