1
|
Im SJ, Viet ND, Lee BT, Jang A. An efficient data-driven desalination approach for the element-scale forward osmosis (FO)-reverse osmosis (RO) hybrid systems. ENVIRONMENTAL RESEARCH 2023; 237:116786. [PMID: 37517485 DOI: 10.1016/j.envres.2023.116786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Freshwater shortages are a consequence of the rapid increase in population, and desalination of saltwater has gained popularity as an alternative water treatment method in recent years. To date, the forward osmosis-reverse osmosis (FO-RO) hybrid technology has been proposed as a low-energy and environmentally friendly next-generation seawater desalination process. Scaling up the FO-RO hybrid system significantly affects the success of a commercial-scale process. However, neither the ideal structure nor the membrane components for plate-and-frame FO (PFFO) and spiral-wound FO (SWFO) are known. This study aims to explore and optimize the performance of SWFO-RO and PFFO-RO hybrid element-scale systems in the desalination of seawater. The results showed that both hybrid systems could yield high water recovery under optimal operating conditions. The prediction of the system performance (water flux and reverse salt flux) by artificial intelligence was considerably better (R > 0.99, root mean square error <5%) than that of conventional mass balance models. A Markov-based decision tree successfully classified the water flux level in hybrid systems. An optimal set of operational conditions for each membrane system was proposed. For example, in RO, a combination of the feed solution (FS) flow rate (≥17.5 L/min), FS concentration (<17,500 ppm), and operation pressure (<35 bar) would result in high water permeability (>40 LMH). In addition, five SWFO elements and four PFFO elements should be the optimal numbers of FO membranes in the hybrid FO-RO system for effective seawater desalination, especially for long-term operation.
Collapse
Affiliation(s)
- Sung-Ju Im
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Nguyen Duc Viet
- Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon, 21985, Republic of Korea
| | - Byung-Tae Lee
- Central Research Facilities, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 6100, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
2
|
Zhang W, Yu S, Ning R, Li P, Ji X, Xu Y. Treatment of high-salinity brine containing dissolved organic matters by vacuum membrane distillation: A fouling mitigation approach via microbubble aeration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118142. [PMID: 37182485 DOI: 10.1016/j.jenvman.2023.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
In this study, a laboratory-scale vacuum membrane distillation (VMD) system coupled with microbubble aeration (MBA) was developed for the treatment of high-salinity brine containing organic matters. Herein, at the beginning, feedwater only containing model organics such as humic acid (HA), bovine serum albumin (BSA) and sodium alginate (SA) was utilized to investigate the organic-fouling behavior, results indicated that the permeate flux was not affected by a thin and loose contaminated layer deposited on the membrane surface. Furthermore, dissolved organics in the feed brine inhibited the occurrence of membrane wetting due to the existence of a compact and protective crystals/organic-fouling layer, which can prevent the intrusion of scaling ions into membrane substrates. Besides, organics in the feedwater have a high tendency to adsorb on the membrane surface based on molecular dynamics simulations, thus, forming an organic-fouling layer prior to inorganic scaling. Finally, the effect of MBA on fouling alleviation was evaluated in VMD system, nearly 50% of salt precipitation from fouled membrane was effectively removed with the introduction of MBA, which can be ascribed to a combination of mechanisms, including surface shear forces and electrostatic attractions induced by microbubbles, meanwhile, about 2.2% of the total energy was only consumed, when using MBA. Together, these results demonstrated that MBA was a promising approach to alleviate membrane fouling in VMD.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Shuili Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Rongsheng Ning
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Pan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Xingli Ji
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
3
|
Liu S, Zhang Z, Yan B, Yin S, Mao Y, Liu Y, Feng L, Zhang L. Utilization of Reverse Osmosis Concentrated Brine to Produce Novel Excellent Deicers: Critical Assessment of Deicing Performance and Environmental Impact. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Musarurwa H, Tavengwa NT. Cellulose composites tethered with smartness and their application during wastewater remediation. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Shaaban S, Yahya H. Identification of cost and energy effective seawater membranes for use under hot climate conditions. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10758. [PMID: 35770870 DOI: 10.1002/wer.10758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Seawater desalination using a cost-effective reverse osmosis system is crucial for hot climate countries suffering from water scarcity. The most favorable seawater membrane characteristics were identified under typical Egyptian operating conditions. Twelve different commercially available membrane elements were investigated. A reverse osmosis system was designed and simulated using available software (e.g., ROSA and IMSDesign). The characteristics of the most promising membranes were identified for operation at Matruh (Mediterranean Sea) and Sharm El-Sheikh (Red Sea). The present work shows that the lowest cost of seawater desalination is obtained with membranes having high salt rejection, high permeate flow, high membrane active area, and permeate flux greater than 0.914 m3 /(d·m2 ). Moreover, the cost of seawater desalination in summer is lower than in winter by 5% for Matruh and 2.7% for Sharm El-Sheikh. However, the impact of water salinity on the cost and specific energy consumption is higher than that of the seawater temperature. The cost of Mediterranean seawater desalination is lower than that of the Red Sea by 10.6%. Cost analysis at five different locations in Egypt shows that the highest cost takes place at Suez (Gulf of Suez), and the lowest cost occurs at Matruh (Mediterranean Sea). PRACTITIONER POINTS: Twelve different membranes were investigated for use under typical hot climate conditions. The cost of seawater reverse osmosis (RO) desalination is lower in summer by 2.7%-5% compared with winter. RO desalination costs up to 10.6% less for the Mediterranean Sea compared with the Red Sea. The optimum membrane element performance characteristics were identified for use under hot climate conditions.
Collapse
Affiliation(s)
- Sameh Shaaban
- Mechanical Engineering Department, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Cairo, Egypt
| | - Hany Yahya
- Mechanical Engineering Department, Higher Technological Institute, 10th of Ramadan City, Egypt
| |
Collapse
|
6
|
Rehman F, Hussain Memon F, Ullah S, Jafar Mazumder MA, Al-Ahmed A, Khan F, Hussain Thebo K. Recent Development in Laminar Transition Metal Dichalcogenides-based Membranes Towards Water Desalination: A Review. CHEM REC 2022; 22:e202200107. [PMID: 35701111 DOI: 10.1002/tcr.202200107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Indexed: 11/12/2022]
Abstract
Transition metal dichalcogenides (TMDCs)-based laminar membranes have gained significant interest in energy storage, fuel cell, gas separation, wastewater treatment, and desalination applications due to single layer structure, good functionality, high mechanical strength, and chemical resistivity. Herein, we review the recent efforts and development on TMDCs-based laminar membranes, and focus is given on their fabrication strategies. Further, TMDCs-based laminar membranes for water purification and seawater desalination are discussed in detail. Finally, present their merits, limits and future challenges needed in this area.
Collapse
Affiliation(s)
- Faisal Rehman
- Department of Mechatronics, College of EME, National University of Sciences and Technology (NUST), Peshawar Road, Rawalpindi, Pakistan.,Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, Virginia, USA
| | - Fida Hussain Memon
- Department of Electrical Engineering, Sukkur IBA University, Sindh, Pakistan
| | - Sami Ullah
- K.A. CARE Energy Research & Innovation Center (ERIC), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad A Jafar Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Amir Al-Ahmed
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Firoz Khan
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), Shenyang, China
| |
Collapse
|