1
|
Lombardi A, Voli A, Mancusi A, Girardi S, Proroga YTR, Pierri B, Olivares R, Cossentino L, Suffredini E, La Rosa G, Fusco G, Pizzolante A, Porta A, Campiglia P, Torre I, Pennino F, Tosco A. SARS-CoV-2 RNA in Wastewater and Bivalve Mollusk Samples of Campania, Southern Italy. Viruses 2023; 15:1777. [PMID: 37632119 PMCID: PMC10459311 DOI: 10.3390/v15081777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
SARS-CoV-2 can be detected in the feces of infected people, consequently in wastewater, and in bivalve mollusks, that are able to accumulate viruses due to their ability to filter large amounts of water. This study aimed to monitor SARS-CoV-2 RNA presence in 168 raw wastewater samples collected from six wastewater treatment plants (WWTPs) and 57 mollusk samples obtained from eight harvesting sites in Campania, Italy. The monitoring period spanned from October 2021 to April 2022, and the results were compared and correlated with the epidemiological situation. In sewage, the ORF1b region of SARS-CoV-2 was detected using RT-qPCR, while in mollusks, three targets-RdRp, ORF1b, and E-were identified via RT-dPCR. Results showed a 92.3% rate of positive wastewater samples with increased genomic copies (g.c.)/(day*inhabitant) in December-January and March-April 2022. In the entire observation period, 54.4% of mollusks tested positive for at least one SARS-CoV-2 target, and the rate of positive samples showed a trend similar to that of the wastewater samples. The lower SARS-CoV-2 positivity rate in bivalve mollusks compared to sewages is a direct consequence of the seawater dilution effect. Our data confirm that both sample types can be used as sentinels to detect SARS-CoV-2 in the environment and suggest their potential use in obtaining complementary information on SARS-CoV-2.
Collapse
Affiliation(s)
- Annalisa Lombardi
- Department of Public Health, University “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (A.L.)
| | - Antonia Voli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.V.); (A.P.); (P.C.)
| | - Andrea Mancusi
- Department of Food Security Coordination, Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (A.M.); (S.G.); (Y.T.R.P.); (B.P.)
| | - Santa Girardi
- Department of Food Security Coordination, Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (A.M.); (S.G.); (Y.T.R.P.); (B.P.)
| | - Yolande Thérèse Rose Proroga
- Department of Food Security Coordination, Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (A.M.); (S.G.); (Y.T.R.P.); (B.P.)
| | - Biancamaria Pierri
- Department of Food Security Coordination, Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (A.M.); (S.G.); (Y.T.R.P.); (B.P.)
| | - Renato Olivares
- Campania Regional Environmental Protection Agency (ARPAC), Via Vicinale Santa Maria del Pianto, 80143 Naples, Italy; (R.O.); (L.C.)
| | - Luigi Cossentino
- Campania Regional Environmental Protection Agency (ARPAC), Via Vicinale Santa Maria del Pianto, 80143 Naples, Italy; (R.O.); (L.C.)
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Giovanna Fusco
- Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (G.F.); (A.P.)
| | - Antonio Pizzolante
- Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (G.F.); (A.P.)
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.V.); (A.P.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.V.); (A.P.); (P.C.)
| | - Ida Torre
- Department of Public Health, University “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (A.L.)
| | - Francesca Pennino
- Department of Public Health, University “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (A.L.)
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.V.); (A.P.); (P.C.)
| |
Collapse
|
2
|
Yamazaki Y, Thongchankaew-Seo U, Yamazaki W. Very low likelihood that cultivated oysters are a vehicle for SARS-CoV-2: 2021-2022 seasonal survey at supermarkets in Kyoto, Japan. Heliyon 2022; 8:e10864. [PMID: 36217407 PMCID: PMC9535880 DOI: 10.1016/j.heliyon.2022.e10864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/03/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
The pandemic caused by novel coronavirus disease of 2019 (COVID-19) is a global threat. Wastewater surveillance in Japan and abroad has led to the detection of SARS-CoV-2, causing concern that SARS-CoV-2 in the feces of infected persons may contaminate the aquatic environment. Bivalves such as oysters cultivated in coastal areas are known to filter and concentrate viruses such as norovirus present in seawater in their bodies; however, whether they do so with SARS-CoV-2 is unknown. Therefore, we examined cultivated oysters sold in Japan for the presence of SARS-CoV-2 between October 2021 and April 2022 to clarify the extent of viral contamination and evaluate the risk of food-borne transmission of SARS-CoV-2. Porcine epidemic diarrhea virus (PEDV), known as pig coronavirus, was used to spike midgut-gland samples as a whole process control. The presence of SARS-CoV-2 and PEDV was investigated using a modified polyethylene glycol precipitation method and RT-qPCR. While all samples spiked with the whole process control were positive, no SARS-CoV-2 was detected in any of the 145 raw oyster samples surveyed, despite a marked increase in infections caused by the Omicron variant from January to April 2022 in Japan. Therefore, our results suggest that with well-developed sewage treatment facilities, consumption of oysters cultivated in coastal areas may not be a risk factor for SARS-CoV-2 outbreaks.
Collapse
Affiliation(s)
- Yasuko Yamazaki
- Center for Southeast Asian Studies, Kyoto University, 46 Shimoadachicho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Uraiwan Thongchankaew-Seo
- Center for Southeast Asian Studies, Kyoto University, 46 Shimoadachicho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Wataru Yamazaki
- Center for Southeast Asian Studies, Kyoto University, 46 Shimoadachicho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan,Kyoto University School of Public Health, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8303, Japan,Corresponding author.
| |
Collapse
|
3
|
de Sousa ARV, do Carmo Silva L, de Curcio JS, da Silva HD, Eduardo Anunciação C, Maria Salem Izacc S, Neto FOS, de Paula Silveira Lacerda E. "pySewage": a hybrid approach to predict the number of SARS-CoV-2-infected people from wastewater in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67260-67269. [PMID: 35524091 PMCID: PMC9075719 DOI: 10.1007/s11356-022-20609-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/30/2022] [Indexed: 05/21/2023]
Abstract
It is well known that the new coronavirus pandemic has global environmental, public health, and economic implications. In this sense, this study aims to monitor SARS-CoV-2 in the largest wastewater treatment plant of Goiânia, which processes wastewater from more than 700,000 inhabitants, and to correlate the molecular and clinical data collected. Influent and effluent samples were collected at Dr. Helio de Seixo Britto's wastewater treatment plant from January to August 2021. Viral concentration was performed with polyethylene glycol before viral RNA extraction. Real-time qPCR (N1 and N2 gene assays) was performed to detect and quantify the viral RNA present in the samples. The results showed that 43.63% of the samples were positive. There is no significant difference between the detection of primers N1 (mean 3.23 log10 genome copies/L, std 0.23) and N2 (mean 2.95 log10 genome copies/L, std 0.29); also, there is no significant difference between the detection of influent and effluent samples. Our molecular data revealed a positive correlation with clinical data, and infection prevalence was higher than clinical data. In addition, we developed a user-friendly web application to predict the number of infected people based on the detection of viral load present in wastewater samples and may be applied as a public policy strategy for monitoring ongoing outbreaks.
Collapse
Affiliation(s)
| | - Lívia do Carmo Silva
- Department of Genetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Juliana Santana de Curcio
- Department of Genetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Hugo Delleon da Silva
- Department of Genetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Universitary Center of Goiás (UNIGOIÁS), Goiânia, Goiás, Brazil
| | - Carlos Eduardo Anunciação
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Silvia Maria Salem Izacc
- Department of Genetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | | |
Collapse
|
4
|
Barbé L, Schaeffer J, Besnard A, Jousse S, Wurtzer S, Moulin L, Le Guyader FS, Desdouits M. SARS-CoV-2 Whole-Genome Sequencing Using Oxford Nanopore Technology for Variant Monitoring in Wastewaters. Front Microbiol 2022; 13:889811. [PMID: 35756003 PMCID: PMC9218694 DOI: 10.3389/fmicb.2022.889811] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 01/21/2023] Open
Abstract
Since the beginning of the Coronavirus Disease-19 (COVID-19) pandemic, multiple Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mutations have been reported and led to the emergence of variants of concern (VOC) with increased transmissibility, virulence or immune escape. In parallel, the observation of viral fecal shedding led to the quantification of SARS-CoV-2 genomes in wastewater, providing information about the dynamics of SARS-CoV-2 infections within a population including symptomatic and asymptomatic individuals. Here, we aimed to adapt a sequencing technique initially designed for clinical samples to apply it to the challenging and mixed wastewater matrix, and hence identify the circulation of VOC at the community level. Composite raw sewage sampled over 24 h in two wastewater-treatment plants (WWTPs) from a city in western France were collected weekly and SARS-CoV-2 quantified by RT-PCR. Samples collected between October 2020 and May 2021 were submitted to whole-genome sequencing (WGS) using the primers and protocol published by the ARTIC Network and a MinION Mk1C sequencer (Oxford Nanopore Technologies, Oxford, United Kingdom). The protocol was adapted to allow near-full genome coverage from sewage samples, starting from ∼5% to reach ∼90% at depth 30. This enabled us to detect multiple single-nucleotide variant (SNV) and assess the circulation of the SARS-CoV-2 VOC Alpha, Beta, Gamma, and Delta. Retrospective analysis of sewage samples shed light on the emergence of the Alpha VOC with detection of first co-occurring signature mutations in mid-November 2020 to reach predominance of this variant in early February 2021. In parallel, a mutation-specific qRT-PCR assay confirmed the spread of the Alpha VOC but detected it later than WGS. Altogether, these data show that SARS-CoV-2 sequencing in sewage can be used for early detection of an emerging VOC in a population and confirm its ability to track shifts in variant predominance.
Collapse
Affiliation(s)
- Laure Barbé
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | - Julien Schaeffer
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | - Alban Besnard
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | - Sarah Jousse
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | | | - Laurent Moulin
- R&D Laboratory, DRDQE, Eau de Paris, Ivry-sur-Seine, France
| | | | - Marion Desdouits
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| |
Collapse
|