1
|
Li P, Zhu X, Liu M, Wang Y, Huang C, Sun J, Tian S, Li Y, Qiao Y, Yang J, Cao S, Cong C, Zhao L, Wang M, Su J, Tian D. Impact of gene-environment interactions on atrial fibrillation and cardiac structure. Sci Rep 2025; 15:16893. [PMID: 40374717 PMCID: PMC12081741 DOI: 10.1038/s41598-025-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 05/02/2025] [Indexed: 05/17/2025] Open
Abstract
Environmental pollution is a major burden of cardiovascular disease. The aim of the study was to investigate the interactions between combined environmental factors and genetic susceptibility on atrial fibrillation (AF) and cardiac structures. The study included 374,495 participants from the UK Biobank, utilizing genetic data and environmental variables (including air pollution, noise, greenspace and water quality). Polygenic risk score (PRS) was calculated to estimate individual genetic risk. Cox proportional hazard model was applied to estimate the impact of exposure factors on the risk of AF occurrence. The mediation analysis was applied to assess the relationship among environmental scores, AF and cardiac structures. Population attributable fraction (PAF) was employed to assess potential influence of mitigating unfavorable environment characteristics on AF. The results showed that the highest group of four domain scores exhibited 3.38-16.83% higher AF risk than the lowest. Individuals with higher scores in four domains and high PRS had hazard ratio (95%CI) of 2.76 (2.62, 2.91), 2.61 (2.47, 2.75), 2.86 (2.71, 3.02) and 2.84 (2.66, 3.02). Environmental factors could indirectly affect cardiac structures through AF. Up to 7.37% of AF cases could be preventable through environmental interventions. Our findings pointed that gene-environment interaction can increase AF risk, which further affect cardiac structures.
Collapse
Affiliation(s)
- Panlong Li
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xirui Zhu
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Min Liu
- Department of Hypertension, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Yanfeng Wang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Chun Huang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Junwei Sun
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shan Tian
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuna Li
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Qiao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junting Yang
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Cao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaohua Cong
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China.
- Laboratory of Brain Science and Brain-Like Intelligence Technology, Biomedical Research Institute, Henan Academy of Science, Henan, China.
| | - Jingjing Su
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dandan Tian
- Department of Hypertension, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Münzel T, Kuntic M, Daiber A, Sørensen M. Transportation noise and the cardiometabolic risk. Atherosclerosis 2025; 403:119148. [PMID: 40055082 DOI: 10.1016/j.atherosclerosis.2025.119148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 04/20/2025]
Abstract
Transportation noise is a widespread and often underestimated environmental pollutant, posing a substantial health risk particularly in urban areas. In contrast to air pollution, the health effects of noise pollution are less extensively documented. Defined as an unwanted and/or harmful sound, noise pollution affects over 20 % of the European Union (EU) population, contributing to an estimated 12,000 premature deaths and 48,000 new cases of ischemic heart disease annually. Recent epidemiological evidence strengthens the link between transportation noise and cardiovascular disease (CVD). A 2024 Umbrella + review with subsequent meta-analyses found that road traffic noise was associated with risk of CVD, more specifically a 4.1 % higher risk for ischemic heart disease, 4.6 % for stroke, and 4.4 % for heart failure per 10 dB(A). Translational and experimental studies have investigated the biological mechanisms behind noise-induced cardiovascular damage, showing that noise impacts stress and sleep pathways. Human studies reveal that nighttime noise impairs vascular function, elevates stress hormone levels, and triggers inflammation and oxidative stress, particularly in individuals with pre-existing CVD. Animal research corroborates these findings, demonstrating that noise exposure leads to endothelial dysfunction, elevated blood pressure, and oxidative stress through mechanisms shared with traditional cardiovascular risk factors. Mitigation strategies are crucial to reducing the health impacts of environmental noise. For road traffic, transitioning to electric vehicles offers minimal noise reduction, necessitating measures such as noise-reducing asphalt, low-noise tyres, and changes in urban infrastructure, whereas for aircraft noise nighttime flight bans and optimized flight paths are important tools for reducing noise exposure. Addressing co-exposure to noise and air pollution is essential for a comprehensive approach to mitigating the environmental burden on cardiovascular health.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center Mainz, Department of Cardiology, Germany.
| | - Marin Kuntic
- University Medical Center Mainz, Department of Cardiology, Germany
| | - Andreas Daiber
- University Medical Center Mainz, Department of Cardiology, Germany
| | - Mette Sørensen
- Danish Cancer Institute, Danish Cancer Society, Denmark; Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
3
|
Mu Z, Gao Y, Guo X, Ou S. Variable Step-Size Hybrid Filtered-x Affine Projection Generalized Correntropy Algorithm for Active Noise Control. SENSORS (BASEL, SWITZERLAND) 2025; 25:1881. [PMID: 40293063 PMCID: PMC11946489 DOI: 10.3390/s25061881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/10/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025]
Abstract
Active Noise Control (ANC) is frequently utilized to minimize noise in industrial environments. However, the powerful pulses in industrial noise pose challenges to its application. Consequently, ANC systems necessitate a high-performance algorithm as a core component. In this process, the variable step-size strategy is the main approach for enhancing the ANC algorithm's performance but ensuring robustness while improving performance remains a challenge. To address this problem, we propose a new ANC algorithm with a variable step size. This algorithm is derived from the Affine Projection Generalized Maximum Correntropy (APGMC) method, featuring a hybrid step-size and a new step-size approach achieved by modifying the mean square deviation (MSD). To showcase the practical effectiveness of the proposed algorithm, noisy audio from a real construction site was used for noise reduction control. Results show that the proposed algorithm effectively manages noise across frequency bands, with an improvement of approximately 16% to 19.2% compared to existing similar algorithms.
Collapse
Affiliation(s)
- Zhaoqing Mu
- School of Physics and Electronic Information, Yantai University, Yantai 264005, China; (Z.M.); (Y.G.)
| | - Ying Gao
- School of Physics and Electronic Information, Yantai University, Yantai 264005, China; (Z.M.); (Y.G.)
| | - Xinyu Guo
- Key Laboratory of Geophysical Exploration Equipment, Ministry of Education, College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130000, China;
| | - Shifeng Ou
- School of Physics and Electronic Information, Yantai University, Yantai 264005, China; (Z.M.); (Y.G.)
| |
Collapse
|
4
|
Liu Z, Duan J, Zhang X, Liu H, Pan Y, Chong W. Investigating the effect of occupational noise exposure in the risk of atrial fibrillation: a case study among Chinese occupational populations. Int Arch Occup Environ Health 2025; 98:169-180. [PMID: 39792191 DOI: 10.1007/s00420-024-02119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE This study examines the link between high occupational noise exposure and atrial fibrillation (AF), given the limited existing evidence. METHODS We conducted a cross-sectional study among participants from a large heavy industry enterprise in China. High noise exposure was defined as an equivalent A-weighted sound level (LAeq, 8 h) of ≥ 80 dB(A) during an 8 h workday. Statistical analyses included univariate analysis to assess relationships between high noise exposure, cardiovascular risk factors, and AF. Mediation analysis identified potential mediators between high noise exposure and AF. Propensity score matching (PSM) and multivariable analysis were used to evaluate the independent association between high noise exposure and AF. RESULTS A total of 4530 participants were included, with 1526 experiencing high noise exposure, and 167 diagnosed with AF. Adjusted mediation analysis revealed that sleep disorders, hypertension, dyslipidemia, and dietary quality were the primary mediators for AF among those exposed to high noise, accounting for 12.4%, 9.6%, 8.9%, and 6.7% of the effect, respectively. PSM analysis showed a significantly higher proportion of AF in individuals with high noise exposure compared to those with low exposure (5.4% vs. 3.0%, P = 0.003). Multivariable analysis indicated that the risk of AF was doubled in individuals with high noise exposure (OR = 1.99, 95% CI 1.38-2.88, P < 0.001). CONCLUSION High occupational noise exposure increases the risk of AF in the working population, acting both as an independent risk factor and through mediation effects. Sleep disorders, hypertension, dyslipidemia, and dietary quality are the main mediators. These findings highlight the importance of integrating noise control with cardiovascular health management in workplace safety policies to prevent AF among industrial workers. TRIAL REGISTRATION NUMBER ChiCTR2300077951, registered on November 24, 2023, in the Chinese Clinical Trial Registry.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Emergency, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 11001, China
| | - Jianyu Duan
- Department of Emergency, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 11001, China
| | - Xuan Zhang
- Department of Emergency, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 11001, China
| | - Hongyan Liu
- Department of Emergency, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 11001, China
| | - Yue Pan
- Department of Emergency, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 11001, China
| | - Wei Chong
- Department of Emergency, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 11001, China.
| |
Collapse
|
5
|
Wang AJ, Frishman WH. Literature Review: Effects of Environmental Noise on the Cardiovascular Health. Cardiol Rev 2025:00045415-990000000-00404. [PMID: 39936928 DOI: 10.1097/crd.0000000000000852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The adverse effects of environmental noise on human health have been recognized for more than a century. In particular, during the last decades, the vast majority of studies have focused on the detrimental role of noise in the induction of cardiovascular diseases. In this study, we aim to conduct a literature review on chronic stress responses induced by environmental noise, the risk of cardiovascular disease, and the underlying pathophysiological mechanisms. We retrieved the publications from the PubMed database by searching for "noise AND cardiovascular." By reviewing these publications in this study, we will first describe the epidemiologic research on cardiovascular risk factors and diseases induced by environmental noise, then discuss the mechanism(s) underlying these noise-induced cardiovascular impairments based on clinical and experimental studies, and finally evaluate the strategies to mitigate the effects of noise on cardiovascular health. We also evaluate the studies that describe the effects of noise level and noise intermittency, such as train noise, on cardiovascular health. We discuss whether environmental noise should be part of a risk factor profile for cardiovascular disease and how we should manage it, and assess the strategy that can be used to mitigate the noise-induced physiopathological changes. Furthermore, we briefly describe the effects of air pollution and heavy metals on cardiovascular health and discuss the relevance of these environmental stressors in the noise-induced cardiovascular disease. Our studies suggest that future studies are warranted to investigate new strategies that can mitigate the adverse effects of environmental noise on cardiovascular health.
Collapse
Affiliation(s)
- Andrew Jun Wang
- From the Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | | |
Collapse
|
6
|
Hahad O, Kuntic M, Al-Kindi S, Kuntic I, Gilan D, Petrowski K, Daiber A, Münzel T. Noise and mental health: evidence, mechanisms, and consequences. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:16-23. [PMID: 38279032 PMCID: PMC11876073 DOI: 10.1038/s41370-024-00642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
The recognition of noise exposure as a prominent environmental determinant of public health has grown substantially. While recent years have yielded a wealth of evidence linking environmental noise exposure primarily to cardiovascular ailments, our understanding of the detrimental effects of noise on the brain and mental health outcomes remains limited. Despite being a nascent research area, an increasing body of compelling research and conclusive findings confirms that exposure to noise, particularly from sources such as traffic, can potentially impact the central nervous system. These harms of noise increase the susceptibility to mental health conditions such as depression, anxiety, suicide, and behavioral problems in children and adolescents. From a mechanistic perspective, several investigations propose direct adverse phenotypic changes in brain tissue by noise (e.g. neuroinflammation, cerebral oxidative stress), in addition to feedback signaling by remote organ damage, dysregulated immune cells, and impaired circadian rhythms, which may collectively contribute to noise-dependent impairment of mental health. This concise review linking noise exposure to mental health outcomes seeks to fill research gaps by assessing current findings from studies involving both humans and animals.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany.
| | - Marin Kuntic
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Sadeer Al-Kindi
- Cardiovascular Prevention and Wellness, DeBakey Heart and Vascular Center, Houston Methodist, Houston, TX, USA
| | - Ivana Kuntic
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Donya Gilan
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Katja Petrowski
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| |
Collapse
|
7
|
Münzel T, Daiber A, Engelmann N, Röösli M, Kuntic M, Banks JL. Noise causes cardiovascular disease: it's time to act. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:24-33. [PMID: 39658622 PMCID: PMC11876066 DOI: 10.1038/s41370-024-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Chronic transportation noise is an environmental stressor affecting a substantial portion of the population. The World Health Organization (WHO) and various studies have established associations between transportation noise and cardiovascular disease (CVD), such as myocardial infarction, stroke, heart failure, and arrhythmia. The WHO Environmental Noise Guidelines and recent reviews confirm a heightened risk of cardiovascular incidents with increasing transportation noise levels. OBJECTIVE We present a narrative review of the evidence from epidemiologic studies and translation studies on the adverse cardiovascular effects of transportation noise. METHODS We describe the results of a recent Umbrella+ review that combines the evidence used in the 2018 WHO Environmental Noise Guidelines with more recent (post-2015) high-quality systematic reviews of original studies. High-quality systematic reviews were included based on the quality of literature search, risk of bias assessment, and meta-analysis methodology using AMSTAR 2. RESULTS Epidemiologic studies show that exposure to high levels of road traffic noise for several years lead to numerous adverse health outcomes, including premature deaths, ischemic heart disease (IHD), chronic sleep disturbances, and increased annoyance. Mechanistically, noise exposure triggers oxidative stress, inflammation, endothelial dysfunction, and circadian rhythm disruptions. These processes involve the activation of NADPH oxidase, mitochondrial dysfunction, and nitric oxide synthase uncoupling, leading to vascular and cardiac damage. Studies indicate that chronic noise exposure does not result in habituation, and susceptible individuals, such as those with pre-existing CVD, are particularly vulnerable.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany.
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nicole Engelmann
- Department Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany
| | | |
Collapse
|
8
|
Hoffmann B, Vienneau D. At the heart of the matter: do we still underestimate noise effects on cardiovascular health? THE LANCET REGIONAL HEALTH. EUROPE 2024; 47:101134. [PMID: 39633893 PMCID: PMC11615570 DOI: 10.1016/j.lanepe.2024.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Zhou X, Fang Z, Lv Y, Li C, Xu S, Cheng K, Ren Y, Lv N, Gao B, Xu H. Combined health effects of air pollutant mixtures on respiratory mortality using BKMR in Hangzhou, China. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:884-894. [PMID: 39348213 DOI: 10.1080/10962247.2024.2411033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Previous research on respiratory system mortality primarily focused on understanding their combined effects and have neglected the fact that air pollution mixtures are interrelated. This study used Bayesian kernel machine regression (BKMR) to analyze the relationship between air pollutant mixtures and respiratory mortality in Hangzhou, China from 2014 to 2018. The results showed a significant association between pollutant mixtures and respiratory system mortality primarily driven by PM2.5 and SO2. The joint exposure of air pollutants was positively correlated with respiratory system mortality at lag 01 and lag 02 days. The estimated joint effects of log-transformed mixture air pollution exposure on log-transformed respiratory system mortality increased from -0.02 (95% CI: -0.08-0.02) and -0.01 (95% CI: -0.05-0.04) at the 25th percentile to 0.06 (95% CI: 0.01-0.12) and 0.04 (95% CI: -0.001, 0.09) at the 75th percentile. Additionally, there was evidence of an interaction between O3 and PM10. This study confirms that exposure to multiple pollutants is a significant public health problem facing the Hangzhou population given the compounded effect proven with regression analysis, while furthermore, the control of PM2.5 and SO2 also represents a serious concern.Implications: Evidence indicates interactions between O3 and PM10. This study demonstrates that exposure to multiple pollutants exerts combined effects on the public health of the Hangzhou population, highlighting the importance of controlling PM2.5 and SO2.
Collapse
Affiliation(s)
- Xiaocong Zhou
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Zisi Fang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Ye Lv
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Chaokang Li
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Shanshan Xu
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Keyi Cheng
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Yanjun Ren
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Na Lv
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Bing Gao
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Hong Xu
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
10
|
Thacher JD, Snigireva A, Dauter UM, Delaval MN, Oudin A, Mattisson K, Sørensen M, Borgquist S, Albin M, Broberg K. Road traffic noise and breast cancer: DNA methylation in four core circadian genes. Clin Epigenetics 2024; 16:168. [PMID: 39587706 PMCID: PMC11590349 DOI: 10.1186/s13148-024-01774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Transportation noise has been linked with breast cancer, but existing literature is conflicting. One proposed mechanism is that transportation noise disrupts sleep and the circadian rhythm. We investigated the relationships between road traffic noise, DNA methylation in circadian rhythm genes, and breast cancer. We selected 610 female participants (318 breast cancer cases and 292 controls) enrolled into the Malmö, Diet, and Cancer cohort. DNA methylation of CpGs (N = 29) in regulatory regions of circadian rhythm genes (CRY1, BMAL1, CLOCK, and PER1) was assessed by pyrosequencing of DNA from lymphocytes collected at enrollment. To assess associations between modeled 5-year mean residential road traffic noise and differentially methylated CpG positions, we used linear regression models adjusting for potential confounders, including sociodemographics, shiftwork, and air pollution. Linear mixed effects models were used to evaluate road traffic noise and differentially methylated regions. Unconditional logistic regression was used to investigate CpG methylation and breast cancer. RESULTS We found that higher mean road traffic noise was associated with lower DNA methylation of three CRY1 CpGs (CpG1, CpG2, and CpG12) and three BMAL1 CpGs (CpG2, CpG6, and CpG7). Road traffic noise was also associated with differential methylation of CRY1 and BMAL1 promoters. In CRY1 CpG2 and CpG5 and in CLOCK CpG1, increasing levels of methylation tended to be associated with lower odds of breast cancer, with odds ratios (OR) of 0.88 (95% confidence interval (CI) 0.76-1.02), 0.84 (95% CI 0.74-0.96), and 0.80 (95% CI 0.68-0.94), respectively. CONCLUSIONS In summary, our data suggest that DNA hypomethylation in CRY1 and BMAL1 could be part of a causal chain from road traffic noise to breast cancer. This is consistent with the hypothesis that disruption of the circadian rhythm, e.g., from road traffic noise exposure, increases the risk of breast cancer. Since no prior studies have explored this association, it is essential to replicate our results.
Collapse
Affiliation(s)
- Jesse D Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | | | - Ulrike Maria Dauter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde N Delaval
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Munich, Neuherberg, Germany
| | - Anna Oudin
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristoffer Mattisson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Signe Borgquist
- Department of Oncology, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Maria Albin
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Mayntz SP, Rosenbech KE, Mohamed RA, Lindholt JS, Diederichsen ACP, Frohn LM, Lambrechtsen J. Impact of air pollution and noise exposure on cardiovascular disease incidence and mortality: A systematic review. Heliyon 2024; 10:e39844. [PMID: 39524794 PMCID: PMC11550137 DOI: 10.1016/j.heliyon.2024.e39844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background The relationship between environmental pollutants, specifically air pollution and noise, and cardiovascular disease is well-recognized. However, their combined effects on cardiovascular health are not fully explored. Objectives To review evidence on the correlation between air pollution and noise exposure and cardiovascular disease incidence and mortality. Methods Following the PRISMA 2020 guidelines, we identified relevant studies through multiple databases and snowballing. We focused on studies published between 2003 and 2024. Studies were selected based on a PEOS framework, with a focus on exposure to air pollution or noise and clinical cardiovascular outcomes and evaluated for bias using the ROBINS-E tool. Results A total of 140 studies met our inclusion criteria. Most studies suggested a consistent association between long-term exposure to air pollutants and an increased risk of cardiovascular diseases, notably ischemic heart disease and stroke. While air pollution was often studied in isolation, the interaction effects between air pollution and noise exposure were less commonly investigated, showing mixed results. The majority of these studies were conducted in Western countries, which may limit the generalizability of the findings to global populations. No studies were found to use time-updated confounders, despite the long durations over which participants were followed, which could influence the accuracy of the results. Moreover, none of the studies incorporated both residential and occupational addresses in exposure assessments, suggesting a need for future studies to include these multiple exposure points to improve measurement precision and accuracy. Conclusion Air pollution exposure is increasingly linked to cardiovascular disease risks. Although individual air pollution and noise exposures are recognized as significant risk factors, the combined interaction between these exposures needs further exploration. Registration PROSPERO (CRD42023460443).
Collapse
Affiliation(s)
- Stephan Peronard Mayntz
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital, Denmark
| | | | - Roda Abdulkadir Mohamed
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital, Denmark
| | - Jes Sanddal Lindholt
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Cardiac, Thoracic, and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Axel Cosmus Pyndt Diederichsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Lise Marie Frohn
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jess Lambrechtsen
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital, Denmark
| |
Collapse
|
12
|
Thacher JD, Roswall N, Ögren M, Pyko A, Åkesson A, Oudin A, Rosengren A, Poulsen AH, Eriksson C, Segersson D, Rizzuto D, Helte E, Andersson EM, Aasvang GM, Engström G, Gudjonsdottir H, Selander J, Christensen JH, Brandt J, Leander K, Overvad K, Mattisson K, Eneroth K, Stucki L, Barregard L, Stockfelt L, Albin M, Simonsen MK, Raaschou-Nielsen O, Jousilahti P, Tiittanen P, Ljungman PL, Jensen SS, Gustafsson S, Yli-Tuomi T, Cole-Hunter T, Lanki T, Lim YH, Andersen ZJ, Pershagen G, Sørensen M. Residential exposure to transportation noise and risk of incident atrial fibrillation: a pooled study of 11 prospective Nordic cohorts. THE LANCET REGIONAL HEALTH. EUROPE 2024; 46:101091. [PMID: 39403081 PMCID: PMC11472630 DOI: 10.1016/j.lanepe.2024.101091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 11/30/2024]
Abstract
Background Transportation noise has been linked with cardiometabolic outcomes, yet whether it is a risk factor for atrial fibrillation (AF) remains inconclusive. We aimed to assess whether transportation noise was associated with AF in a large, pooled Nordic cohort. Methods We pooled data from 11 Nordic cohorts, totaling 161,115 participants. Based on address history from five years before baseline until end of follow-up, road, railway, and aircraft noise was estimated at a residential level. Incident AF was ascertained via linkage to nationwide patient registries. Cox proportional hazards models were utilized to estimate associations between running 5-year time-weighted mean transportation noise (Lden) and AF after adjusting for sociodemographics, lifestyle, and air pollution. Findings We identified 18,939 incident AF cases over a median follow-up of 19.6 years. Road traffic noise was associated with AF, with a hazard ratio (HR) and 95% confidence interval (CI) of 1.02 (1.00-1.04) per 10-dB of 5-year mean time-weighted exposure, which changed to 1.03 (1.01-1.06) when implementing a 53-dB cut-off. In effect modification analyses, the association for road traffic noise and AF appeared strongest in women and overweight and obese participants. Compared to exposures ≤40 dB, aircraft noise of 40.1-50 and > 50 dB were associated with HRs of 1.04 (0.93-1.16) and 1.12 (0.98-1.27), respectively. Railway noise was not associated with AF. We found a HR of 1.19 (1.02-1.40) among people exposed to noise from road (≥45 dB), railway (>40 dB), and aircraft (>40 dB) combined. Interpretation Road traffic noise, and possibly aircraft noise, may be associated with elevated risk of AF. Funding NordForsk.
Collapse
Affiliation(s)
- Jesse D. Thacher
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
- Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen Ø, Denmark
| | - Nina Roswall
- Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen Ø, Denmark
| | - Mikael Ögren
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Andrei Pyko
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Oudin
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
- Division of Sustainable Health, Umeå University, Sweden
| | - Annika Rosengren
- Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Aslak H. Poulsen
- Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen Ø, Denmark
| | - Charlotta Eriksson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - David Segersson
- Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
| | - Debora Rizzuto
- Aging Research Centre, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Centre, Stockholm, Sweden
| | - Emilie Helte
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eva M. Andersson
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Gunnar Engström
- Department of Clinical Science, Lund University, Malmö, Sweden
| | - Hrafnhildur Gudjonsdottir
- Centre for Epidemiology and Community Medicine, Stockholm, Sweden
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Selander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kim Overvad
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Kristoffer Mattisson
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Lara Stucki
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Barregard
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Leo Stockfelt
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Albin
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mette K. Simonsen
- Department of Neurology and Parker Institute, Bispebjerg and Frederiksberg Hospital, Denmark
| | - Ole Raaschou-Nielsen
- Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen Ø, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Pekka Tiittanen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Petter L.S. Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, Sweden
| | - Steen S. Jensen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Tarja Yli-Tuomi
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Thomas Cole-Hunter
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
- School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Zorana J. Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mette Sørensen
- Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen Ø, Denmark
- Department of Natural Science and Environment, Roskilde University, Denmark
| |
Collapse
|
13
|
Horsdal HT, Pedersen MG, Schullehner J, Østergaard CS, Mcgrath JJ, Agerbo E, Timmermann A, Closter AM, Brandt J, Christensen JH, Frohn LM, Geels C, Ketzel M, Khan J, Ørby PV, Olsen Y, Levin G, Svenning JC, Engemann K, Gyldenkærne S, Hansen B, Hertel O, Sabel CE, Erikstrup C, Sigsgaard T, Pedersen CB. Perspectives on environment and health research in Denmark. Scand J Public Health 2024; 52:741-751. [PMID: 37278162 PMCID: PMC11308320 DOI: 10.1177/14034948231178076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
AIMS We provide an overview of nationwide environmental data available for Denmark and its linkage potentials to individual-level records with the aim of promoting research on the potential impact of the local surrounding environment on human health. BACKGROUND Researchers in Denmark have unique opportunities for conducting large population-based studies treating the entire Danish population as one big, open and dynamic cohort based on nationally complete population and health registries. So far, most research in this area has utilised individual- and family-level information to study the clustering of disease in families, comorbidities, risk of, and prognosis after, disease onset, and social gradients in disease risk. Linking environmental data in time and space to individuals enables novel possibilities for studying the health effects of the social, built and physical environment. METHODS We describe the possible linkage between individuals and their local surrounding environment to establish the exposome - that is, the total environmental exposure of an individual over their life course. CONCLUSIONS The currently available nationwide longitudinal environmental data in Denmark constitutes a valuable and globally rare asset that can help explore the impact of the exposome on human health.
Collapse
Affiliation(s)
- Henriette T. Horsdal
- National Centre for Register-based Research, Aarhus University, Denmark
- Big Data Centre for Environment and Health, Aarhus University, Denmark
| | - Marianne G. Pedersen
- National Centre for Register-based Research, Aarhus University, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Denmark
| | - Jörg Schullehner
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Public Health, Aarhus University, Denmark
- Geological Survey of Denmark and Greenland, Denmark
| | - Cecilie S. Østergaard
- National Centre for Register-based Research, Aarhus University, Denmark
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Public Health, Aarhus University, Denmark
| | - John J. Mcgrath
- National Centre for Register-based Research, Aarhus University, Denmark
- Queensland Brain Institute, The University of Queensland, Australia
- Queensland Centre for Mental Health Research, Australia
| | - Esben Agerbo
- National Centre for Register-based Research, Aarhus University, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Denmark
| | - Allan Timmermann
- National Centre for Register-based Research, Aarhus University, Denmark
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Denmark
| | - Ane Marie Closter
- National Centre for Register-based Research, Aarhus University, Denmark
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Denmark
| | | | - Lise M. Frohn
- Department of Environmental Science, Aarhus University, Denmark
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Denmark
- Global Centre for Clean Air Research, University of Surrey, UK
| | - Jibran Khan
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Environmental Science, Aarhus University, Denmark
| | - Pia V. Ørby
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Environmental Science, Aarhus University, Denmark
| | - Yulia Olsen
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Public Health, Aarhus University, Denmark
| | - Gregor Levin
- Department of Environmental Science, Aarhus University, Denmark
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere & Center for Biodiversity Dynamics in a Changing World, Department of Biology, Aarhus University, Denmark
| | - Kristine Engemann
- Center for Ecological Dynamics in a Novel Biosphere & Center for Biodiversity Dynamics in a Changing World, Department of Biology, Aarhus University, Denmark
| | | | | | - Ole Hertel
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Ecoscience, Aarhus University, Denmark
| | - Clive E. Sabel
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Public Health, Aarhus University, Denmark
| | - Christian Erikstrup
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Denmark
| | - Torben Sigsgaard
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Public Health, Aarhus University, Denmark
| | - Carsten B. Pedersen
- National Centre for Register-based Research, Aarhus University, Denmark
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Denmark
| |
Collapse
|
14
|
McKenzie LM, Allshouse WB, Abrahams B, Tompkins C. Oil and gas development exposure and atrial fibrillation exacerbation: a retrospective study of atrial fibrillation exacerbation using Colorado's all payer claims dataset. FRONTIERS IN EPIDEMIOLOGY 2024; 4:1379271. [PMID: 38962693 PMCID: PMC11220195 DOI: 10.3389/fepid.2024.1379271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024]
Abstract
Introduction Emerging risk factors for atrial fibrillation (AF) incidence and episodes (exacerbation), the most common and clinically significant cardiac arrhythmia, include air and noise pollution, both of which are emitted during oil and natural gas (O&G) well site development. Methods We evaluated AF exacerbation risk and proximity to O&G well site development by employing a novel data source and interrupted time-series design. We retrospectively followed 1,197 AF patients living within 1-mile of an O&G well site (at-risk of exposure) and 9,764 patients living >2 miles from any O&G well site (unexposed) for AF claims in Colorado's All Payer Claims Dataset before, during, and after O&G well site development. We calculated AF exacerbation risk with multi-failure survival analysis. Results The analysis of the total study population does not provide strong evidence of an association between AF exacerbation and proximity to O&G wells sites during (HR = 1.07, 95% CI: 0.94, 1.22) or after (HR = 1.01, 95% CI: 0.88, 1.16) development. However, AF exacerbation risk differed by patient age and sex. In patients >80 years living within 0.39 miles (2,059 feet) of O&G well site development, AF exacerbation risk increased by 83% (HR = 1.83, 95% CI: 1.25, 2.66) and emergency room visits for an AF event doubled (HR = 2.55, 95% CI: 1.50, 4.36) during development, with risk increasing with proximity. In female patients living within 0.39 miles of O&G well site development, AF exacerbation risk increased by 56% percent (95% CI: 1.13, 2.15) during development. AF exacerbation risk did not persist past the well development period. We did not observe increased AF exacerbation risk in younger or male patients. Discussion The prospect that proximity to O&G well site development, a significant noise and air pollution source, may increase AF exacerbation risk in older and female AF patients requires attention. These findings support appropriate patient education to help mitigate risk and development of mitigation strategies and regulations to protect the health of populations in O&G development regions.
Collapse
Affiliation(s)
- Lisa M. McKenzie
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, United States
| | - William B. Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, United States
| | - Barbara Abrahams
- Department of Cardiology, University of Colorado School of Medicine, University of Colorado Anschutz Campus, Aurora, CO, United States
| | - Christine Tompkins
- Division of Electrophysiology, Emory University, Atlanta, GA, United States
| |
Collapse
|
15
|
Münzel T, Molitor M, Kuntic M, Hahad O, Röösli M, Engelmann N, Basner M, Daiber A, Sørensen M. Transportation Noise Pollution and Cardiovascular Health. Circ Res 2024; 134:1113-1135. [PMID: 38662856 DOI: 10.1161/circresaha.123.323584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epidemiological studies have found that transportation noise increases the risk for cardiovascular morbidity and mortality, with solid evidence for ischemic heart disease, heart failure, and stroke. According to the World Health Organization, at least 1.6 million healthy life years are lost annually from traffic-related noise in Western Europe. Traffic noise at night causes fragmentation and shortening of sleep, elevation of stress hormone levels, and increased oxidative stress in the vasculature and the brain. These factors can promote vascular (endothelial) dysfunction, inflammation, and arterial hypertension, thus elevating cardiovascular risk. The present review focusses on the indirect, nonauditory cardiovascular health effects of noise. We provide an updated overview of epidemiological research on the effects of transportation noise on cardiovascular risk factors and disease, and mechanistic insights based on the latest clinical and experimental studies and propose new risk markers to address noise-induced cardiovascular effects in the general population. We will discuss the potential effects of noise on vascular dysfunction, oxidative stress, and inflammation in humans and animals. We will elaborately explain the underlying pathomechanisms by alterations of gene networks, epigenetic pathways, circadian rhythm, signal transduction along the neuronal-cardiovascular axis, and metabolism. We will describe current and future noise mitigation strategies. Finally, we will conduct an overall evaluation of the status of the current evidence of noise as a significant cardiovascular risk factor.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
- German Centre for Cardiovascular Research (DZHK), Rhine-Main, Germany (T.M., M.M., O.H., A.D.)
| | - Michael Molitor
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
- German Centre for Cardiovascular Research (DZHK), Rhine-Main, Germany (T.M., M.M., O.H., A.D.)
| | - Marin Kuntic
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
- German Centre for Cardiovascular Research (DZHK), Rhine-Main, Germany (T.M., M.M., O.H., A.D.)
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Department Epidemiology and Public Health, University of Basel, Switzerland (M.R., N.E.)
| | - Nicole Engelmann
- Swiss Tropical and Public Health Institute, Department Epidemiology and Public Health, University of Basel, Switzerland (M.R., N.E.)
| | - Mathias Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (M.B.)
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
- German Centre for Cardiovascular Research (DZHK), Rhine-Main, Germany (T.M., M.M., O.H., A.D.)
| | - Mette Sørensen
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark (M.S.)
- Department of Natural Science and Environment, Roskilde University, Denmark (M.S.)
| |
Collapse
|
16
|
Tang JH, Jian HL, Chan TC. The impact of co-exposure to air and noise pollution on the incidence of metabolic syndrome from a health checkup cohort. Sci Rep 2024; 14:8841. [PMID: 38632465 PMCID: PMC11024131 DOI: 10.1038/s41598-024-59576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
Previous studies have found associations between the incidence of metabolic syndrome (MetS) and exposure to air pollution or road traffic noise. However, investigations on environmental co-exposures are limited. This study aimed to investigate the association between co-exposure to air pollution and road traffic noise and MetS and its subcomponents. Participants living in Taipei City who underwent at least two health checkups between 2010 and 2016 were included in the study. Data were sourced from the MJ Health database, a longitudinal, large-scale cohort in Taiwan. The monthly traffic noise exposure (Lden and Lnight) was computed using a dynamic noise map. Monthly fine particulate data at one kilometer resolution were computed from satellite imagery data. Cox proportional hazards regression models with month as the underlying time scale were used to estimate hazard ratios (HRs) for the impact of PM2.5 and road traffic noise exposure on the risk of developing MetS or its subcomponents. Data from 10,773 participants were included. We found significant positive associations between incident MetS and PM2.5 (HR: 1.88; 95% CI 1.67, 2.12), Lden (HR: 1.10; 95% CI 1.06, 1.15), and Lnight (HR: 1.07; 95% CI 1.02, 1.13) in single exposure models. Results further showed significant associations with an elevated risk of incident MetS in co-exposure models, with HRs of 1.91 (95% CI 1.69, 2.16) and 1.11 (95% CI 1.06, 1.16) for co-exposure to PM2.5 and Lden, and 1.90 (95% CI 1.68, 2.14) and 1.08 (95% CI 1.02, 1.13) for co-exposure to PM2.5 and Lnight. The HRs for the co-exposure models were higher than those for models with only a single exposure. This study provides evidence that PM2.5 and noise exposure may elevate the risk of incident MetS and its components in both single and co-exposure models. Therefore, preventive approaches to mitigate the risk of MetS and its subcomponents should consider reducing exposure to PM2.5 and noise pollution.
Collapse
Affiliation(s)
- Jia-Hong Tang
- Research Center for Humanities and Social Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Hong-Lian Jian
- Research Center for Humanities and Social Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan.
- Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan.
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
17
|
Hahad O, Gilan D, Michal M, Tüscher O, Chalabi J, Schuster AK, Keller K, Hobohm L, Schmitt VH, König J, Lackner KJ, Wild P, Schattenberg JM, Daiber A, Münzel T. Noise annoyance and cardiovascular disease risk: results from a 10-year follow-up study. Sci Rep 2024; 14:5619. [PMID: 38454061 PMCID: PMC10920781 DOI: 10.1038/s41598-024-56250-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
The relationship between noise annoyance and risk of cardiovascular disease (CVD) still needs to be fully elucidated. Thus, we examined the relationship between noise annoyance and CVD risk in a large population-based cohort study. Cross-sectional (N = 15,010, aged 35-74 years, baseline investigation period 2007-2012) and prospective data (5- and 10-year follow-up from 2012 to 2022) from the Gutenberg Health Study were used to examine the relationship between noise annoyance due to different sources and risk of prevalent and incident CVD comprising atrial fibrillation, coronary artery disease, myocardial infarction, stroke, chronic heart failure, peripheral artery disease, and venous thromboembolism. In cross-sectional analyses, noise annoyance was an independent risk factor for prevalent CVD, with the strongest associations seen for noise annoyance during sleep (e.g., neighborhood noise annoyance: odds ratio 1.20, 95% confidence interval 1.13-1.27, p < 0.0001). While in the 10-year follow-up, mostly positive associations (although not significant) between noise annoyance and incident CVD were observed, no indication of increased CVD risk was observed after 5 years of follow-up. Noise annoyance due to different sources was associated with prevalent CVD, whereas only weak associations with incident CVD were found. Further large-scale studies are needed to establish the relationship between noise annoyance and risk of CVD.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Donya Gilan
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Matthias Michal
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Oliver Tüscher
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Molecular Biology, Mainz, Germany
| | - Julian Chalabi
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander K Schuster
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Karsten Keller
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz (Johannes Gutenberg-University Mainz), Mainz, Germany
- Medical Clinic VII, Department of Sports Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Lukas Hobohm
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz (Johannes Gutenberg-University Mainz), Mainz, Germany
| | - Volker H Schmitt
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jochem König
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Philipp Wild
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Institute for Molecular Biology, Mainz, Germany
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz (Johannes Gutenberg-University Mainz), Mainz, Germany
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Internal Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz (Johannes Gutenberg-University Mainz), Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz (Johannes Gutenberg-University Mainz), Mainz, Germany
| |
Collapse
|
18
|
Gao P, Gao X, Xie B, Tse G, Liu T. Aging and atrial fibrillation: A vicious circle. Int J Cardiol 2024; 395:131445. [PMID: 37848123 DOI: 10.1016/j.ijcard.2023.131445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Atrial fibrillation (AF) is the commonest sustained cardiac arrhythmia observed in clinical practice. Its prevalence increases dramatically with advancing age. This review article discusses the recent advances in studies investigating the relationship between aging and AF and the possible underlying mechanisms.
Collapse
Affiliation(s)
- Pan Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinyi Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bingxin Xie
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China; School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
19
|
Wang W, Zhang W, Li L, Hu D, Liu S, Cui L, Liu J, Xu J, Guo X, Deng F. Obesity-related cardiometabolic indicators modify the associations of personal noise exposure with heart rate variability: A further investigation on the Study among Obese and Normal-weight Adults (SONA). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122446. [PMID: 37625771 DOI: 10.1016/j.envpol.2023.122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Elucidating the associations between environmental noise and heart rate variability (HRV) would be beneficial for the prevention and control of detrimental cardiovascular changes. Obese people have been found to manifest heightened susceptibility to the adverse effects of noise on HRV. However, the underlying mechanisms remain unclear. Based on 53 normal-weight and 44 obese young adults aged 18-26 years in Beijing, China, this study aimed to investigate the role of obesity-related cardiometabolic indicators for associations between short-term environmental noise exposure and HRV in the real-world context. The participants underwent personal noise exposure and ambulatory electrocardiogram monitoring using portable devices at 5-min intervals for 24 continuous hours. Obesity-related blood pressure, glucose and lipid metabolism, and inflammatory indicators were subsequently examined. Generalized mixed-effect models were used to estimate the associations between noise exposure and HRV parameters. The C-peptide, homeostasis model assessment of insulin resistance (HOMA-IR), and leptin levels were higher in obese participants compared to normal-weight participants. We observed amplified associations between short-term noise exposure and decreases in HRV among participants with higher C-peptide, HOMA-IR, and leptin levels. For instance, a 1 dB(A) increment in 3 h-average noise exposure level preceding each measurement was associated with changes of -0.20% (95%CI: -0.45%, 0.04%) and -1.35% (95%CI: -1.85%, -0.86%) in standard deviation of all normal to normal intervals (SDNN) among participants with lower and higher C-peptide levels, respectively (P for interaction <0.05). Meanwhile, co-existing fine particulate matter (PM2.5) could amplify the associations between noise and HRV among obese participants and participants with higher C-peptide, HOMA-IR, and leptin levels. The more apparent associations of short-term exposure to environmental noise with HRV and the effect modification by PM2.5 may be partially explained by the higher C-peptide, HOMA-IR, and leptin levels of obese people.
Collapse
Affiliation(s)
- Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Dayu Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China; Center for Environment and Health, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
20
|
Hahad O, Schmidt FP, Hübner J, Foos P, Al-Kindi S, Schmitt VH, Hobohm L, Keller K, Große-Dresselhaus C, Schmeißer J, Koppe-Schmeißer F, Vosseler M, Gilan D, Schulz A, Chalabi J, Wild PS, Daiber A, Herzog J, Münzel T. Acute exposure to simulated nocturnal traffic noise and cardiovascular complications and sleep disturbance-results from a pooled analysis of human field studies. Clin Res Cardiol 2023; 112:1690-1698. [PMID: 37695527 PMCID: PMC10584703 DOI: 10.1007/s00392-023-02297-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVES A series of human field studies demonstrated that acute exposure to simulated nocturnal traffic noise is associated with cardiovascular complications and sleep disturbance, including endothelial dysfunction, increased blood pressure, and impaired sleep quality. A pooled analysis of these results remains to be established and is of tremendous interest to consolidate scientific knowledge. METHODS We analyzed data from four randomized crossover studies (published between 2013 to 2021 and conducted at the University Medical Center Mainz, Germany). A total of 275 subjects (40.4% women, mean age 43.03 years) were each exposed to one control scenario (regular background noise) and at least to one traffic noise scenario (60 aircraft or train noise events) in their homes during nighttime. After each night, the subjects visited the study center for comprehensive cardiovascular function assessment, including the measurement of endothelial function and hemodynamic and biochemical parameters, as well as sleep-related variables. RESULTS The pooled analysis revealed a significantly impaired endothelial function when comparing the two different noise sequences (0-60 vs. 60-0 simulated noise events, mean difference in flow-mediated dilation -2.00%, 95% CI -2.32; -1.68, p < 0.0001). In concordance, mean arterial pressure was significantly increased after traffic noise exposure (mean difference 2.50 mmHg, 95% CI 0.54; 4.45, p = 0.013). Self-reported sleep quality, the restfulness of sleep, and feeling in the morning were significantly impaired after traffic noise exposure (all p < 0.0001). DISCUSSION Acute exposure to simulated nocturnal traffic noise is associated with endothelial dysfunction, increased mean arterial pressure, and sleep disturbance.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Frank P Schmidt
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Department of Cardiology, Mutterhaus Trier, Trier, Germany
| | - Jonas Hübner
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Patrick Foos
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Sadeer Al-Kindi
- Department of Medicine, University Hospitals, Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Volker H Schmitt
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Lukas Hobohm
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Karsten Keller
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, Heidelberg, Germany
| | - Christina Große-Dresselhaus
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Julian Schmeißer
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Franziska Koppe-Schmeißer
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Markus Vosseler
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Donya Gilan
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Julian Chalabi
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Philipp S Wild
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Molecular Biology, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Johannes Herzog
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
21
|
Eminson K, Cai YS, Chen Y, Blackmore C, Rodgers G, Jones N, Gulliver J, Fenech B, Hansell AL. Does air pollution confound associations between environmental noise and cardiovascular outcomes? - A systematic review. ENVIRONMENTAL RESEARCH 2023; 232:116075. [PMID: 37182833 DOI: 10.1016/j.envres.2023.116075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Exposure to environmental noise is associated with adverse health effects, but there is potential for confounding and interaction with air pollution, particularly where both exposures arise from the same source, such as transport. OBJECTIVES To review evidence on confounding and interaction of air pollution in relation to associations between environmental noise and cardiovascular outcomes. METHODS Papers were identified from similar reviews published in 2013 and 2015, from the systematic reviews supporting the WHO 2018 noise guidelines, and from a literature search covering the period 2016-2022 using Medline and PubMed databases. Additional papers were identified from colleagues. Study selection was according to PECO inclusion criteria. Studies were evaluated against the WHO checklist for risk of bias. RESULTS 52 publications, 36 published after 2015, were identified that assessed associations between transportation noise and cardiovascular outcomes, that also considered potential confounding (49 studies) or interaction (23 studies) by air pollution. Most, but not all studies, suggested that the associations between traffic noise and cardiovascular outcomes are independent of air pollution. NO2 or PM2.5 were the most commonly included air pollutants and we observed no clear differences across air pollutants in terms of the potential confounding role. Most papers did not appear to suggest an interaction between noise and air pollution. Eight studies found the largest noise effect estimates occurring within the higher noise and air pollution exposure categories, but were not often statistically significant. CONCLUSION Whilst air pollution does not appear to confound associations of noise and cardiovascular health, more studies on potential interactions are needed. Current methods to assess quality of evidence are not optimal when evaluating evidence on confounding or interaction.
Collapse
Affiliation(s)
- Katie Eminson
- Centre for Environmental Health and Sustainability, University of Leicester, UK
| | - Yutong Samuel Cai
- Centre for Environmental Health and Sustainability, University of Leicester, UK
| | - Yingxin Chen
- Centre for Environmental Health and Sustainability, University of Leicester, UK
| | - Claire Blackmore
- Centre for Environmental Health and Sustainability, University of Leicester, UK
| | - Georgia Rodgers
- Noise and Public Health Group, Environmental Hazards and Emergencies Department, UK Health Security Agency (UKHSA), UK
| | | | - John Gulliver
- Centre for Environmental Health and Sustainability, University of Leicester, UK; National Institute for Health Research (NIHR), Health Protection Research Unit (HPRU) in Environmental Exposures and Health at the University of Leicester, UK
| | - Benjamin Fenech
- Noise and Public Health Group, Environmental Hazards and Emergencies Department, UK Health Security Agency (UKHSA), UK; National Institute for Health Research (NIHR), Health Protection Research Unit (HPRU) in Environmental Exposures and Health at the University of Leicester, UK
| | - Anna L Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, UK; National Institute for Health Research (NIHR), Health Protection Research Unit (HPRU) in Environmental Exposures and Health at the University of Leicester, UK.
| |
Collapse
|
22
|
Fu X, Wang L, Yuan L, Hu H, Li T, Zhang J, Ke Y, Wang M, Gao Y, Huo W, Chen Y, Zhang W, Liu J, Huang Z, Zhao Y, Hu F, Zhang M, Liu Y, Sun X, Hu D. Long-Term Exposure to Traffic Noise and Risk of Incident Cardiovascular Diseases: a Systematic Review and Dose-Response Meta-Analysis. J Urban Health 2023; 100:788-801. [PMID: 37580544 PMCID: PMC10447855 DOI: 10.1007/s11524-023-00769-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/16/2023]
Abstract
While noise pollution from transportation has become an important public health problem, the relationships between different sources of traffic noise and cardiovascular diseases (CVDs) remain inconclusive. A comprehensive meta-analysis was therefore conducted to quantitatively assess the effects of long-term exposure to road traffic, railway, and aircraft noise on CVDs and relevant subtypes. We systematically retrieved PubMed, Embase, and Web of Science for articles published before April 4, 2022. Summary relative risks (RRs) and 95% confidence intervals (CIs) were estimated by the fixed- or random-effects models. In total, 23 articles were included in our meta-analysis. The risk of CVDs increased by 2% (RR 1.020, 95% CI 1.006-1.035) and 1.6% (RR 1.016, 95% CI 1.000-1.032) for every 10 dB increment of road traffic and aircraft noise. For CVD subtypes, the risk increased by 3.4% (1.034, 1.026-1.043) for stroke and 5% (1.050, 1.006-1.096) for heart failure with each 10 dB increment of road traffic noise; the risk of atrial fibrillation increased by 1.1% (1.011, 1.002-1.021) with each 10 dB increment of railway noise; and the risk increased by 1% (1.010, 1.003-1.017) for myocardial infarction, 2.7% (1.027, 1.004-1.050) for atrial fibrillation, and 2.3% (1.023, 1.016-1.030) for heart failure with each 10 dB increment in aircraft noise. Further, effects from road traffic, railway, and aircraft noise all followed positive linear trends with CVDs. Long-term exposure to traffic noise is positively related to the incidence risk of cardiovascular events, especially road traffic noise which significantly increases the risk of CVDs, stroke, and heart failure.
Collapse
Affiliation(s)
- Xueru Fu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China, No. 47 Youyi Road, Luohu District, Shenzhen, Guangdong, 518001, People's Republic of China
| | - Longkang Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Lijun Yuan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Huifang Hu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Tianze Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jinli Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yamin Ke
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Mengmeng Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yajuan Gao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Weifeng Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yaobing Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wenkai Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jiong Liu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Zelin Huang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Yu Liu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China, No. 47 Youyi Road, Luohu District, Shenzhen, Guangdong, 518001, People's Republic of China
| | - Xizhuo Sun
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China, No. 47 Youyi Road, Luohu District, Shenzhen, Guangdong, 518001, People's Republic of China
| | - Dongsheng Hu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China, No. 47 Youyi Road, Luohu District, Shenzhen, Guangdong, 518001, People's Republic of China.
| |
Collapse
|
23
|
Hahad O, Beutel ME, Gilan DA, Chalabi J, Schuster AK, Gianicolo E, Lackner KJ, Lieb K, Galle PR, Wild PS, Daiber A, Münzel T. Noise annoyance and risk of prevalent and incident atrial fibrillation-A sex-specific analysis. Front Public Health 2022; 10:1061328. [PMID: 36536776 PMCID: PMC9758722 DOI: 10.3389/fpubh.2022.1061328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/07/2022] Open
Abstract
Background While chronic exposure to high levels of noise was demonstrated to increase the risk of various cardiovascular diseases, the association between noise annoyance and risk of cardiovascular disease remains still inconsistent. Recently, we showed that noise annoyance is associated with prevalent atrial fibrillation in the general population. However, the association between noise annoyance and risk of incident atrial fibrillation as well as potential sex-differences remain still elusive. Methods and results 15,010 subjects from a German population-based cohort were examined at baseline (2007 to 2012) and follow-up five years later (2012 to 2017) to investigative the association between noise annoyance due to multiple sources and prevalent and incident atrial fibrillation. After multivariable adjustment, the results from logistic regression analyses revealed overall consistent and positive associations between noise annoyance and prevalent and incident atrial fibrillation in men, whereas this association was weaker in women, in particular with respect to incident atrial fibrillation. For instance, industrial noise annoyance was associated with 21% (95% confidence interval (CI) 9-34%) and 18% (8-29%) higher odds of prevalent atrial fibrillation in men and women, respectively. In prospective analysis, this association remained stable in men (odds ratio (OR) 1.25, 1.07-1.44), while in women no association was observed (OR 1.03, 0.89-1.18). Conclusions The findings suggest that noise annoyance can increase the risk of incident atrial fibrillation in a large population-based cohort and that men may be more sensitive to the adverse effects of noise annoyance with regard to the risk of atrial fibrillation.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology–Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany,Leibniz Institute for Resilience Research (LIR), Mainz, Germany,*Correspondence: Omar Hahad
| | - Manfred E. Beutel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Donya A. Gilan
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany,Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Julian Chalabi
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander K. Schuster
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Emilio Gianicolo
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany,Institute of Clinical Physiology, National Research Council, Lecce, Italy
| | - Karl J. Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Klaus Lieb
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany,Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peter R. Galle
- Department of Internal Medicine, Gastroenterology and Hepatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Philipp S. Wild
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany,Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany,Institute of Molecular Biology (IMB), Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology–Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology–Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
24
|
Hahad O, Herzog J, Röösli M, Schmidt FP, Daiber A, Münzel T. Acute Exposure to Simulated Nocturnal Train Noise Leads to Impaired Sleep Quality and Endothelial Dysfunction in Young Healthy Men and Women: A Sex-Specific Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13844. [PMID: 36360723 PMCID: PMC9657624 DOI: 10.3390/ijerph192113844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
A series of human field studies demonstrated that simulated nocturnal traffic noise exposure impaired sleep quality and endothelial function, which could be significantly improved after intake of vitamin C in case of endothelial function. However, it remains unclear whether these changes follow a sex-specific pattern. Thus, we aimed to analyze the effect of simulated nocturnal train noise exposure on sleep quality, endothelial function and its associated changes after vitamin C intake, and other hemodynamic and biochemical parameters in young healthy men and women. We used data from a randomized crossover study, wherein 70 healthy volunteers (50% women) were each exposed to one control pattern (regular background noise) and two different train noise scenarios (30 or 60 train noise events per night, with average sound pressure levels of 52 and 54 dB(A), respectively, and peak sound level of 73-75 dB(A)) in their homes for three nights. After each night, participants visited the study center for the measurement of endothelial function as well as other hemodynamic and biochemical parameters. Sleep quality measured via self-report was significantly impaired after noise 30 and noise 60 nights in both men and women (p < 0.001 vs. control). Likewise, endothelial function measured by flow-mediated dilation (FMD) was significantly impaired after noise 30 and noise 60 nights in both men and women (p < 0.001 vs. control). While in women, vitamin C intake significantly improved FMD after both noise 30 and noise 60 study nights compared to control nights, no significant changes were observed in men. Exposure to simulated nocturnal train noise impairs sleep quality and endothelial function in both men and women, whereas a significant improvement of endothelial function after noise exposure and vitamin C intake could only be observed in women. These findings suggest for the first time that in men other mechanisms such as oxidative stress causing endothelial dysfunction may come into play.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55131 Mainz, Germany
| | - Johannes Herzog
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Martin Röösli
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Frank P. Schmidt
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| |
Collapse
|
25
|
Song Q, Guo X, Sun C, Su W, Li N, Wang H, Liang Q, Liang M, Ding X, Sun Y. Association between noise exposure and atrial fibrillation: a meta-analysis of cohort studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57030-57039. [PMID: 35727516 DOI: 10.1007/s11356-022-21456-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Noise has become an important environmental risk factor. Some studies have shown that exposure to noise can cause coronary artery disease, high blood pressure, and stroke. At present, the relationship between noise exposure and the risk of atrial fibrillation (AF) is inconsistent. Based on previous studies, we proposed the hypothesis that noise exposure is associated with a higher risk of AF. Eight databases, such as PubMed, Embase, Cochrane Library, and Web of Science, were searched from inception until January 5, 2022. The pooled relative risk (RR) with its 95% confidence interval (CI) was used to estimate the association between AF and highest noise level and per 10 dB (A) increment of noise. According to the size of heterogeneity, the random or fixed effects model was adopted as the pooling method. A total of 5 articles comprising 3,866,986 participants were identified, providing 7 estimates of highest noise level and 6 estimates of per 10 dB (A) increment of noise exposure. For the highest noise level, there was a statistically significant association between noise exposure and the risk of AF (RR = 1.05; 95% CI: 1.02-1.09; I2 = 44.1%). In addition, we found the risk of AF for per 10 dB (A) increment of noise exposure was 1.01 (95% CI: 1.00-1.02; I2 = 81.3%). In summary, our study found that noise exposure was associated with a higher risk of AF. More high-quality studies are needed in the future to confirm these conclusions given the limitations of study.
Collapse
Affiliation(s)
- Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiuxiu Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Chaohu Hospital, Anhui Medical University, No. 64 Chaohubei Road, Hefei, 238006, Anhui, People's Republic of China.
- Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
26
|
Collaborative Routing Optimization Model for Reverse Logistics of Construction and Demolition Waste from Sustainable Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127366. [PMID: 35742614 PMCID: PMC9223688 DOI: 10.3390/ijerph19127366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 02/05/2023]
Abstract
The construction industry is developing rapidly along with the acceleration of urbanization but accompanied by an increased amount of construction and demolition waste (CDW). From the perspective of sustainability, the existing research has mainly focused on CDW treatment or landfill disposal, but the challenge of reverse logistics of CDW recycling that provides overall CDW route planning for multiple participants and coordinates the transportation process between multiple participants is still unclear. This paper develops an optimization model for multi-depot vehicle routing problems with time windows (MDVRPTW) for CDW transportation that is capable of coordinating involved CDW participants and suggesting a cost-effective, environment-friendly, and resource-saving transportation plan. Firstly, economic cost, environmental pollution, and social impact are discussed to establish this optimization-oriented decision model for MDVRPTW. Then, a method combined with a large neighborhood search algorithm and a local search algorithm is developed to plan the transportation route for CDW reverse logistics process. With the numerical experiments, the computational results illustrate the better performance of this proposed method than those traditional methods such as adaptive large neighborhood search algorithm or adaptive genetic algorithm. Finally, a sensitivity analysis considering time window, vehicle capacity, and carbon tax rate is conducted respectively, which provides management implications to support the decision-making of resource utilization maximization for enterprises and carbon emission management for the government.
Collapse
|
27
|
Thacher JD, Poulsen AH, Hvidtfeldt UA, Raaschou-Nielsen O, Brandt J, Geels C, Khan J, Münzel T, Sørensen M. Long-Term Exposure to Transportation Noise and Risk for Type 2 Diabetes in a Nationwide Cohort Study from Denmark. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:127003. [PMID: 34855467 PMCID: PMC8638828 DOI: 10.1289/ehp9146] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Epidemiologic studies have linked transportation noise to increased morbidity and mortality, particularly for cardiovascular outcomes. However, studies investigating metabolic outcomes such as diabetes are limited and have focused only on noise exposures estimated for the loudest residential façade. OBJECTIVES We aimed to examine the influence of long-term residential exposure to transportation noise at the loudest and quietest residential façades and the risk for type 2 diabetes. METHODS Road traffic and railway noise exposures (Lden) at the most and least exposed façades were estimated for all dwellings in Denmark during 1990-2017. Aircraft noise was estimated in 5-dB categories. Ten-year time-weighted mean noise exposures were estimated for 3.56 million individuals ≥35 years of age. From 2000 to 2017, 233,912 incident cases of type 2 diabetes were identified using hospital and prescription registries, with a mean follow-up of 12.9 y. We used Cox proportional hazards models adjusting for individual- and area-level covariates and long-term residential air pollution. The population-attributable fraction (PAF) was also computed. RESULTS Hazard ratios (HRs) and 95% confidence intervals (CIs) for type 2 diabetes in association with 10-dB increases in 10-y mean road traffic noise at the most and least exposed façades, respectively, were 1.05 (95% CI: 1.04, 1.05) and 1.09 (95% CI: 1.08, 1.10). Following subsequent adjustment for fine particulate matter [particulate matter ≤2.5μm in aerodynamic diameter] (10-y mean), the HRs (CIs) were 1.03 (95% CI: 1.03, 1.04) and 1.08 (95% CI: 1.07, 1.09), respectively. For railway noise, the HRs per 10-dB increase in 10-y mean exposure were 1.03 (95% CI: 1.02, 1.04) and 1.02 (95% CI: 1.01, 1.04) for the most and least exposed façades, respectively. Categorical models supported a linear exposure-outcome relationship for road traffic noise and, to a lesser extent, for railway noise. Aircraft noise >45 dB was associated with a 1-4% higher likelihood of type 2 diabetes compared with those who were unexposed. We found road traffic and railway noise associated with a PAF of 8.5% and 1.4%, respectively, of the diabetes cases. DISCUSSION Long-term exposure to road, railway, and possibly aircraft traffic noise was associated with an increased risk of type 2 diabetes in a nationwide cohort of Danish adults. Our findings suggest that diabetes should be included when estimating the burden of disease due to transportation noise. https://doi.org/10.1289/EHP9146.
Collapse
Affiliation(s)
- Jesse D. Thacher
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Aslak H. Poulsen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Ulla A. Hvidtfeldt
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Ole Raaschou-Nielsen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jibran Khan
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Danish Big Data Centre for Environment and Health, Aarhus University, Roskilde, Denmark
| | - Thomas Münzel
- Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Mette Sørensen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|