1
|
Li L, Liao Q, Liu C, Zhang T, Liu C, Chen Z, Gao R, He Q. Enhanced biological wastewater treatment supplemented with anaerobic fermentation liquid of primary sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119086. [PMID: 37801945 DOI: 10.1016/j.jenvman.2023.119086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023]
Abstract
The wastewater treatment performance in an inverted A2/O reactor supplemented with fermentation liquid of primary sludge was explored comparing to commercial carbon sources sodium acetate and glucose. Similar COD removal rate was observed with the effluent COD stably reaching the discharge standard for those 3 carbon sources. However, the fermentation liquid distributed more carbon source in the anaerobic zone. Fermentation liquid and sodium acetate tests achieved better nitrogen removal rate than glucose test. The fermentation liquid test showed the best biological phosphorus removal performance with the effluent phosphorus barely reaching the discharge standard. The microbial community characterization revealed that the fermentation liquid test was dominated by phylum Proteobacter in all the anoxic, anaerobic and aerobic zones. Denitrifying phosphorus accumulating organisms (PAOs) (i.e., genera Dechloromonas and unclassified_f__Rhodocyclaceae) were selectively enriched with high abundances (over 20%), which resulted in improved phosphorus removal efficiency. Moreover, the predicted abundances of enzymes involved in nitrogen and phosphorus removal were also enhanced by the fermentation liquid.
Collapse
Affiliation(s)
- Lin Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiqi Liao
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Caihong Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Tanglong Zhang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Chang Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Ziwei Chen
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Rui Gao
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiang He
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
2
|
Wang G, Qiu G, Wei J, Guo Z, Wang W, Liu X, Song Y. Activated carbon enhanced traditional activated sludge process for chemical explosion accident wastewater treatment. ENVIRONMENTAL RESEARCH 2023; 225:115595. [PMID: 36863655 DOI: 10.1016/j.envres.2023.115595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
With the development of industries, explosion accidents occur frequently during production, transportation, usage and storage of hazard chemicals. It remained challenging to efficiently treat the resultant wastewater. As an enhancement of traditional process, the activated carbon-activated sludge (AC-AS) process has a promising potential in treating wastewater with high concentrations of toxic compounds, chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N), etc. In this paper, activated carbon (AC), activated sludge (AS) and AC-AS were used to treat the wastewater produced from an explosion accident in the Xiangshui Chemical Industrial Park. The removal efficiency was assessed by the removal performances of COD, dissolved organic carbon (DOC), NH4+-N, aniline and nitrobenzene. Increased removal efficiency and shortened treatment time were achieved in the AC-AS system. To achieve the same COD, DOC and aniline removal (90%), the AC-AS system saved 30, 38 and 58 h compared with the AS system, respectively. The enhancement mechanism of AC on the AS was explored by metagenomic analysis and three-dimensional excitation-emission-matrix spectra (3DEEMs). More organics, especially aromatic substances were removed in the AC-AS system. These results showed that the addition of AC promoted the microbial activity in pollutant degradation. Bacteria, such as Pyrinomonas, Acidobacteria and Nitrospira and genes, such as hao, pmoA-amoA, pmoB-amoB and pmoC-amoC, were found in the AC-AS reactor, which might have played important roles in the degradation of pollutants. To sum up, AC might have enhanced the growth of aerobic bacteria which further improved the removal efficiency via the combined effects of adsorption and biodegradation. The successful treatment of Xiangshui accident wastewater using the AC-AS demonstrated the potential universal characteristics of the process for the treatment of wastewater with high concentration of organic matter and toxicity. This study is expected to provide reference and guidance for the treatment of similar accident wastewaters.
Collapse
Affiliation(s)
- Guanying Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jian Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhuang Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Weiye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yonghui Song
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
3
|
Huang Q, Liu Y, Ranjan Dhar B. Boosting resilience of microbial electrolysis cell-assisted anaerobic digestion of blackwater with granular activated carbon amendment. BIORESOURCE TECHNOLOGY 2023; 381:129136. [PMID: 37169203 DOI: 10.1016/j.biortech.2023.129136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Poor hydrolysis and methanogenesis efficiencies remain the main challenges for blackwater anaerobic digestion. This study investigated the performance of a granular activated carbon (GAC) amended microbial electrolysis cell-assisted anaerobic digester (MEC-AD) treating blackwater. Due to hydrolysis limitation, both MEC-AD and control reactors experienced performance declines as the organic loading rate increased from 3.0 to 4.5 g COD/L-d. Then, adding GAC without mixing formed GAC-sludge aggregates that improved methane yield to 38.3% and 32.3% in the MEC-AD and control reactor, respectively, and enhanced hydrolysis efficiency. The amended MEC-AD also successfully overcame the performance deterioration due to a temperature drop. Biomarker identification revealed the crucial roles of GAC biofilms and settled sludge in promoting methanogenesis and hydrolysis, respectively. This study demonstrated the GAC addition and the electrochemical environment could have a reciprocal influence, leading to more robust syntrophic microbial interactions, which could guide the future application of conductive materials in MEC-AD systems.
Collapse
Affiliation(s)
- Qi Huang
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada.
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
4
|
Zhang L, Yuan Y, Zhang Y, Liu Y. Exploring key factors in anaerobic syntrophic interactions: Biomass activity, microbial community, and morphology. BIORESOURCE TECHNOLOGY 2022; 363:127852. [PMID: 36067891 DOI: 10.1016/j.biortech.2022.127852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The present work evaluated the impacts of microbial communities, biomass activity and sludge morphology on anaerobic syntrophic reactions. Experiments were conducted using mature floc sludge and granular sludge under different food/microbes ratios, and with different sludge types (floc sludge, concentrated floc sludge and granular sludge) and sludge morphology (granules, vortexed granules, and granules with different particle sizes). The results show that the intact granules achieved the most effective syntrophic reaction among all sludge types. The granule structure facilitated the enrichment of syntrophic acetate oxidation bacteria (g_Syner-01 and g_Mesotoga) and methanogens, which corresponds to their superior specific methanogenic activity and high production of communication compounds. Despite the high diffusion and substrate uptake capacities, the disintegrated granules had low H2 consumption rates, which led to poor syntrophic activities. The results underline the importance of sludge spatial structures in promoting excellent syntrophic activities and the development of diverse microbial communities.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Yiyang Yuan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Yingdi Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada.
| |
Collapse
|
5
|
Pan W, Ouyang H, Tan X, Deng R, Gu L, He Q. Anaerobic dynamic membrane bioreactors for synthetic blackwater treatment under room temperature and mesophilic conditions. BIORESOURCE TECHNOLOGY 2022; 355:127295. [PMID: 35550923 DOI: 10.1016/j.biortech.2022.127295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Two anaerobic dynamic membrane bioreactors (AnDMBRs) were set up for the treatment of synthetic blackwater at room temperature (20-25 °C) and mesophilic conditions for 180 days with progressively increased organic loading rates(OLR). Despite dynamic membranes (DM), organics removal at room temperature was similar to removal within the mesophilic conditions of the reactor, with some disparities in methane production. A dense sludge filtration layer was more likely to be formed on the DM at room temperature, resulting in a faster membrane fouling. Microbial community analysis revealed that microorganisms had higher richness and lower diversity at room temperature, which was beneficial to the growth of Actinobacteriota, especially Propioniciclava. This comparative study discusses the feasibility of operating an AnDMBR under room temperature conditions versus mesophilic conditions. This analysis provides novel insights into future large-scale attempts to treat blackwater at room temperature.
Collapse
Affiliation(s)
- Weiliang Pan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China.
| | - Honglin Ouyang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Xiuqing Tan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Rui Deng
- School of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|