1
|
Zheng Z, Xu M, Wang Y, Wang L, Zhou Y, Deng Y, Yu K. Air Pollution and Oral Health: An Overall Insight From Genetic Causality. Int Dent J 2025; 75:1979-1987. [PMID: 39904706 DOI: 10.1016/j.identj.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND A growing body of epidemiological data consistently links air pollution to various adverse health outcomes. However, the potential connection between air pollution and the risk of oral diseases remains underexplored. METHODS This study utilized a two-sample Mendelian randomization approach to assess the causal relationship between air pollution and oral diseases. Six categories of air pollution were considered as exposures: nitrogen oxides (NOx), nitrogen dioxide (NO2), particulate matter (PM2.5, PM2.5-10, PM10), and PM2.5 absorbance. The outcomes included 18 oral health-related diseases drawn from the Finngen R10 dataset, the Gene-Lifestyle Interactions in Dental Endpoints consortium, and the Oncoarray oral cavity and oropharyngeal cancer consortium. Sensitivity analyses were performed to validate the primary inverse-variance weighted estimates using methods such as weighted median, weighted mode, and MR Egger. RESULTS The inverse-variance weighted analysis demonstrated a detrimental effect of air pollution on multiple oral health conditions, yielding 5 positive associations including PM2.5 with oral leukoplakia, gingivitis and periodontitis; PM2.5-10 with pulp and periapical diseases, and NO2 with gingivitis and periodontitis, and oral cavity, salivary glands and jaws diseases. Sensitivity tests showed no evidence of heterogeneity or pleiotropy, affirming the robustness of the findings. CONCLUSION This study highlights the detrimental impact of air pollution on oral health, emphasizing the need for further research into the underlying mechanisms and interactions. These findings reinforce the importance of implementing environmental interventions to mitigate the associated risks for oral health.
Collapse
Affiliation(s)
- Ziyang Zheng
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Mingzhang Xu
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Yifei Wang
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Lan Wang
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Yang Zhou
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Yunyi Deng
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Ke Yu
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Peng H, Wang X, Liao Y, Lan L, Wang D, Xiong Y, Xu L, Liang Y, Luo X, Xu Y, Li F, Chen H, Ning C. Long-term exposure to ambient NO 2 increase oral cancer prevalence in Southern China: a 3-year time-series analysis. Front Public Health 2025; 13:1484223. [PMID: 40171440 PMCID: PMC11958973 DOI: 10.3389/fpubh.2025.1484223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Background While the correlation between cancer and air pollutants is well-established, research on the delayed effects of NO2 on oral cancer remains limited. Methods We collected data on nitrogen dioxide (NO2) along with diagnosed cases of oral cancer in Guangxi, China, and analyzed the correlation between exposure to NO2 and the prevalence of oral cancer. Results The study included 1,841 participants diagnosed with oral malignancies, consisting of 1,179 males (64.0%) and 662 females (36.0%), with a mean age of 55.9 ± 14.0 years. The NO2 concentration is 20.2 ± 10.4 μg/m3. The highest cumulative effects of NO2 exposure were observed at a 3-year cumulative lag, with a relative risk (RR) of 1.115 (95% CI: 1.102-1.128). For males, the most pronounced effect of NO2 also occurred at a 3-year lag (RR = 1.110, 95% CI: 1.094-1.127). Similarly, among females, the significant cumulative impact of NO2 was found at a 3-year lag (RR = 1.123, 95% CI: 1.101-1.145). For individuals under 60 years of age, the cumulative impact of NO2 peaked at the same 3-year lag (RR = 1.102, 95% CI: 1.085-1.120). For individuals aged 60 and above, the highest cumulative impact of NO2 was also detected at a 3-year lag (RR = 1.132, 95% CI: 1.112-1.152). For the group with normal BMI, the highest cumulative effect of NO2 exposure was also observed at the 3-year lag period (RR = 1.289, 95% CI: 1.217-1.365), consistent with the findings for other groups. Conclusion These findings suggest a significant lagged effect of long-term NO2 exposure on oral cancer, with varying associations between NO2 and oral cancer across different ages and genders.
Collapse
Affiliation(s)
- Hongbin Peng
- School of Nursing, Guangxi Medical University, Nanning, China
| | - Xiaoxia Wang
- School of Nursing, Guangxi Medical University, Nanning, China
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Ying Liao
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Lichong Lan
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Danni Wang
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Yaohuan Xiong
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Ling Xu
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Yinxia Liang
- School of Nursing, Guangxi Medical University, Nanning, China
- The Second Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xia Luo
- School of Nursing, Guangxi Medical University, Nanning, China
| | - Yunan Xu
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Feiyan Li
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Hao Chen
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Chuanyi Ning
- School of Nursing, Guangxi Medical University, Nanning, China
- The Second Affiliated Hospital, Guangxi Medical University, Nanning, China
- Key Laboratory of AIDS Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Chen S, Yu W, Shen Y, Lu L, Meng X, Liu J. Unraveling the mechanisms underlying air pollution-induced dysfunction of the oral-gut-brain axis: implications for human health and well-being. ASIAN BIOMED 2025; 19:21-35. [PMID: 40231163 PMCID: PMC11994223 DOI: 10.2478/abm-2025-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Air pollution exposure has become an international health issue that poses many risks to life and health. The bidirectional regulatory network, known as the oral-gut-brain axis connects the oral cavity, intestine, and central nervous system, as well as its influence on health outcomes from exposure to air pollution is receiving increased attention. This article systematically details the epidemiological evidence linking air pollutants to diseases affecting the oral, respiratory, intestinal, and nervous systems, while also explaining the route of air pollutants via the oral-gut-brain axis. The oral-gut-brain axis anomalies resulting from air pollution and their underlying molecular processes are also covered. The study provides a fresh viewpoint on how exposure to air pollution affects health and investigates cutting-edge preventative and therapeutic techniques.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital,Huzhou, 313008, China
| | - Wenlei Yu
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital,Huzhou, 313008, China
| | - Yiwen Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Linjie Lu
- Department of Stomatology, Haining Hospital of Traditional Chinese Medicine,Jiaxing, 314400, China
| | - Xiangyong Meng
- Department of Stomatology, Medical School, Huzhou University, Huzhou, 313000, China
- Department of Stomatology, The First Affiliated Hospital of Huzhou University, Huzhou, 313099, China
| | - Jun Liu
- Department of Stomatology, Medical School, Huzhou University, Huzhou, 313000, China
- Department of Stomatology, The First Affiliated Hospital of Huzhou University, Huzhou, 313099, China
| |
Collapse
|
4
|
Kausar S, Tongchai P, Yadoung S, Sabir S, Pata S, Khamduang W, Chawansuntati K, Yodkeeree S, Wongta A, Hongsibsong S. Impact of fine particulate matter (PM 2.5) on ocular health among people living in Chiang Mai, Thailand. Sci Rep 2024; 14:26479. [PMID: 39489750 PMCID: PMC11532337 DOI: 10.1038/s41598-024-77288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Considering the limited information on the impact of PM2.5 content on ocular health, a follow-up study was conducted on 50 healthy adults. Samples were collected twice, once before the PM2.5 exposure season and again after exposure. Daily PM2.5 concentration data was gathered from Thung Satok monitoring station. All subjects completed the self-structured ocular symptom questionnaire. The concentrations of 1-OHP were determined using HPLC-FLD. Logistic regression analysis investigated the relationship between PM2.5 toxicity and ocular symptoms. The findings revealed that daily PM2.5 concentrations surpassed the WHO-recommended range by around threefold. Exposure to PM2.5 significantly raised the likelihood of ocular redness (adjusted OR: 12.39, 95% CI), watering (adjusted OR: 2.56, 95% CI), and dryness (adjusted OR: 5.06, 95% CI). Additionally, these symptoms had an exposure-response relationship with increasing 1-OHP levels. Ocular symptoms worsened in frequency and severity during the high PM2.5 season, showing a strong link to elevated PM2.5 levels. Lymphocyte counts were also positively correlated with redness, watering, and dryness during high PM2.5 exposure. In conclusion, our study shows that subjects exposed to higher PM2.5 levels presented more significant ocular surface alterations.
Collapse
Affiliation(s)
- Sobia Kausar
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Phanika Tongchai
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sumed Yadoung
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Environmental, Occupational Health Sciences and NCD Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Shamsa Sabir
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supansa Pata
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Woottichai Khamduang
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kriangkrai Chawansuntati
- Research Center for Molecular and Cell Biology, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Anurak Wongta
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Environmental, Occupational Health Sciences and NCD Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Surat Hongsibsong
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
5
|
Wang YC, Ching WM, Lee CL. Health risks of environmentally persistent free radicals in atmospheric particulate matter during the spring festival travel season in Tainan, Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63301-63311. [PMID: 39480577 DOI: 10.1007/s11356-024-35436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Environmentally persistent free radicals (EPFRs) and polycyclic aromatic hydrocarbons (PAHs) are persistent pollutants in atmospheric particulate matter that are detrimental to human health. This study collected atmospheric particulate matter during and after the spring festival travel season in Tainan, Taiwan, from various locations and analyzed the carbon composition and PAH isomeric ratios to identify the sources. In this study, EPFR concentrations were measured using electron paramagnetic resonance spectroscopy, with the highest concentration found to be 3.04 × 10(12) spins/m3. EPFRs contained predominantly oxygen-centered radicals in PM2.5, which are mainly existed in PM1. The results show that EPFR concentrations on PM, measured per unit volume (spins/m3) or mass (spins/g), were highest during the spring festival travel season. The daily inhalation exposure to the sum of EPFRs and PAHs in PM2.5 was estimated to be equivalent to inhaling 0.11-0.15 cigarette tar EPFRs per day. This report is the first to document EPFRs in environmental atmospheric particulate matters in Taiwan, which has significantly contributed to local air pollution control and reduced exposure risks to public health in Tainan.
Collapse
Affiliation(s)
- Yu-Chieh Wang
- Department of Marine Environment and Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Wei-Min Ching
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Chon-Lin Lee
- Department of Marine Environment and Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
| |
Collapse
|
6
|
Sinjari B, Santilli M, Di Carlo P, Aruffo E, Caputi S. The Correlation between Oral Health and Air Pollution: A Systematic Review. Dent J (Basel) 2024; 12:215. [PMID: 39057002 PMCID: PMC11275324 DOI: 10.3390/dj12070215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
This systematic review assessed to evaluate the potential correlation between oral health and air pollution. To the best of the authors' knowledge, this is the first systematic review endeavoring to compare air pollution and oral health. A systematic search was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) statement and employed the PICO(S) approach (Patient or Population, Intervention, Control or Comparison, Outcome, and Study types). The search was limited to English-language articles, and publications within a 15-year timeframe were included in the electronic search. A comprehensive search was conducted across PubMed, Scopus, Embase, and Web of Science databases, spanning the years 2008 to 2023, resulting in a total of 4983 scientific articles. A final selection of 11 scientific papers was made based on their study type and the specific air pollutants examined. The selected papers analyzed various air pollutants associated with health-related diseases, including Ozone, Nitrogen Dioxide, Nitrogen Monoxide, Carbon Monoxide, sulfur dioxide, and particulate matter. Three out of eleven of the reviewed studies assert a strong correlation between air pollutants and oral diseases, specifically periodontitis. However, the exact biological mechanisms underlying this correlation do not seem to be fully understood, indicating the need for further comprehensive investigation in this regard. Dentists can contribute to the collective effort by educating their patients about the oral health implications of air pollution, thereby supporting initiatives aimed at promoting environmental and health sustainability.
Collapse
Affiliation(s)
- Bruna Sinjari
- Unit of Prostodontics, Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (M.S.); (S.C.)
| | - Manlio Santilli
- Unit of Prostodontics, Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (M.S.); (S.C.)
| | - Piero Di Carlo
- Center of Advanced Studies and Technology (CAST), University of “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (P.D.C.); (E.A.)
| | - Eleonora Aruffo
- Center of Advanced Studies and Technology (CAST), University of “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (P.D.C.); (E.A.)
| | - Sergio Caputi
- Unit of Prostodontics, Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (M.S.); (S.C.)
| |
Collapse
|
7
|
Shen Q, Yu H, Liu Y, Li G, An T. Combined exposure of MAHs and PAHs enhanced amino acid and lipid metabolism disruption in epithelium leading asthma risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123261. [PMID: 38159626 DOI: 10.1016/j.envpol.2023.123261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Monoaromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) are ubiquitous air pollutants from industry, with multiple adverse effects on respiratory system. However, the underlying mechanisms of their mixture to induce asthma is still unclear. Here, we examined mixture of 8 MAHs, mixture of 16 PAHs and a total mixture (MIX) on human bronchial epithelial (16-HBE) cells. Exposure to MIX resulted in increased expressions of asthma alarm cytokines (TSLP, IL-25 and IL-33), indicating potential asthma risk. Exposure to MIX led to significant upregulation of transcriptional level of oxidative stress and inflammation biomarkers through aryl hydrocarbon receptor activation, including SOD-2, NQO-1, IL-1β, IL-6 and IL-8 with 3.1, 19.9, 3.5, 23.4, 18.7, 28.1-fold change, indicated asthma related epithelial cell lesions. A total of 25, 49 and 59 differential metabolites were identified in cells response to MAH, PAH and MIX exposure, respectively, and enrichment analysis demonstrated MIX exposure disturbing alanine, aspartate and glutamate metabolism, glutathione metabolism, methionine metabolism and sphingolipid metabolism, involved in antioxidative defense and inflammation response. Combined exposure of MAHs and PAHs may result in increased toxic risks, and provide evidence to asthma onset and deterioration.
Collapse
Affiliation(s)
- Qianyong Shen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yalin Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Kim J, Chung SJ, Kim WJ. Biomarkers of the relationship of particulate matter exposure with the progression of chronic respiratory diseases. Korean J Intern Med 2024; 39:25-33. [PMID: 38225823 PMCID: PMC10790040 DOI: 10.3904/kjim.2023.393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024] Open
Abstract
A high level of particulate matter (PM) in air is correlated with the onset and development of chronic respiratory diseases. We conducted a systematic literature review, searching the MEDLINE, EMBASE, and Cochrane databases for studies of biomarkers of the effect of PM exposure on chronic respiratory diseases and the progression thereof. Thirty-eight articles on biomarkers of the progression of chronic respiratory diseases after exposure to PM were identified, four of which were eligible for review. Serum, sputum, urine, and exhaled breath condensate biomarkers of the effect of PM exposure on chronic obstructive pulmonary disease (COPD) and asthma had a variety of underlying mechanisms. We summarized the functions of biomarkers linked to COPD and asthma and their biological plausibility. We identified few biomarkers of PM exposure-related progression of chronic respiratory diseases. The included studies were restricted to those on biomarkers of the relationship of PM exposure with the progression of chronic respiratory diseases. The predictive power of biomarkers of the effect of PM exposure on chronic respiratory diseases varies according to the functions of the biomarkers.
Collapse
Affiliation(s)
- Junghyun Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong,
Korea
| | - Soo Jie Chung
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong,
Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Chuncheon,
Korea
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon,
Korea
| |
Collapse
|
9
|
Sarikloglou E, Fouzas S, Paraskakis E. Prediction of Asthma Exacerbations in Children. J Pers Med 2023; 14:20. [PMID: 38248721 PMCID: PMC10820562 DOI: 10.3390/jpm14010020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Asthma exacerbations are common in asthmatic children, even among those with good disease control. Asthma attacks result in the children and their parents missing school and work days; limit the patient's social and physical activities; and lead to emergency department visits, hospital admissions, or even fatal events. Thus, the prompt identification of asthmatic children at risk for exacerbation is crucial, as it may allow for proactive measures that could prevent these episodes. Children prone to asthma exacerbation are a heterogeneous group; various demographic factors such as younger age, ethnic group, low family income, clinical parameters (history of an exacerbation in the past 12 months, poor asthma control, poor adherence to treatment, comorbidities), Th2 inflammation, and environmental exposures (pollutants, stress, viral and bacterial pathogens) determine the risk of a future exacerbation and should be carefully considered. This paper aims to review the existing evidence regarding the predictors of asthma exacerbations in children and offer practical monitoring guidance for promptly recognizing patients at risk.
Collapse
Affiliation(s)
| | - Sotirios Fouzas
- Department of Pediatrics, University of Patras Medical School, 26504 Patras, Greece;
| | - Emmanouil Paraskakis
- Paediatric Respiratory Unit, Paediatric Department, University of Crete, 71500 Heraklion, Greece
| |
Collapse
|
10
|
He L, Evans S, Norris C, Barkjohn K, Cui X, Li Z, Zhou X, Li F, Zhang Y, Black M, Bergin MH, Zhang J(J. Associations between personal apparent temperature exposures and asthma symptoms in children with asthma. PLoS One 2023; 18:e0293603. [PMID: 37956155 PMCID: PMC10642815 DOI: 10.1371/journal.pone.0293603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Ambient temperature and relative humidity can affect asthma symptoms. Apparent temperature is a measure of temperature perceived by humans that takes into account the effect of humidity. However, the potential link between personal exposures to apparent temperature and asthma symptoms has not been investigated. We conducted a panel study of 37 asthmatic children, aged 5-11 years, during an early spring season (average daily ambient temperature: 14°C, range: 7-18°C). Asthma symptoms were measured 4 times for each participant with a 2-week interval between consecutive measurements using the Childhood Asthma-Control Test (C-ACT). Average, minimum, and maximum personal apparent temperature exposures, apparent temperature exposure variability (TV), and average ambient temperature were calculated for the 12 hours, 24 hours, week, and 2 weeks prior to each visit. We found that a 10°C lower in 1-week and 2-week average & minimum personal apparent temperature exposures, TV, and average ambient temperature exposures were significantly associated with lower total C-ACT scores by up to 2.2, 1.4, 3.3, and 1.4 points, respectively, indicating worsened asthma symptoms. Our results support that personal apparent temperature exposure is potentially a stronger driver than ambient temperature exposures for the variability in asthma symptom scores. Maintaining a proper personal apparent temperature exposure could be an effective strategy for personalized asthma management.
Collapse
Affiliation(s)
- Linchen He
- Department of Community and Population Health, College of Health, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Shoshana Evans
- Department of Community and Population Health, College of Health, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Christina Norris
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Karoline Barkjohn
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, United States of America
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Xiaoxing Cui
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Zhen Li
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojian Zhou
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Marilyn Black
- Underwriters Laboratories, Inc, Marietta, Georgia, United States of America
| | - Michael H. Bergin
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, United States of America
| | - Junfeng (Jim) Zhang
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- Duke Kunshan University, Kunshan, Jiangsu Province, China
| |
Collapse
|
11
|
Huang K, Feng LF, Liu ZY, Li ZH, Mao YC, Wang XQ, Zhao JW, Zhang KD, Li YQ, Wang J, Yu WJ, Cheng X, Yang XY, Li J, Zhang XJ. The modification of meteorological factors on the relationship between air pollution and periodontal diseases: an exploration based on different interaction strategies. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8187-8202. [PMID: 37552412 DOI: 10.1007/s10653-023-01705-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
We aimed to characterize the association between air pollutants exposure and periodontal diseases outpatient visits and to explore the interactions between ambient air pollutants and meteorological factors. The outpatient visits data of several large stomatological and general hospitals in Hefei during 2015-2020 were collected to explore the relationship between daily air pollutants exposure and periodontal diseases by combining Poisson's generalized linear model (GLMs) and distributed lag nonlinear model (DLNMs). Subgroup analysis was performed to identify the vulnerability of different populations to air pollutants exposure. The interaction between air pollutants and meteorological factors was verified in both multiplicative and additive interaction models. An interquartile range (IQR) increased in nitrogen dioxide (NO2) concentration was associated with the greatest lag-specific relative risk (RR) of gingivitis at lag 3 days (RR = 1.087, 95% CI 1.008-1.173). Fine particulate matter (PM2.5) exposure also increased the risk of periodontitis at the day of exposure (RR = 1.049, 95% CI 1.004-1.096). Elderly patients with gingivitis and periodontitis were both vulnerable to PM2.5 exposure. The interaction analyses showed that exposure to high levels of NO2 at low temperatures was related to an increased risk of gingivitis, while exposure to high levels of NO2 and PM2.5 may also increase the risk of gingivitis and periodontitis in the high-humidity environment, respectively. This study supported that NO2 and PM2.5 exposure increased the risk of gingivitis and periodontitis outpatient visits, respectively. Besides, the adverse effects of air pollutants exposure on periodontal diseases may vary depending on ambient temperature and humidity.
Collapse
Affiliation(s)
- Kai Huang
- The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230032, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Lin-Fei Feng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230032, China
| | - Zhe-Ye Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhen-Hua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yi-Cheng Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xin-Qiang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jia-Wen Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kang-Di Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ying-Qing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jie Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Wen-Jie Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xin Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xi-Yao Yang
- The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230032, China
| | - Jiong Li
- College and Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- College and Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
12
|
Tian J, Wang X, Shi H, Wu H, Wang C, Liu N, Guan L, Zhang Z. Sestrin2/Keap1/Nrf2 pathway regulates mucus hypersecretion in pulmonary epithelium induced by traffic-related PM 2.5 and water-soluble extracts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115455. [PMID: 37708689 DOI: 10.1016/j.ecoenv.2023.115455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
The involvement of fine particulate matter (PM2.5) exposure in the progression of asthma has been extensively discussed in epidemiological and experimental evidence, which aroused widespread attention. Asthma is characterized by mucus hypersecretion. This study investigates the underlying toxic mechanism of traffic-related PM2.5 (TRPM2.5) and water-soluble extracts (WSE) on mucus hypersecretion in the lungs of rats with asthma and 16HBE cells. The ovalbumin-induced rats were administrated by instillation of TRPM2.5 and WSE in the trachea once three days for eight times. The results showed that TRPM2.5 and WSE had an adverse impact on mucus secretion. Specifically, conspicuous mucus stains and increased goblet cells in the bronchial epithelium by PAS staining were found in lung tissues of rats with asthma; MUC5AC gene and protein expression levels in lung tissues of rats with asthma and 16HBE cells were elevated. In addition, TRPM2.5 and WSE triggered oxidative damage via upregulation of malondialdehyde and myeloperoxidase as well as activation of the Sestrin2/Keap1/Nrf2 signaling pathway. Conversely, the knockdown of Sestrin2 effectively inhibited TRPM2.5 and WSE-induced mucus hypersecretion, oxidative stress, and Keap1/Nrf2 signaling pathway and its downstream target gene NQO1. Collectively, it was demonstrated that TRPM2.5 and WSE induced mucus hypersecretion mediated by the Sestrin2/Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Jiayu Tian
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Xin Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Yantai Center for Disease Control and Prevention, 264003 Yantai, Shandong, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Hao Shi
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Hongyan Wu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Nannan Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Linlin Guan
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China.
| |
Collapse
|
13
|
Li W, Zong X, He YS, Meng T, Tang Y, Yang Q, Huang Q, Wang Y, Li S, Pan HF. Association between short-term exposure to ambient air pollution and outpatient visits for pulpitis in Hefei, China: a time series study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28095-7. [PMID: 37273044 DOI: 10.1007/s11356-023-28095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Evidence suggests a possible association between ambient air pollutants and oral diseases. Nevertheless, information regarding the relationship between air pollutants and pulpitis is scarce and inconclusive. In view of this, the present study aimed to investigate the relationship between short-term exposure to air pollution and outpatient visits for pulpitis. Daily data on outpatient visits for pulpitis, air pollutants, and meteorological data in Hefei, China, was collected from January 1, 2015 to December 31, 2021. The association between exposure to air pollutants and pulpitis outpatient visits was evaluated using distributed lag non-linear model (DLNM) and a generalized linear model (GLM). Furthermore, stratified analyses were performed by gender, age and season. A total of 93,324 records of outpatient visits for pulpitis were included in this study. The results showed that exposure to NO2, PM2.5, and CO were positively correlated with an increased risk of pulpitis outpatient visits. Each 10 μg/m3 increase in NO2 and PM2.5 concentration, at lag 0-2 day, was associated with a 2.4% (relative risk (RR) = 1.024, 95% confidence interval (CI): 1.014-1.035) and 0.5% (RR = 1.005, 95% CI: 1.000-1.010) increase in pulpitis outpatient visits, respectively. With a 1 mg/m3 increase in CO concentration, the risk of pulpitis outpatient visits increased by 9.1% (RR = 1.091, 95% CI: 1.031-1.154, lag 0-1 day). Intriguingly, exposure to O3 was associated with a decreased risk of pulpitis outpatient visits (RR = 0.990, 95% CI: 0.984-0.995, lag 0-5 day). Subgroup analysis revealed that in the warm season, exposure to PM2.5, O3, and CO was related with a significantly higher outpatient risk of pulpitis than in the cold season. Additionally, the influence of PM2.5 and CO exposure at age < 65 years was significantly stronger than at age ≥ 65 years. In conclusion, exposure to ambient NO2, PM2.5, and CO is associated with an increase in pulpitis outpatient visits in Hefei, China. Conversely, exposure to O3 reduces the risk of outpatient visits for pulpitis. Age and season are effect modifiers of these associations.
Collapse
Affiliation(s)
- Wuli Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Xirun Zong
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Tiantian Meng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Ying Tang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Qi Yang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Qing Huang
- Department of Oral and Maxillofacial Surgery, Hefei Second People's Hospital, Hefei, 230011, China
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Song Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Hai-Feng Pan
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|