1
|
Zhao C, Yang L, Chen Z, Wu C, Deng Z, Li H. Material flow analysis of an upgraded anaerobic digestion treatment plant with separated utilization of carbon and nitrogen of food waste. BIORESOURCE TECHNOLOGY 2024; 406:131005. [PMID: 38889868 DOI: 10.1016/j.biortech.2024.131005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/20/2024]
Abstract
Anaerobic digestion of food waste can recover carbon in the form of biogas, while the high concentration of ammonia nitrogen in the digestion effluent becomes troublesome. Therefore, some new treatment plants use three-phase centrifugation to separate homogenized food waste into nitrogen-rich fine slag for insect cultivation and carbon-rich liquid for anaerobic digestion. To analyze the effects of the carbon-nitrogen separation, an upgraded plant's material and elementary flows were investigated. The three-phase separation process redistributed carbon and nitrogen, and the biogas slurry was the primary output. The principal endpoint for C was the crude oil, capturing 57.1 ± 13.1 % of the total input; the find slag collected 48.3 ± 6.9 % of the total N input, and the biogas slag accepted 52.9 ± 4.4 % of the P input. The carbon-nitrogen separation strategy can improve digestion efficiency and increase treatment benefits significantly, marking a promising direction for future developments in food waste utilization.
Collapse
Affiliation(s)
- Chuyun Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Luxin Yang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Ziqi Chen
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Chunxu Wu
- Shenzhen Qingzhi Environmental Protection Technology Co. Ltd., Shenzhen 518055, China.
| | - Zhou Deng
- Shenzhen Lisai Environmental Technology Co. Ltd., Shenzhen 518055, China.
| | - Huan Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
2
|
Shi Z, He P, Guo J, Zou J, Peng W, Zhang H, Lü F. Carbon reduction trade-off between pretreatment and anaerobic digestion: A field study of an industrial-scale biogas plant. ENVIRONMENTAL RESEARCH 2024; 246:118139. [PMID: 38191048 DOI: 10.1016/j.envres.2024.118139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
With the implementation of municipal solid waste source segregation, the enormous sorted biogenic waste has become an issue that needs to be seriously considered. Anaerobic digestion, which can produce biogas and extract floating oil for biodiesel production, is the most prevalent treatment in China for waste management and greenhouse gas (GHG) emissions reduction, in accordance with Sustainable Development Goal 13 of the United Nations. Herein, a large-scale biogas plant with a capacity of 1000 tonnes of biogenic waste (400 tonnes of restaurant biogenic waste and 600 tonnes of kitchen biogenic waste) per day was investigated onsite using material flow analysis, and the parts of the biogas plant were thoroughly analyzed, especially the pretreatment system for biogenic waste impurity removal and homogenization. The results indicated that the loss of the total biodegradable organic matter was 41.8% (w/w) of daily feedstock and the loss of biogas potential was 18.8% (v/v) of daily feedstock. Life cycle assessment revealed that the 100-year GHG emissions were -61.2 kgCO2-eq per tonne biogenic waste. According to the sensitivity analysis, pretreatment efficiency, including biodegradable organic matter recovery and floating oil extraction, considerably affected carbon reduction potential. However, when the pretreatment efficiency deteriorated, GHG benefits of waste source segregation and the subsequent biogenic waste anaerobic digestion would be reduced.
Collapse
Affiliation(s)
- Zhenchao Shi
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Jiaxing-Tongji Environmental Research Institute, 314001, PR China
| | - Jing Guo
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Jinlin Zou
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, 200092, PR China
| | - Wei Peng
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Jiaxing-Tongji Environmental Research Institute, 314001, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Jiaxing-Tongji Environmental Research Institute, 314001, PR China.
| |
Collapse
|
3
|
Li Q, Kong X, Chen Y, Niu J, Jing J, Yuan J, Zhang Y. Co-enhancing effects of zero valent iron and magnetite on anaerobic methanogenesis of food waste at transition temperature (45 °C) and various organic loading rates. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 173:87-98. [PMID: 37984263 DOI: 10.1016/j.wasman.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Deoiling of food waste (FW) after hydrothermal pretreatment occurs at high temperatures, and more energy is required for substrate cooling before the anaerobic digestion (AD) process. AD at the transition temperature (for example 45 °C) is good for energy saving and carbon emission reducing when treating deoiling FW. However, the metabolic activity of methanogens must increase at the transition temperatures. This study proposes the use of zero-valent iron (Fe0) and magnetite (Fe3O4) to boost CH4 yield from deoiling FW. The results showed a co-enhancing effect on CH4 yield upgradation when using Fe0 and Fe3O4 simultaneously, and the highest CH4 yield reached 536.23 mLCH4/gVS, which was 67.5 % higher than that of Fe0 alone (320.14 mLCH4/gVS). In addition, a high organic loading was favorable for increasing the CH4 yield from deoiling FW. Microbial diversity analysis suggested that the dominant methanogenic pathway at 45 °C was hydrogenotrophic methanogenesis. Herein, a potential metabolic pathway analysis revealed that the co-enhancing effects of Fe0 and Fe3O4 enhanced syntrophic methanogenesis and possibly boosted electron transfer efficiency.
Collapse
Affiliation(s)
- Qingxia Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Xin Kong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China.
| | - Yuxin Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Jianan Niu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Jia Jing
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Jin Yuan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
4
|
Chandrasekaran S, Banu JR, Kumar G. Effect of thermal-calcium peroxide mediated exopolymer release on disperser pre-treatment for efficient anaerobic digestion. ENVIRONMENTAL RESEARCH 2023; 235:116635. [PMID: 37454801 DOI: 10.1016/j.envres.2023.116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The present study aimed to improve the hydrolysis potential of paper mill sludge through a two-phase disintegration process. In Particular, attention was focused on removal of extracellular polymeric substance (EPS) i.e. deflocculation of sludge in order to improve the efficiency of subsequent disperser disintegration. During deflocculation, carbohydrate, protein and deoxyribonucleic acids (DNA) were used as assessment parameters. During disintegration, soluble chemical oxygen demand (SCOD) and suspended solids (SS) reduction were used as assessment index to evaluate the efficiency of disintegration. A greater EPS removal was attained while deflocculating the sludge at calcium peroxide dosage of 0.05 g/g suspended solids (SS) and at a temperature of 70 °C. When comparing the disintegrated samples, a clear variation was noted in deflocculated and disintegrated sludge (19.2%) than the disintegrated sludge alone (13.5%). This clearly shows the need for deflocculation prior to disintegration. Likewise, a higher biomethane production of 0.214 L/g COD was achieved in deflocculated and disintegrated sludge than the pretreated sludge alone. Deflocculation reduces sludge management cost from 170 USD (Disperser alone (D alone disintegration)) to 51 USD (Thermal calcium peroxide mediated-Disperser (TCaO2-D disintegration), indicating the efficiency of the proposed disintegration.
Collapse
Affiliation(s)
- Sivaraman Chandrasekaran
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610005, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea; Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Forus 4036, Stavanger, Norway.
| |
Collapse
|
5
|
Li P, Zhu F, Weiping W, Zhou Y, Yao Y, Hong L, Zhu W, Hong C, Liu X, Chen H, Yu Y. Physicochemical properties and risk assessment of perishable waste primary products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117549. [PMID: 36934502 DOI: 10.1016/j.jenvman.2023.117549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/29/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Fertilization has become one of the most important ways to recycle perishable waste. In order to reveal the effect of the nutrient of the perishable waste primary products on the market and the possible impact of their application, 136 perishable waste primary products were sampled in nine cities in Zhejiang province, China. The result shows that these products have high nutrient content (average nutrient content was 5.00%). However, the conductivity (7.19 mS/cm) total soluble salt content (12.07%), and grease content (5.99%) were too high. The excessive salt and grease may cause harm to soil and crops, and become the main limiting factors for the fertilizer utilization of perishable waste. Heavy metal content of most of the samples met current commercial organic fertilizer standards, except that lead and chromium content of some samples exceeded the limit standard. Toluene, ethylbenzene, m & p-xylene were generally detected in the samples. These toxic and harmful substances have brought risks to the safe use of perishable waste into fertilizers.
Collapse
Affiliation(s)
- Penghao Li
- Zhejiang University of Technology, Hangzhou 310014 China; Institute of Environment, Resource, Soil & Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China
| | - Fengxiang Zhu
- Institute of Environment, Resource, Soil & Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China
| | - Wang Weiping
- Institute of Environment, Resource, Soil & Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China
| | - Ying Zhou
- Zhejiang University of Technology, Hangzhou 310014 China
| | - Yanlai Yao
- Institute of Environment, Resource, Soil & Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China
| | - Leidong Hong
- Institute of Environment, Resource, Soil & Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China
| | - Weijing Zhu
- Institute of Environment, Resource, Soil & Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China
| | - Chunlai Hong
- Institute of Environment, Resource, Soil & Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China.
| | - Xiaoxia Liu
- Zhejiang Cultivated Land Quality and Fertilizer Administration Station, Hangzhou 310019, China
| | - Hongjin Chen
- Zhejiang Cultivated Land Quality and Fertilizer Administration Station, Hangzhou 310019, China
| | - Yijun Yu
- Zhejiang Cultivated Land Quality and Fertilizer Administration Station, Hangzhou 310019, China
| |
Collapse
|
6
|
Xie T, Zhang Z, Zhang D, Wei C, Lin Y, Feng R, Nan J, Feng Y. Effect of hydrothermal pretreatment and compound microbial agents on compost maturity and gaseous emissions during aerobic composting of kitchen waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158712. [PMID: 36099942 DOI: 10.1016/j.scitotenv.2022.158712] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Though aerobic composting is commonly used in kitchen waste (KW) disposal, the high-oil and high-salt characteristics of KW could affect composting efficiency and lead to the land using risk of produced fertilizer. The impact of hydrothermal pretreatment (HTP) and addition of compound microbial agent (CMA) on compost maturity, greenhouse gas (GHGs) emissions and bacterial community during the kitchen waste composting were evaluated in the present work. Results indicated that N2O, CH4 and CO2 emissions from treatment by HTP and CMA addition were reduced by 82.72%, 13.77% and 20.78 %, respectively, comparing with the control (without HTP and without CMA addition). The seed germination index (GI) value of the HTP and CMA addition treatment was 1.03 and had the highest maturity in all treatments. Furthermore, the bacterial community analysis indicated that CMA inoculation could increase the relative abundance of genus Bacillus at the thermophilic stage of composting to accelerate organic biodegradation. This work provided important insight into mitigating GHGs emissions and improving compost quality in kitchen waste composting.
Collapse
Affiliation(s)
- Ting Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem, Harbin Institute of Technology, China
| | - Dawei Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Chunzhong Wei
- Guangxi Beitou Environmental Protection & Water Group CO. LTO, Nanning, China
| | - Yong Lin
- Guangxi Beitou Environmental Protection & Water Group CO. LTO, Nanning, China
| | - Rongwei Feng
- Guangxi Beitou Environmental Protection & Water Group CO. LTO, Nanning, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
7
|
Zhang JP, Hou JQ, Li MX, Yang TX, Xi BD. A novel process for food waste recycling: A hydrophobic liquid mulching film preparation. ENVIRONMENTAL RESEARCH 2022; 212:113332. [PMID: 35483414 DOI: 10.1016/j.envres.2022.113332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/03/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Appropriate and effective recycling of food waste (FW) has become increasingly significant with the promotion of garbage classification in China. In this study, a novel and green process was developed to recycle FW to prepare a biodegradable composite liquid mulching film (LMF) through crosslinking with sodium alginate (SA). The solid phase of FW was obtained as the raw material after hydrothermal pretreatment to remove pathogens and salts, and to improve the reactivity of active components at a moderate temperature. The prepared LMF had a hydrophobic surface and compact structure due to the lipid in FW and the acetalization reaction and hydrogen bonds among SA, glutaraldehyde and multi-active components of FW, resulting in enhanced water vapor barrier properties. The minimum water vapor permeability of the prepared LMF reached (8.23 ± 0.05) ✕ 10-12 g cm/(cm2·s·Pa) with 1.82 wt % of plasticizer, 0.74 wt% of crosslinker and a mass ratio of HTP-FW to SA of 3.56:1. The prepared LMF showed good mechanical properties and could maintain its integrity after spraying it on the soil surface for 31 days. In addition, it could effectively prevent the loss of soil moisture and heat, promote the seed germination of Chinese cabbage and achieve 89.14% of weight loss after burying in the soil for 27 days. This study provides a high value-added route to convert the FW to a hydrophobic LMF with superior properties, which addresses not only the problem of food waste but also the pollution of plastic mulching film.
Collapse
Affiliation(s)
- Jun-Ping Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jia-Qi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012, China
| | - Ming-Xiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Tian-Xue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bei-Dou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|