1
|
Manzi HP, Qin D, Yang K, Li H, Kiki C, Nizeyimana JC, Cui L, Sun Q. Unveiling bisphenol A-degrading bacteria in activated sludge through plating and 13C isotope labeled single-cell Raman spectroscopy. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136862. [PMID: 39673954 DOI: 10.1016/j.jhazmat.2024.136862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Bacteria play a crucial role in biodegradation of recalcitrant endocrine-disrupting compounds (EDCs), such as bisphenol A (BPA). However, in-situ identification of BPA-degrading bacteria remains technically challenging. Herein, we employed a conventional plating isolation (PI) and a new single cell Raman spectroscopy coupled with stable isotope probing (Raman-SIP) approach to enrich and identify BPA-degrading bacteria from activated sludge (AS). AS-inhabitant bacteria were exposed to either 12C-BPA or 13C-BPA as sole carbon source over three consecutive generations. While PI relies on colony proliferation on agar media, Raman-SIP enables identification of in situ BPA-degrading bacteria in a culture-independent way. The results showed that BPA dissipation correlated with increased bacterial growth. The uptake of 13C-BPA by single cells was verified by Raman spectra, suggesting occurrence of both metabolic and biosynthesis processes. This direct tracking of the fate of 13C-BPA within cells highlights the advantages of Raman-SIP over PI technique. PI isolated four BPA-degrading bacterial strains belonging to Comamonas, Pseudomonas, and Herbaspirillum genera. Meanwhile, Raman-SIP identified labeled cells belonging to Comamonas and Pseudomonas genera. Metagenomics of labeled cells revealed the presence of fifteen genes associated with benzene ring cleavage. This study provides a novel Raman-SIP approach for detecting and characterizing BPA-assimilating bacteria at a single cell level.
Collapse
Affiliation(s)
- Habasi Patrick Manzi
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Qin
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Kai Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hongzhe Li
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Claude Kiki
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jean Claude Nizeyimana
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Cui
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
2
|
Qu J, Meng F, Bi F, Jiang Z, Wang M, Hu Q, Zhang Y, Yu H, Zhang Y. Nitrogen-doped porous hydrochar for enhanced chromium(VI) and bisphenol A scavenging: Synergistic effect of chemical activation and hydrothermal doping. ENVIRONMENTAL RESEARCH 2025; 267:120667. [PMID: 39706314 DOI: 10.1016/j.envres.2024.120667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Nitrogen-doped porous hydrochar (NPHC) was successfully synthesized by hydrothermal carbonization and activation with KHCO3, which was employed for scavenging hexavalent chromium (Cr(VI)) and bisphenol A (BPA) in contaminated water. N doping increased the unique active sites such as amino and molecular N in NPHC for adsorbing contaminants, and enhanced the activation effect. Compared to original (HC) and N-doped hydrochar (NHC), the SBET of material improved from 3.99 m2/g and 4.71 m2/g to 1176.77 m2/g. Meanwhile, NPHC exhibited more superior adsorption capacity for Cr(VI) (323.25 mg/g) and BPA (545.34 mg/g) than that of porous hydrochar (213.17 and 343.67 mg/g). Moreover, NPHC possessed pH-dependence and presented more excellent tolerance for interfering ions and regeneration performance. Notably, the Cr(VI) capture by NPHC was dominated via pore filling, electrostatic interaction, reduction, and complexation, while π-π stacking, H-bond interaction, and hydrophobic action were relevant to the binding mechanism of BPA. Overall, the proposed functionalization strategy for biochar was conducive to enhance the remediation of water bodies.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Fansong Meng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Mengning Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yupeng Zhang
- College of Resources and Environmental Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou, 450002, China
| | - Hui Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Du M, Liu J, Wang Q, Wang F, Bi L, Ma C, Song M, Jiang G. Immobilization of laccase on magnetic PEGDA-CS inverse opal hydrogel for enhancement of bisphenol A degradation in aqueous solution. J Environ Sci (China) 2025; 147:74-82. [PMID: 39003085 DOI: 10.1016/j.jes.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 07/15/2024]
Abstract
Endocrine disruptors such as bisphenol A (BPA) adversely affect the environment and human health. Laccases are used for the efficient biodegradation of various persistent organic pollutants in an environmentally safe manner. However, the direct application of free laccases is generally hindered by short enzyme lifetimes, non-reusability, and the high cost of a single use. In this study, laccases were immobilized on a novel magnetic three-dimensional poly(ethylene glycol) diacrylate (PEGDA)-chitosan (CS) inverse opal hydrogel (LAC@MPEGDA@CS@IOH). The immobilized laccase showed significant improvement in the BPA degradation performance and superior storage stability compared with the free laccase. 91.1% of 100 mg/L BPA was removed by the LAC@MPEGDA@CS@IOH in 3 hr, whereas only 50.6% of BPA was removed by the same amount of the free laccase. Compared with the laccase, the outstanding BPA degradation efficiency of the LAC@MPEGDA@CS@IOH was maintained over a wider range of pH values and temperatures. Moreover, its relative activity of was maintained at 70.4% after 10 cycles, and the system performed well in actual water matrices. This efficient method for preparing immobilized laccases is simple and green, and it can be used to further develop ecofriendly biocatalysts to remove organic pollutants from wastewater.
Collapse
Affiliation(s)
- Mei Du
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzhang Liu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Adhikary K, Kumari S, Chatterjee P, Dey R, Maiti R, Chakrabortty S, Ahuja D, Karak P. Unveiling bisphenol A toxicity: human health impacts and sustainable treatment strategies. Horm Mol Biol Clin Investig 2024; 45:171-185. [PMID: 39311088 DOI: 10.1515/hmbci-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 12/12/2024]
Abstract
INTRODUCTION The widespread presence of bisphenol-A (BPA) in consumer goods like water bottles and eyeglass frames raises serious concerns about the chemical's ability to accumulate in human tissues. Molecular filtration and activated carbon adsorption are two of the many BPA treatment technologies that have emerged in response to these issues; both are essential in the removal or degradation of BPA from water sources and industrial effluents. CONTENT To secure the long-term health and environmental advantages of BPA treatment approaches, sustainable development is essential. Both the efficient elimination or destruction of BPA and the reduction of the treatment operations' impact on the environment are important components of a sustainable approach. Different search engines like Pub-Med, MEDLINE, Google Scholar and Scopus are used for these systematic reviews and analyzed accordingly. This can be accomplished by making treatment facilities more energy efficient and using environmentally friendly materials. Greener ways to deal with BPA pollution are on the horizon, thanks to innovative techniques like bioremediation and improved oxidation processes. Reducing dependence on conventional, resource-intensive procedures can be achieved by investigating the use of bio-based materials and natural adsorbents in treatment processes. SUMMARY AND OUTLOOK This review article tackling the health and environmental concerns raised by BPA calls for an integrated strategy that incorporates sustainable development principles and technology progress. We can reduce the negative impacts of BPA contamination, improve environmental stewardship in the long run, and ensure human health by combining cutting-edge treatment technologies with sustainable behaviours.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Shweta Kumari
- Department of Biotechnology, Paramedical College Durgapur, West Bengal, India
| | - Prity Chatterjee
- Department of Biotechnology, Paramedical College Durgapur, West Bengal, India
| | - Riya Dey
- Department of Biotechnology, Paramedical College Durgapur, West Bengal, India
| | - Rajkumar Maiti
- Department of Physiology, 326624 Bankura Christian College , Bankura, West Bengal, India
| | - Sankha Chakrabortty
- School of Chemical Technology, KIIT Deemed to be University, Bhubaneswar, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Prithviraj Karak
- Department of Physiology, 326624 Bankura Christian College , Bankura, West Bengal, India
| |
Collapse
|
5
|
Dou Y, Liu C, Chen X, Yang X, Hao L, Wang Q, Wang Z, Wu Q, Wang C. Green synthesis of azo-linked porous organic polymer for enrichment of nitroimidazoles from water, shrimp and Basa fish. Food Chem 2024; 446:138875. [PMID: 38430772 DOI: 10.1016/j.foodchem.2024.138875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/27/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Reliable monitoring of nitroimidazoles (NDZs) is of great significance to public health. Herein, an azo-linked porous organic polymer (Res-POPs) was prepared by green synthesis method using natural resveratrol as monomer for the first time. Using Res-POPs as sorbent, a facile method coupling solid-phase extraction with high performance liquid chromatography-diode array detection was developed for effective detecting NDZs. The method achieved good linearities (0.06 ∼ 100 ng mL-1 for water, 1.8 ∼ 200 ng g-1 for shrimp, and 1.5 ∼ 200 ng g-1 for Basa fish) with determination coefficients above 0.995, low detection limits (0.02 ∼ 0.05 ng mL-1, 0.60 ∼ 1.00 ng g-1 and 0.50 ∼ 0.90 ng g-1 for water, shrimp and Basa fish), high method recovery (85 %∼114 %) and relative standard deviations below 8.2 %. The results demonstrated the superiority and the promising potential of the established method for detection of NDZs compared with the reported method.
Collapse
Affiliation(s)
- Yiran Dou
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Cong Liu
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Xiaocui Chen
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Xiumin Yang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
6
|
Li J, Li Z, Dong Y, Wang Q, Li S, Wang Z, Wang C, Wu Q. Novel magnetic porous organic polymer containing amino and triazine bifunctional groups for efficient adsorption of nitroimidazoles. Food Chem 2024; 446:138879. [PMID: 38430773 DOI: 10.1016/j.foodchem.2024.138879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
In this paper, a novel magnetic hyper-crosslinked polymer with amino and triazine bifunctional groups (M-NH2-THCP) was developed. M-NH2-THCP has strong nitroimidazoles (NDZs) enrichment effect, and therefore it was used as an adsorbent to extract five NDZs from lake water, catfish and shrimp meat prior to HPLC. Polar interaction, π-π stacking interaction, hydrogen bond and Lewis acid-base interaction were attested to be the major adsorption mechanism. The method has a good linearity in the range of 0.1-100 ng mL-1 for lake water, 10-400 ng g-1 for catfish and shrimp muscle with R2 > 0.9964. The limits of detection of NDZs were 0.03-0.04 ng mL-1 for lake water, 1.0-2.0 ng g-1 for catfish and 2.0-2.5 ng g-1 for shrimp, which is superior to most reported method. The method recoveries were 87.6-119 %, and relative standard deviations were less than 8.7 %. M-NH2-THCP holds great application potential in pollutants enrichment, separation and removal.
Collapse
Affiliation(s)
- Jie Li
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhi Li
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Yanli Dong
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Shuofeng Li
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
7
|
Zhao G, Wang C, Kang M, Hao L, Liu W, Wang Z, Shi X, Wu Q. Construction of magnetic azo-linked porous polymer for highly-efficient enrichment and separation of phenolic endocrine disruptors from environmental water and fish. Food Chem 2024; 445:138698. [PMID: 38350198 DOI: 10.1016/j.foodchem.2024.138698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Developing effective methods for highly sensitive detection of phenolic endocrine disruptors (EDCs) is especially urgent. Herein, a magnetic hydroxyl-functional porous organic polymer (M-FH-POP) was facilely synthesized by green diazo-couple reaction using basic fuchsin and hesperetin as monomer for the first time. M-FH-POP delivered superior adsorption performance for phenolic EDCs. The adsorption mechanism was hydrogen bonds, hydrophobic interaction and π-π interplay. With M-FH-POP as adsorbent, a magnetic solid phase extraction method was established for extracting trace phenolic EDCs (bisphenol A, 4-tert-butylphenol, bisphenol F and bisphenol B) in water and fish before ultra-high performance liquid chromatography tandem mass spectrometry analysis. The method displayed low detection limit (S/N = 3) of 0.05-0.15 ng mL-1 for water and 0.08-0.3 ng g-1 for fish. The spiked recoveries were 88.3 %-109.8 % with the relative standard deviations of 2.4 %-6.4 %. The method offers a new strategy for sensitive determination of phenolic EDCs in water and fish samples.
Collapse
Affiliation(s)
- Guijiao Zhao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chenhuan Wang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Min Kang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Weihua Liu
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States.
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
8
|
Zhuang Y, Li S, Rene ER, Dong S, Ma W. Green synthesis of magnetic azo-linked porous organic polymers with recyclable properties for enhanced Bisphenol-A adsorption from aqueous solutions. ENVIRONMENTAL RESEARCH 2024; 249:118427. [PMID: 38325780 DOI: 10.1016/j.envres.2024.118427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Porous organic polymers (POPs) present superior adsorption performance to steroid endocrine disruptors. However, the effective recovery and high cost have been a big limitation for their large-scale applications. Herein, magnetic azo-linked porous polymers (Fe3O4@SiO2/ALP-p) were designed and prepared in a green synthesis approach using low-price materials from phloroglucinol and pararosaniline via a diazo-coupling reaction under standard temperature and pressure conditions, which embedded with Fe3O4@SiO2 nanoparticles to form three-dimensional interlayer network structure with flexible-rigid interweaving. The saturated adsorption capacity to bisphenol-A (BPA) was 485.09 mg/g at 298 K, which increased by 1.4 times compared with ALP-p of relatively smaller mass density. This enhanced adsorption was ascribed to increment from surface adsorption and pore filling with 2.3 times of specific surface area and 2.6 times of pore volume, although the total organic functional groups decreased with Fe3O4@SiO2 amendment. Also, the adsorption rate increased by about 1.1 and 1.5-fold due to enhancement in the initial stage of surface adsorption and subsequent stage pore diffusion, respectively. Moreover, this adsorbent could be used in broad pH (3.0-7.0) and salinity adaptability (<0.5 mol/L). The loss of adsorption capacity and magnetic recovery were lower than 1.1% and 0.8% in each operation cycle because of the flexible-rigid interweave. This excellent performance was contributed by synergistic effects from physisorption and chemisorption, such as pore filling, electrostatic attraction, π-π stacking, hydrogen bonding, and hydrophobic interaction. This study offered a cost-effective, high-performing, and ecologically friendly material along with a green preparation method.
Collapse
Affiliation(s)
- Yuqi Zhuang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Sinuo Li
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Shuoyu Dong
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
9
|
Wang C, Zhao B, Wang Q, Zhang S, Wu Q, Shi X. Green construction of magnetic azo porous organic polymer for highly efficient enrichment and detection of phenolic endocrine disruptors. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133050. [PMID: 38000282 DOI: 10.1016/j.jhazmat.2023.133050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/05/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Porous organic polymers (POPs) are prominent sorbents for effective extraction of endocrine disrupting chemicals (EDCs). However, green and sustainable construction of functional POPs is still challenging. Herein, we developed a magnetic azo POP (Mazo-POP) for the first time using hydroxy-rich natural kaempferol and low-toxic basic fuchsin as monomers through a diazo coupling reaction. The Mazo-POP exhibited excellent extraction capabilities for EDCs with a phenolic structure. Consequently, it was used as a magnetic sorbent for extracting phenolic EDCs from water and fish samples, followed by ultrahigh-performance liquid chromatography-tandem mass spectrometric detection. The Mazo-POP based analytical method afforded a good linearity of 0.06-100 ng mL-1 and 0.3-500 ng g-1 for water and fish samples respectively, with detection limits (S/N = 3) of 0.02-0.5 ng mL-1 and 0.1-1.5 ng g-1, respectively. The method recovery was from 85.2% to 109% and relative standard deviation was less 5.3%. Moreover, the effective adsorption was mainly contributed by hydrogen bond, π-π interaction, pore filling and hydrophobic interaction. This work not only provides an efficient method for sensitive determination of phenolic EDCs, but also highlights the significance of green preparation of environmentally friendly sorbents for enriching/adsorbing pollutants.
Collapse
Affiliation(s)
- Chenhuan Wang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Bin Zhao
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Shuaihua Zhang
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States.
| |
Collapse
|
10
|
Zhou S, Luo X, Zhang Y, Liu Y, Wang X, Hao X, Zhang Y, Wang D, Gu P, Liu G. Post-cationic modification of a porphyrin-based conjugated microporous polymer for enhanced removal performance of bisphenol A. Chem Commun (Camb) 2023; 59:14399-14402. [PMID: 37974497 DOI: 10.1039/d3cc05017c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A porphyrin-based conjugated microporous polymer photocatalyst named LDPO-2 was synthesized by a post-modification approach, which improved its hydrophilicity and visible light absorption ability. LDPO-2 achieved >99.5% removal efficiency for bisphenol A (BPA, 10 ppm) within 12 min of exposure to visible light, and the photocatalytic mechanism and potential degradation pathways were well investigated. LDPO-2 also exhibited impressive removal efficiency against BPA analogues, proving its practical applications in real-water treatment scenarios.
Collapse
Affiliation(s)
- Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xiaobo Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yan Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yuxi Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xin Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xiaoqiong Hao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Ye Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
- Key Laboratory of Organic Synthesis of Jiangsu Province, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Guangfeng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
11
|
Yu K, Guo J, Li B, Guo J. Highly efficient removal of Pb 2+ from wastewater by a maleic anhydride modified organic porous adsorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68467-68476. [PMID: 37126166 DOI: 10.1007/s11356-023-27272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Sorption is prominent in low price, high efficiency, availability, and eco-friendliness. Organic porous materials have the characteristics of easy functionalization, diverse structure and stability, and show great potential in adsorption, energy storage, catalysis, and other fields. A mesoporous phenolic resin-type polymer (PRP) was successfully synthesized and modified by solid state reaction with maleic anhydride to prepare adsorbent (called as PRP-MAH) for sorption of Pb2+. The impact of reaction conditions (the pH value, reaction temperature, fresh concentration of solution, ionic strength and reaction time, etc.) was systematically studied. Characterization methods such as SEM, FTIR, and XPS indicated that the synthesized adsorbent PRP-MAH had regular morphology and good stability. The fitting of isothermal adsorption experiment data conforms to Langmuir sorption isotherm, and the sorption capacity reached 366.40 mg·g-1 at 308 K. The kinetic data were consistent with the quasi-second-order model, which indicated that the chemisorption might play the main role in the sorption process. Thermodynamic research manifested that the sorption of Pb2+ by PRP-MAH was carried out by a spontaneous process at the study temperature. The studies show that PRP-MAH can remove Pb2+ from water solution through ion exchange, electrostatic attraction, and surface complexation.
Collapse
Affiliation(s)
- Kun Yu
- Key Laboratory of Chemical Utilization of Forestry Biomass in Zhejiang Province, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, People's Republic of China
| | - Jiaqi Guo
- School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Bing Li
- Key Laboratory of Chemical Utilization of Forestry Biomass in Zhejiang Province, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, People's Republic of China
| | - Jianzhong Guo
- Key Laboratory of Chemical Utilization of Forestry Biomass in Zhejiang Province, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, People's Republic of China.
| |
Collapse
|
12
|
Qu J, Bi F, Hu Q, Wu P, Ding B, Tao Y, Ma S, Qian C, Zhang Y. A novel PEI-grafted N-doping magnetic hydrochar for enhanced scavenging of BPA and Cr(VI) from aqueous phase. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121142. [PMID: 36702430 DOI: 10.1016/j.envpol.2023.121142] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Herein, polyethyleneimine (PEI)-grafted nitrogen-doping magnetic hydrochar (PEIMW@MNHC) was synthesized for hexavalent chromium (Cr(VI)) and bisphenol A (BPA) elimination from water. Characterizations exhibited that abundant amino functional groups, intramolecular heterocyclic N, azo and Fe-NX structures were successfully introduced into the inherent structure of hydrochar. The obtained PEIMW@MNHC presented maximum uptake of 205.37 and 180.79 mg/g for Cr(VI) and BPA, respectively, and was highly tolerant to various co-existing ions. Mechanism investigation revealed that the protonated amino, intramolecular heterocyclic N and Fe(II) participated in Cr(VI) reduction, and the N/O-containing groups and Fe(III) fixed Cr(III) onto PEIMW@MNHC by the formation of complexes and precipitates. On the other hand, azo, Fe-NX and graphitic N structures contributed to the removal of BPA via pore filling, hydrogen bonding and π-π interactions. Additionally, PEIMW@MNHC maintained over 85.0% removal efficiency for Cr(VI) and BPA after four cycles, manifesting that PEIMW@MNHC was an ideal adsorbent with outstanding practical application potential.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peipei Wu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Boyu Ding
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shouyi Ma
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150030, China
| | - Chunrong Qian
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150028, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
13
|
AlDawhi ZA, BinSharfan II, Abdulhamid MA. Carboxyl-functionalized polyimides for efficient bisphenol A removal: Influence of wettability and porosity on adsorption capacity. CHEMOSPHERE 2023; 313:137347. [PMID: 36427579 DOI: 10.1016/j.chemosphere.2022.137347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) removal from drinking water is greatly concerned for human and living things' safety. In this study, we synthesized three carboxyl-functionalized copolyimides and their homopolymer counterparts and evaluated their potential for removing BPA from an aqueous solution. The polymers were prepared via polycondensation reaction by reacting 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) with various ratios of 3,5-diaminobenzoic acid (DABA) and 3,5-diamino-2,4,6-trimethylbenzoic acid (TrMCA). The effect of porosity, hydrophilicity, and methyl group content on BPA adsorption capacity has been investigated systemically. 6FDA-DABA demonstrated the highest BPA adsorption capacity with maximum adsorption of 67 mg g-1 and removal efficiency of approximately 90%. The anti-synergistic regime was observed between polymer porosity and hydrophilicity. As the content of the methyl group increases, the Brunauer-Emmett-Teller (BET) surface area increases, and the polymer hydrophilicity decreases, leading to a notable reduction in BPA adsorption capacity. The adsorption kinetics isotherms of BPA on 6FDA-based polyimides followed the pseudo-first-order kinetics, except for 6FDA-DABA, which was found to follow the pseudo-second-order. The BPA removal capacity was determined using both Langmuir and Freundlich isotherm models. The Langmuir model was more suitable than the Freundlich for the adsorption of BPA on the carboxyl-functionalized polyimides. To our knowledge, the prepared polyimides represent the first examples of utilizing polyimides for BPA removal. Investigating the structure/property relationship between polymers and their performance will pave the way to molecular engineering state-of-the-art polymer materials for efficient environmental remediation applications.
Collapse
Affiliation(s)
- Zainah A AlDawhi
- Sustainable and Resilient Materials Lab, Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering & Geosciences (CPG), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Ibtisam I BinSharfan
- Sustainable and Resilient Materials Lab, Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering & Geosciences (CPG), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Mahmoud A Abdulhamid
- Sustainable and Resilient Materials Lab, Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering & Geosciences (CPG), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
14
|
Arenas-Lago D, Race M, Zhang Z, Núñez-Delgado A. Removal of emerging pollutants from the environment: From bioadsorbents to nanoparticle-based systems. ENVIRONMENTAL RESEARCH 2023; 216:114692. [PMID: 36374794 DOI: 10.1016/j.envres.2022.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the Call for Papers corresponding to this Virtual Special Issue (VSI), the Editors indicated that, as is well known, emerging pollutants include a variety of substances that pose remarkable risks for the environment and public health. In fact, emerging pollutants are considered a matter of concern deserving increasing efforts to elucidate their occurrence, fate, repercussions, and alternatives to their removal from the various environmental compartments where they can be found after spreading as contaminants. Also, the Editors commented that, among the various alternatives that can be considered for achieving their successful removal, some of them are based on the use of sorbent materials, and, specifically, bioadsorbents, which are attractive due to the efficacy and low cost associated with some of them. Another alternative is related to the utilization of nanoparticle-based systems, which may be considered a promising field of research in this way. In both cases, obtaining new research results, as well as designing and programming new ways of going steps ahead in the investigation of both kinds of materials, would be key objectives. According to the previous considerations, the Editors of the VSI invited researchers having new data concerning these aspects to submit manuscripts with experimental results, discussion, reflections and prospective related to their work. With the Special Issue closed, the number of submissions received was 83, with 40 high-quality works being accepted for publication, increasing the overall knowledge on this topic by providing results that we are sure will be of value for the scientific community and the society.
Collapse
Affiliation(s)
- Daniel Arenas-Lago
- Soil Science and Agricultural Chemistry, Univ. of Vigo, Fac. Sciences, Campus Univ., 32004 Ourense, Spain
| | - Marco Race
- Department of Civil and Mechanical Engineering, Univ. of Cassino and Southern Lazio 03043 Cassino, Italy
| | - Zhien Zhang
- Department of Chemical and Biomedical Engineering, West Virginia Univ., Morgantown, WV, USA
| | - Avelino Núñez-Delgado
- Dept. Soil Sci. and Agric. Chem., Univ. of Santiago de Compostela, Engineering Polytech. School, Campus Univ. S/n, 27002 Lugo, Spain.
| |
Collapse
|
15
|
Huang J, Zhou T, Zhao W, Zhang M, Zhang Z, Lai W, Kadasala NR, Liu H, Liu Y. Magnetic-Core-Shell-Satellite Fe 3O 4-Au@Ag@(Au@Ag) Nanocomposites for Determination of Trace Bisphenol A Based on Surface-Enhanced Resonance Raman Scattering (SERRS). NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3322. [PMID: 36234450 PMCID: PMC9565892 DOI: 10.3390/nano12193322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
As a typical representative of endocrine-disrupting chemicals (EDCs), bisphenol A (BPA) is a common persistent organic pollutant in the environment that can induce various diseases even at low concentrations. Herein, the magnetic Fe3O4-Au@Ag@(Au@Ag) nanocomposites (CSSN NCs) have been prepared by self-assembly method and applied for ultra-sensitive surface-enhanced resonance Raman scattering (SERRS) detection of BPA. A simple and rapid coupling reaction of Pauly's reagents and BPA not only solved the problem of poor affinity between BPA and noble metals, but also provided the SERRS activity of BPA azo products. The distribution of hot spots and the influence of incremental introduction of noble metals on the performance of SERRS were analyzed by a finite-difference time-domain (FDTD) algorithm. The abundance of hot spots generated by core-shell-satellite structure and outstanding SERRS performance of Au@Ag nanocrystals were responsible for excellent SERRS sensitivity of CSSN NCs in the results. The limit of detection (LOD) of CSSN NCs for BPA azo products was as low as 10-10 M. In addition, the saturation magnetization (Ms) value of CSSN NCs was 53.6 emu·g-1, which could be rapidly enriched and collected under the condition of external magnetic field. These magnetic core-shell-satellite NCs provide inspiration idea for the tailored design of ultra-sensitive SERRS substrates, and thus exhibit limitless application prospects in terms of pollutant detection, environmental monitoring, and food safety.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Min Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Zhibo Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Wangsheng Lai
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | | | - Huilian Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| |
Collapse
|
16
|
Xiang Y, Li S, Rene ER, Xiaoxiu L, Ma W. Enhancing fluoroglucocorticoid defluorination using defluorinated functional strain Acinetobacter. pittii C3 via humic acid-mediated biotransformation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129284. [PMID: 35739793 DOI: 10.1016/j.jhazmat.2022.129284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Defluorination is a key factor in reducing biologically accumulated carcinogenic and teratogenic toxicity of fluoroglucocorticoids (FGCs). To enhance defluorination efficiency, a highly efficient defluorination-degrading strain Acinetobacter. pittii C3 was isolated, and the promotion mechanism through humic acid (HA)-mediated biotransformation was investigated. Optimal biodegradation conditions for Acinetobacter sp. pittii C3 were pH of 7.0, temperature of 25 ℃, and HA content of 5.5 mg/L, according to response surface methodology analysis. The attenuation rate constant and maximum defluorination percentage of triamcinolone acetonide (TA) in HA-mediated biotransformation system (HA-C3) were 3.99 × 10-2 and 96%, respectively, which were 2.22 and 1.24 times higher than those in the unitary C3 biodegradation system (U-C3), respectively. The major defluorination pathways included elimination, hydrolysis, and hydrogenation, with contributions of 24.5%, 32.4%, and 43.1%, respectively. The bio-reductive hydrodefluorination rate was enhanced by 1.89 times that of HA-mediated, while the other two defluorination pathways exhibited insignificant changes. HA, as the congeries of negatively charged microbes and hydrophobic TA, accelerates the electron transfer rate between Acinetobacter. pittii C3 and TA through the quinone groups. Furthermore, the mutual conversion between the functional groups of hydroxyl oxidation and ketone reduction of HA provided electron donors for TA reductive defluorination and hydrogenation and electron acceptors for TA oxidation. This study provides an effective strategy for FGC-enhanced detoxification using natural HA.
Collapse
Affiliation(s)
- Yayun Xiang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Sinuo Li
- Beijing No. 80 High School, Beijing 100102, China
| | - Eldon R Rene
- IHE-Delft, Institute for Water Education, Department of Environmental Engineering and Water Technology, Westvest 7, 2611AX Delft, the Netherlands
| | - Lun Xiaoxiu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|