1
|
Usemann J, Mozun R, Kuehni CE, de Hoogh K, Flueckiger B, Singer F, Zwahlen M, Moeller A, Latzin P. Air pollution exposure during pregnancy and lung function in childhood: The LUIS study. Pediatr Pulmonol 2024; 59:3178-3189. [PMID: 38980223 PMCID: PMC11601026 DOI: 10.1002/ppul.27169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The adverse effects of high air pollution levels on childhood lung function are well-known. Limited evidence exists on the effects of moderate exposure levels during early life on childhood lung function. We investigated the association of exposure to moderate air pollution during pregnancy, infancy, and preschool time with lung function at school age in a Swiss population-based study. METHODS Fine-scale spatiotemporal model estimates of particulate matter with a diameter <2.5 µm (PM2.5) and nitrogen dioxide (NO2) were linked with residential address histories. We compared air pollution exposures within different time windows (whole pregnancy, first, second, and third trimester of pregnancy, first year of life, preschool age) with forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) measured cross-sectionally using linear regression models adjusted for potential confounders. RESULTS We included 2182 children, ages 6-17 years. Prenatal air pollution exposure was associated with reduced lung function at school age. In children aged 12 years, per 10 µg·m-3 increase in PM2.5 during pregnancy, FEV1 was 55 mL lower (95% CI -84 to -25 mL) and FVC 62 mL lower (95% CI -96 to -28 mL). Associations were age-dependent since they were stronger in younger and weaker in older children. PM2.5 exposure after birth was not associated with reduced lung function. There was no association between NO2 exposure and lung function. CONCLUSION In utero lung development is most sensitive to air pollution exposure, since even modest PM2.5 exposure during the prenatal time was associated with reduced lung function, most prominent in younger children.
Collapse
Affiliation(s)
- Jakob Usemann
- Department of Respiratory MedicineUniversity Children's Hospital ZurichZurichSwitzerland
- University Children's Hospital Basel (UKBB)BaselSwitzerland
- Paediatric Respiratory MedicineChildren's University Hospital of Bern, University of BernBernSwitzerland
| | - Rebeca Mozun
- Institute of Social and Preventive MedicineUniversity of BernBernSwitzerland
- Department of Intensive Care and NeonatologyChildren's Research Centre, University Children's Hospital Zurich, University of ZurichZurichSwitzerland
| | - Claudia E. Kuehni
- Paediatric Respiratory MedicineChildren's University Hospital of Bern, University of BernBernSwitzerland
- Institute of Social and Preventive MedicineUniversity of BernBernSwitzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Benjamin Flueckiger
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Florian Singer
- Department of Respiratory MedicineUniversity Children's Hospital ZurichZurichSwitzerland
- Paediatric Respiratory MedicineChildren's University Hospital of Bern, University of BernBernSwitzerland
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Pulmonology and AllergologyMedical University of GrazGrazAustria
| | - Marcel Zwahlen
- Institute of Social and Preventive MedicineUniversity of BernBernSwitzerland
| | - Alexander Moeller
- Department of Respiratory MedicineUniversity Children's Hospital ZurichZurichSwitzerland
| | - Philipp Latzin
- Paediatric Respiratory MedicineChildren's University Hospital of Bern, University of BernBernSwitzerland
| | | |
Collapse
|
2
|
Sherris AR, Hazlehurst MF, Dearborn LC, Loftus CT, Szpiro AA, Adgent MA, Carroll KN, Day DB, LeWinn KZ, Ni Y, Sathyanarayana S, Wright RJ, Zhao Q, Karr CJ, Moore PE. Prenatal exposure to ambient fine particulate matter and child lung function in the CANDLE cohort. Ann Med 2024; 56:2422051. [PMID: 39492664 PMCID: PMC11536642 DOI: 10.1080/07853890.2024.2422051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 08/09/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Ambient fine particulate matter (PM2.5) exposure adversely impacts child airway health; however, research on prenatal PM2.5 exposure, and child lung function is limited. We investigated these associations in the ECHO-PATHWAYS Consortium, focusing on the role of exposure timing during different phases of fetal lung development. METHODS We included 675 children in the CANDLE cohort born between 2007 and 2011 in Memphis, TN, USA. Prenatal exposure to ambient PM2.5 was estimated using a spatiotemporal model based on maternal residential history and averaged over established prenatal periods of lung development. Forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) were measured by spirometry at age 8-9 years. We used linear regression and Bayesian Distributed Lag Interaction Models (BDLIM) to estimate associations between exposure and lung function z-scores, adjusting for maternal/child characteristics, prenatal/postnatal tobacco exposure, and birth year/season, and evaluating effect modification by child sex and allergic sensitization. RESULTS The average ambient concentration of PM2.5 during pregnancy was 11.1 µg/m3 (standard deviation:1.0 µg/m3). In the adjusted linear regression and BDLIM models, adverse, but not statistically significant, associations were observed between exposure during the pseudoglandular (5-16 weeks of gestation) and saccular (24-36 weeks) phases of lung development and FEV1 and FVC. The strongest association was between a 2 μg/m3 higher concentration of PM2.5 during the saccular phase and FEV1 z-score (-0.176, 95% Confidence Interval [CI]: -0.361, 0.010). The FEV1/FVC ratio was not associated with PM2.5 in any exposure window. No effect modification by child sex or allergic sensitization was observed. CONCLUSIONS We did not find strong evidence of associations between prenatal ambient PM2.5 exposure and child lung function in a large, well-characterized study sample. However, there was a suggested adverse association between FEV1 and exposure during late pregnancy. The saccular phase of lung development might be an important window for exposure to PM2.5.
Collapse
Affiliation(s)
- Allison R. Sherris
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Marnie F. Hazlehurst
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Logan C. Dearborn
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Christine T. Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Adam A. Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Margaret A. Adgent
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kecia N. Carroll
- Department of Pediatrics, Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Drew B. Day
- Department of Child Health, Behavior, and Development, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Kaja Z. LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Yu Ni
- School of Public Health, College of Health and Human Services, San Diego State University, San Diego, CA, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
- Department of Child Health, Behavior, and Development, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Rosalind J. Wright
- Department of Environmental Medicine and Climate Science, Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qi Zhao
- The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Paul E. Moore
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Abellan A, Warembourg C, Mensink-Bout SM, Ambros A, de Castro M, Fossati S, Guxens M, Jaddoe VW, Nieuwenhuijsen MJ, Vrijheid M, Santos S, Casas M, Duijts L. Urban environment during pregnancy and lung function, wheezing, and asthma in school-age children. The generation R study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123345. [PMID: 38219897 DOI: 10.1016/j.envpol.2024.123345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
The urban environment during pregnancy may influence child's respiratory health, but scarce evidence exists on systematic evaluation of multiple urban exposures (e.g., air pollution, natural spaces, noise, built environment) on children's lung function, wheezing, and asthma development. We aimed to examine the association of the urban environment during pregnancy with lung function, preschool wheezing, and school-age asthma. We included 5624 mother-child pairs participating in a population-based prospective birth cohort. We estimated 30 urban environmental exposures including air pollution, road traffic noise, traffic, green spaces, blue spaces, and built environment during pregnancy. At 10 years of age, lung function was measured by spirometry. Information on preschool wheezing and physician-diagnosed school-age asthma was obtained from multiple questionnaires. We described single-exposure associations with respiratory outcomes using an exposome-wide association study. We also identified patterns of urban exposures with hierarchical clustering on principal components analysis and examined their associations with respiratory outcomes using multivariate regression models. Single-exposure analyses showed associations of higher particulate matter (PM) with lower mid-expiratory flow (FEF25-75%) (e.g., for PM < 2.5 μm of diameter [PM2.5] z-score = -0.06 [-0.09, -0.03]) and higher forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) (e.g., for PM2.5 FEV1 0.05 [0.02, 0.08]) after correction for multiple-hypothesis testing. Cluster analysis described three patterns of urban exposures during pregnancy and showed that the cluster characterised by higher levels of air pollution, noise, walkability, street connectivity, and lower levels of natural spaces were associated with lower FEF25-75% (-0.08 [-0.17, 0.00]), and higher odds of preschool wheezing (1.21 [1.03, 1.43]). This study shows that the characteristics of the urban environment during pregnancy are of relevance to the offspring's respiratory health during childhood.
Collapse
Affiliation(s)
- Alicia Abellan
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Charline Warembourg
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Sara M Mensink-Bout
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Albert Ambros
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Montserrat de Castro
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Vincent Wv Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Mark J Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Liesbeth Duijts
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Neonatology, Department of Neonatal and Pediatric Intensive Care, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Dhingra R, Keeler C, Staley BS, Jardel HV, Ward-Caviness C, Rebuli ME, Xi Y, Rappazzo K, Hernandez M, Chelminski AN, Jaspers I, Rappold AG. Wildfire smoke exposure and early childhood respiratory health: a study of prescription claims data. Environ Health 2023; 22:48. [PMID: 37370168 PMCID: PMC10294519 DOI: 10.1186/s12940-023-00998-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Wildfire smoke is associated with short-term respiratory outcomes including asthma exacerbation in children. As investigations into developmental wildfire smoke exposure on children's longer-term respiratory health are sparse, we investigated associations between developmental wildfire smoke exposure and first use of respiratory medications. Prescription claims from IBM MarketScan Commercial Claims and Encounters database were linked with wildfire smoke plume data from NASA satellites based on Metropolitan Statistical Area (MSA). A retrospective cohort of live infants (2010-2016) born into MSAs in six western states (U.S.A.), having prescription insurance, and whose birthdate was estimable from claims data was constructed (N = 184,703); of these, gestational age was estimated for 113,154 infants. The residential MSA, gestational age, and birthdate were used to estimate average weekly smoke exposure days (smoke-day) for each developmental period: three trimesters, and two sequential 12-week periods post-birth. Medications treating respiratory tract inflammation were classified using active ingredient and mode of administration into three categories:: 'upper respiratory', 'lower respiratory', 'systemic anti-inflammatory'. To evaluate associations between wildfire smoke exposure and medication usage, Cox models associating smoke-days with first observed prescription of each medication category were adjusted for infant sex, birth-season, and birthyear with a random intercept for MSA. Smoke exposure during postnatal periods was associated with earlier first use of upper respiratory medications (1-12 weeks: hazard ratio (HR) = 1.094 per 1-day increase in average weekly smoke-day, 95%CI: (1.005,1.191); 13-24 weeks: HR = 1.108, 95%CI: (1.016,1.209)). Protective associations were observed during gestational windows for both lower respiratory and systemic anti-inflammatory medications; it is possible that these associations may be a consequence of live-birth bias. These findings suggest wildfire smoke exposure during early postnatal developmental periods impact subsequent early life respiratory health.
Collapse
Affiliation(s)
- Radhika Dhingra
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, University of North Carolina, 135 Dauer Drive, C.B 7431, Chapel Hill, NC, 27599, USA.
- Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Corinna Keeler
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brooke S Staley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hanna V Jardel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Durham, NC, USA
| | - Cavin Ward-Caviness
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Durham, NC, USA
| | - Meghan E Rebuli
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuzhi Xi
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, University of North Carolina, 135 Dauer Drive, C.B 7431, Chapel Hill, NC, 27599, USA
| | - Kristen Rappazzo
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Durham, NC, USA
| | - Michelle Hernandez
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ann N Chelminski
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Durham, NC, USA
| | - Ilona Jaspers
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ana G Rappold
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Durham, NC, USA
| |
Collapse
|
5
|
Marsal A, Slama R, Lyon-Caen S, Borlaza LJS, Jaffrezo JL, Boudier A, Darfeuil S, Elazzouzi R, Gioria Y, Lepeule J, Chartier R, Pin I, Quentin J, Bayat S, Uzu G, Siroux V. Prenatal Exposure to PM2.5 Oxidative Potential and Lung Function in Infants and Preschool- Age Children: A Prospective Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:17004. [PMID: 36695591 PMCID: PMC9875724 DOI: 10.1289/ehp11155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Fine particulate matter (PM 2.5 ) has been found to be detrimental to respiratory health of children, but few studies have examined the effects of prenatal PM 2.5 oxidative potential (OP) on lung function in infants and preschool children. OBJECTIVES We estimated the associations of personal exposure to PM 2.5 and OP during pregnancy on offspring objective lung function parameters and compared the strengths of associations between both exposure metrics. METHODS We used data from 356 mother-child pairs from the SEPAGES cohort. PM filters collected twice during a week were analyzed for OP, using the dithiothreitol (DTT) and the ascorbic acid (AA) assays, quantifying the exposure of each pregnant woman. Lung function was assessed with tidal breathing analysis (TBFVL) and nitrogen multiple-breath washout (N 2 MBW ) test, performed at 6 wk, and airwave oscillometry (AOS) performed at 3 y. Associations of prenatal PM 2.5 mass and OP with lung function parameters were estimated using multiple linear regressions. RESULTS In neonates, an interquartile (IQR) increase in OP v DTT (0.89 nmol / min / m 3 ) was associated with a decrease in functional residual capacity (FRC) measured by N 2 MBW [β = - 2.26 mL ; 95% confidence interval (CI): - 4.68 , 0.15]. Associations with PM 2.5 showed similar patterns in comparison with OP v DTT but of smaller magnitude. Lung clearance index (LCI) and TBFVL parameters did not show any clear association with the exposures considered. At 3 y, increased frequency-dependent resistance of the lungs (Rrs 7 - 19 ) from AOS tended to be associated with higher OP v DTT (β = 0.09 hPa × s / L ; 95% CI: - 0.06 , 0.24) and OP v AA (IQR = 1.14 nmol / min / m 3 ; β = 0.12 hPa × s / L ; 95% CI: - 0.04 , 0.27) but not with PM 2.5 (IQR = 6.9 μ g / m 3 ; β = 0.02 hPa × s / L ; 95% CI: - 0.13 , 0.16). Results for FRC and Rrs 7 - 19 remained similar in OP models adjusted on PM 2.5 . DISCUSSION Prenatal exposure to OP v DTT was associated with several offspring lung function parameters over time, all related to lung volumes. https://doi.org/10.1289/EHP11155.
Collapse
Affiliation(s)
- Anouk Marsal
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
- Agence de l’environnement et de la Maîtrise de l’Energie, Angers, France
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Sarah Lyon-Caen
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Lucille Joanna S. Borlaza
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Jean-Luc Jaffrezo
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Anne Boudier
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
| | - Sophie Darfeuil
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Rhabira Elazzouzi
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Yoann Gioria
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Johanna Lepeule
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Ryan Chartier
- RTI International, Research Triangle Park, North Carolina, USA
| | - Isabelle Pin
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
| | - Joane Quentin
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Inserm UA07 STOBE Laboratory, Grenoble, France
| | - Gaëlle Uzu
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Valérie Siroux
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - the SEPAGES cohort study group
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Inserm UA07 STOBE Laboratory, Grenoble, France
- RTI International, Research Triangle Park, North Carolina, USA
- Agence de l’environnement et de la Maîtrise de l’Energie, Angers, France
| |
Collapse
|
6
|
Carraro S, Ferraro VA, Zanconato S. Impact of air pollution exposure on lung function and exhaled breath biomarkers in children and adolescents. J Breath Res 2022; 16. [PMID: 35947967 DOI: 10.1088/1752-7163/ac8895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/10/2022] [Indexed: 11/12/2022]
Abstract
A growing number of scientific papers focus on the description and quantification of the detrimental effects of pollution exposure on human health. The respiratory system is one of the main targets of these effects and children are potentially a vulnerable population. Many studies analyzed the effects of short- and long-term exposure to air pollutants on children's respiratory function. Aim of the present narrative review is to summarize the results of the available cohort studies which investigated how children's lung function is affected by exposure to air pollution. In addition, an overview is provided on the association, in children, between pollution exposure and exhaled breath biomarkers, as possible indicators of the pathogenetic mechanisms involved in pollution-related lung damages. The identified cohort studies suggest that, beside the possible impact of recent exposure, early and lifetime exposure are the variables most consistently associated with a reduction in lung function parameters in both children and adolescents. As for the effect of air pollution exposure on exhaled breath biomarkers, the available studies show an association with increased exhaled nitric oxide, with increased concentrations of malondialdehyde and 8-isoprostane in exhaled breath condensate (EBC), and with EBC acidification. These studies, therefore, suggest lung inflammation and oxidative stress as possible pathogenetic mechanisms involved in pollution related lung damages. Taken together, the available data underscore the importance of the development and application of policies aimed at reducing air pollutant concentration, since the protection of children's lung function can have a beneficial impact on adults' respiratory health in the future.
Collapse
Affiliation(s)
- Silvia Carraro
- Women's and Children's Health Department, University of Padova, via Giustiniani 3, Padova, 35128, ITALY
| | - Valentina Agnese Ferraro
- Women's and Children's Health Department, University of Padova, via Giustiniani, 3, Padova, 35128, ITALY
| | - Stefania Zanconato
- Women's and Children's Health Department, University of Padova, via Giustiniani 3, Padova, 35128, ITALY
| |
Collapse
|
7
|
Hernandez-Pacheco N, Kere M, Melén E. Gene-environment interactions in childhood asthma revisited; expanding the interaction concept. Pediatr Allergy Immunol 2022; 33:e13780. [PMID: 35616899 PMCID: PMC9325482 DOI: 10.1111/pai.13780] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 01/04/2023]
Abstract
Investigation of gene-environment interactions (GxE) may provide important insights into the gene regulatory framework in response to environmental factors of relevance for childhood asthma. Over the years, different methodological strategies have been applied, more recently using genome-wide approaches. The best example to date is the major asthma locus on the 17q12-21 chromosome region, viral infections, and airway epithelium processes where recent studies have shed much light on mechanisms in childhood asthma. However, there are challenges with the traditional single variant-single exposure interaction models, as they do not encompass the complexity and cumulative effects of multiple exposures or multiple genetic variants. As such, we need to redefine our traditional GxE thinking, and we propose in this review to expand the GxE concept by also evaluating other omics layers, such as epigenetics, transcriptomics, metabolomics, and proteomics. In addition, host factors such as age, gender, and other exposures are very likely to influence GxE effects and need firmly to be considered in future studies.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Maura Kere
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children's Hospital, South General Hospital, Stockholm, Sweden
| |
Collapse
|