1
|
Nason SL, McCord J, Feng YL, Sobus JR, Fisher CM, Marfil-Vega R, Phillips AL, Johnson G, Sloop J, Bayen S, Mutlu E, Batt AL, Nahan K. Communicating with Stakeholders to Identify High-Impact Research Directions for Non-Targeted Analysis. Anal Chem 2025; 97:2567-2578. [PMID: 39883652 PMCID: PMC11886761 DOI: 10.1021/acs.analchem.4c04801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Non-targeted analysis (NTA) using high-resolution mass spectrometry without defined chemical targets has the potential to expand and improve chemical monitoring in many fields. Despite rapid advancements within the research community, NTA methods and data remain underutilized by many potential beneficiaries. To better understand barriers toward widespread adoption, the Best Practices for Non-Targeted Analysis (BP4NTA) working group conducted focus group meetings and follow-up surveys with scientists (n = 61) from various sectors (e.g., drinking water utilities, epidemiologists, n = 9) where NTA is expected to provide future value. Meeting participants included producers and end-users of NTA data with a wide range of familiarity with NTA methods and outputs. Discussions focused on identifying specific barriers that limit adoption and on setting NTA product development priorities. Stated priorities fell into four major categories: 1) education and training materials; 2) QA/QC frameworks and study design guidance; 3) accessible compound databases and libraries; and 4) NTA data linkages with chemical fate and toxicity information. Based on participant feedback, this manuscript proposes research directions, such as standardization of training materials, that BP4NTA and other institutions can pursue to expand NTA use in various application scenarios and decision contexts.
Collapse
Affiliation(s)
- Sara L Nason
- Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511, United States
| | - James McCord
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada
| | - Jon R Sobus
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Christine M Fisher
- Human Foods Program, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Ruth Marfil-Vega
- Shimadzu Scientific Instruments, 10330 Old Columbia Road, Columbia, Maryland 21046, United States
| | - Allison L Phillips
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, Oregon 97333, United States
| | - Gregory Johnson
- City of High Point, NC, Water Quality Laboratory, 121 N. Pendleton Street High Point, North Carolina 27260, United States
| | - John Sloop
- Oak Ridge Institute for Science and Education (ORISE) Participant, 109 TW Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | - Esra Mutlu
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Angela L Batt
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, 26 W Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Keaton Nahan
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| |
Collapse
|
2
|
Ma Y, Yang C, Yao Q, Li F, Mao L, Zhou X, Meng X, Chen L. Nontarget screening analysis of organic compounds in river sediments: a case study in the Taipu River of the Yangtze River Delta Region in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24547-24558. [PMID: 38446294 DOI: 10.1007/s11356-024-32761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Sediments are the vital fate of organic compounds, and the recognition of organic compounds in sediments is constructive in providing comprehensive and long-term information. In this study, a three-step nontarget screening (NTS) analysis workflow using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS) revealed the extensive existence of organic compounds in the Taipu River sediment. Organic compounds (705) were detected and divided into four structure-related groups or eight use-related classes. In the Taipu River's mainstream, a significant difference was found in the composition profiles of the identified organic compounds among various sites, demonstrating the organic compounds were more abundant in the midstream and downstream than in the upstream. Meanwhile, the hydrodynamic force was recognized as a potential factor influencing organic compounds' occurrence. Based on multiple statistical analyses, the shipping and textile printing industries were considered the significant contributors to the identified organic compounds. Considering the principles of the priority substances and the current status of the substances, two traditional pollutants and ten emerging organic compounds were recognized as the priority organic compounds for the Taipu River. Conclusively, this study established a workflow for NTS analysis of sediment samples and demonstrated the necessity of NTS analysis to evaluate the impact of terrestrial emissions of organic compounds on the aquatic environment.
Collapse
Affiliation(s)
- Yu Ma
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chao Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
| | - Qinglu Yao
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Feipeng Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lingchen Mao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Xiangzhou Meng
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Ling Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| |
Collapse
|
3
|
Qi Z, Zhang Z, Jin R, Zhang L, Zheng M, Li J, Wu Y, Li C, Lin B, Liu Y, Liu G. Target Analysis of Polychlorinated Naphthalenes and Nontarget Screening of Organic Chemicals in Bovine Milk, Infant Formula, and Adult Milk Powder by High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:773-782. [PMID: 38109498 DOI: 10.1021/acs.jafc.3c07579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Infant formula is intended as an effective substitute for breast milk but is the main source of polychlorinated naphthalenes (PCNs) to nonbreastfed infants. We performed target and nontarget analyses to determine PCNs and identify other organic contaminants in infant formula. The mean PCN concentrations in infant formula, milk powder, and bovine milk were 106.1, 88.8, and 78.2 μg kg-1 of dry weight, respectively. The PCN congener profiles indicated that thermal processes and raw materials were probably the main sources of PCNs in infant formula. A health risk assessment indicated that PCNs in infant formula do not pose health risks to infants. Using gas chromatography-Orbitrap mass spectrometry, 352, 372, and 161 organic chemicals were identified in the infant formula, milk powder, and bovine milk samples, respectively. Phthalate esters were detected in all four plastic-packed milk powder samples. The results indicated milk becomes more contaminated with organic chemicals during manufacturing, processing, and packaging.
Collapse
Affiliation(s)
- Ziyuan Qi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zherui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Jin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, Beijing 100021, P. R. China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingguang Li
- China National Center for Food Safety Risk Assessment, Beijing 100021, P. R. China
| | - Yongning Wu
- China National Center for Food Safety Risk Assessment, Beijing 100021, P. R. China
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - Bingcheng Lin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yahui Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Ai Q, Gao L, Huang D, Yang J, Fu Q, Zheng X, Liu Y, Qiao L, Weng J, Zheng M. Non-target and target analysis to identify and characterize thiophenes in soil from an abandoned coking plant. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132444. [PMID: 37660621 DOI: 10.1016/j.jhazmat.2023.132444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
There is concern about the large amounts of aromatic compounds emitted during coking. Previous studies of coking emissions have been focused on polycyclic aromatic hydrocarbons, dioxin-like compounds, phenols, and volatile organic compounds, but previously unidentified compounds produced during coking may also harm human health. Here, the main pollutants in 69 soil samples from an abandoned coking plant were identified by non-target screening using two-dimensional gas chromatography time-of-flight mass spectrometry. Polycyclic aromatic hydrocarbons, long-chain alkanes, and thiophenes were dominant. High concentrations of thiophenes (benzothiophenes, dibenzothiophenes, and benzonaphtholthiophenes) were found. Quantitative analysis of 12 thiophenes (selected because of their concentrations and detection frequencies) was performed, and the concentrations were 0.03-647 μg/g dry weight, which were extremely high compared with concentrations in soil from uncontaminated sites and other industrial sites. Dibenzothiophene and benzo[b]naphtho[2,1-d]thiophene were dominant, accounting for 69% of the total thiophene concentration. Thiophene profiles in very contaminated areas were different from the profile in coal but similar to the profile in tar. Thiophenes in soil at the coking plant may have been supplied in tar leaks, wastewater, coke oven gases, and exhaust gases. A toxicity assessment indicated a strong likelihood of oxidative stress being induced by exposure to multiple thiophenes at the coking plant. The results suggest that thiophene emissions from coking plants should attract more attention than currently.
Collapse
Affiliation(s)
- Qiaofeng Ai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China.
| | - Di Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yang
- China National Environmental Monitoring Center, Beijing 100012, China
| | - Qiang Fu
- China National Environmental Monitoring Center, Beijing 100012, China
| | - Xuan Zheng
- Chongqing Ecological and Environmental Monitoring Center, Chongqing 401147, China
| | - Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyuan Weng
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
5
|
Wang J, Gao J, Liao M, Liu J, Hu X, He B. Attitudes and opinions about ecopharmacovigilance from multi-disciplinary perspectives: a cross-sectional survey among academic researchers in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2273-2282. [PMID: 35931847 DOI: 10.1007/s11356-022-22406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
As a promising upstream strategy to reduce the environmental loads of pharmaceutical emerging contaminants (PECs) through source control, ecopharmacovigilance (EPV) is concerned with the set of activities to identify, evaluate, understand, and prevent against diverse PEC-related problems, and has been accepted as a multi-disciplinary and multi-stakeholder system. This cross-sectional observational survey aimed to assess the attitudes and opinions about EPV from multi-disciplinary perspectives among Chinese academic professors from four main EPV-related disciplines including pharmacy, management, clinical medicine, and environmental and ecological science based on a self-developed questionnaire. Forty-two usable survey instruments were acquired. Results showed that the responding Chinese academic researchers from different disciplines expressed consistently positive attitudes and strong intentions for EPV, in spite of several disparities existing among disciplinary groups showing that pharmacy and medical researchers felt more certain of the environmental adverse effects of PECs, and researchers in pharmacy and environmental and ecological science were more interested in EPV. A multi-disciplinary consensus was achieved in regard to the types of key stakeholders in EPV practices including the pharmaceutical manufacturers, the public, the drug safety authority, hospitals, and the environmental protection agency. The main roles and responsibilities of each stakeholder identity in EPV practices were summarized based on the expert opinions.
Collapse
Affiliation(s)
- Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Jian Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Xianmin Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Bingshu He
- Hubei Province Woman and Child Hospital, Wuhan, China.
| |
Collapse
|