1
|
Al-Rubaye RF, Kardel F, Dehbandi R. Ecological and human health risks of potentially toxic elements (PTEs) in street dust of Al-Hillah City, Iraq using Monte Carlo simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178722. [PMID: 39919661 DOI: 10.1016/j.scitotenv.2025.178722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/14/2025] [Accepted: 02/01/2025] [Indexed: 02/09/2025]
Abstract
Street dust is a primary source of metal pollution in urban environments, posing a significant threat to human health through chronic exposure via inhalation, ingestion, and skin contact. This study used deterministic and Monte Carlo simulation to assess the health risks of potential toxic elements (PTEs) in the street dust of Al-Hillah City. The average concentrations of elements in the samples followed the order: Al > Fe > S > K > Sr > Mn > Cr > Ba > Zn > Ni > Pb > Cu > Co > As > Sn > Sb > Cd. In the study area, all the measured elements exceeded UCC values except for Al, Ba, Fe, and K. The results for the enrichment factor (EF), geo accumulation index (Igeo), and contamination factor (CF) revealed that the most sampled locations were polluted with sulfur (S), arsenic (As), and chromium (Cr). The highest values of the pollution load index were not for a solely land use class; they were identified at different sampling stations. According to the potential ecological risk rating, As and Cd pose a medium risk, while Cr, Cu, Ni, Pb, and Zn have low risks. The probabilistic Monte Carlo simulation highlighted the significant health risks from PTEs in street dust, especially for children, with HI values of 2.01, 3.24, and 5.26 at the 5th, 50th, and 95th percentiles, respectively. In comparison, HI values for adults were much lower at 0.29, 0.41, and 0.58, remaining within safe limits. Lifetime Cancer Risk (LTCR) estimates showed that 99.7 % of adults and 97 % of children exposed to levels exceeding the safe threshold 1E-4. Sensitivity analysis revealed that chromium (Cr) and nickel (Ni) were the main PTEs contributing to health risks in children and adults' groups.
Collapse
Affiliation(s)
- Rafeef Fadhil Al-Rubaye
- Department of Environmental Science, Faculty of Marine and Environmental Sciences, University of Mazandaran, P.O. Box: 416, Babolsar, Mazandaran, Iran; General Directorate of Education in Babil Governorate, Iraq
| | - Fatemeh Kardel
- Department of Environmental Science, Faculty of Marine and Environmental Sciences, University of Mazandaran, P.O. Box: 416, Babolsar, Mazandaran, Iran.
| | - Reza Dehbandi
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| |
Collapse
|
2
|
Wang P, Hu J, Zhang Q, Ma W, Tian L, Liu T, Li J, Zheng H, Han G. Sources and health risks of heavy metals in kindergarten dust: The role of particle size. ENVIRONMENTAL RESEARCH 2024; 262:119955. [PMID: 39243844 DOI: 10.1016/j.envres.2024.119955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024]
Abstract
Particle size effects significantly impact the concentration and toxicity of heavy metals (HMs) in dust. Nevertheless, the differences in concentrations, sources, and risks of HMs in dust with different particle sizes are unclear. Therefore, guided by the definition of atmospheric particulate matter, dust samples with particle sizes under 1000 μm (DT1000), 100 μm (DT100), and 63 μm (DT63) from Beijing kindergartens were collected. The concentrations of HMs (e.g., Cd, Pb, Zn, Ni, Cr, Ba, Cu, V, Mn, Co, and Ti) in dust samples with different particle sizes were measured. Besides, the differences in HM concentrations, contamination levels, sources, and source-oriented health risks in dust samples of different particle sizes were systematically explored. The results show that the concentrations of Mn, V, Zn, and Cd gradually increase with decreasing dust particle sizes, the concentrations of Ba and Pb show a decreasing trend, and the concentrations of Cr, Cu, Ni, and Co display an increasing and then decreasing trend. The degree of contamination of HMs in dust of different particle sizes varies, with Cd being the most dominant contaminant. Compared with DT1000 and DT63, DT100 is the most polluted. In addition, the sources of HMs in DT1000, DT100, and DT63 become more single with decreasing particle size, which may be mainly due to the particle-size effect inducing the redistribution of HMs in different sources. Notably, the potential health risk is higher in DT100 than in DT1000 and DT63. The highest contribution of industrial sources to the health risk is found in DT100, which is mainly caused by highly toxic chromium (Cr). This work emphasizes the importance of considering particle size in risk assessment and pollution control, which can provide a theoretical basis for precise management of HMs pollution in dust.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geo sciences, (Beijing), Beijing, 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, PR China; The State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Jian Hu
- The State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Qian Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Wenmin Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geo sciences, (Beijing), Beijing, 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Liyan Tian
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Tingyi Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, PR China
| | - Jun Li
- The State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Houyi Zheng
- China National Administration of Coal Geology, Beijing, 100038, PR China
| | - Guilin Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geo sciences, (Beijing), Beijing, 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, PR China
| |
Collapse
|
3
|
Chen L, Fang L, Yang X, Luo X, Qiu T, Zeng Y, Huang F, Dong F, White JC, Bolan N, Rinklebe J. Sources and human health risks associated with potentially toxic elements (PTEs) in urban dust: A global perspective. ENVIRONMENT INTERNATIONAL 2024; 187:108708. [PMID: 38703447 DOI: 10.1016/j.envint.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Long-term exposure to urban dust containing potentially toxic elements (PTEs) poses detrimental impacts on human health. However, studies estimating human health risks in urban dusts from a global perspective are scarce. We evaluated data for twelve PTEs in urban dusts across 59 countries from 463 published articles, including their concentrations, input sources, and probabilistic risks to human health. We found that 34.1 and 60.3% of those investigated urban dusts have been heavily contaminated with As and Cd, respectively. The input of PTEs was significantly correlated with economic structure due to emissions of industrial activities and traffic emissions being the major sources. Based on the Monte Carlo simulation, we found that the mean hazard index below the safe threshold (1.0) could still cause non-negligible risks to human health. Arsenic and Cr were the major PTEs threatening human health, and relatively high risk levels were observed in cities in China, Korea, Chile, Malaysia, and Australia. Importantly, our analysis suggested that PTEs threaten the health of approximately 92 million adults and 280 million children worldwide. Overall, our study provides important foundational understanding and guidance for policy decision-making to reduce the potential risks associated with PTE exposure and to promote sustainable development of urban economies.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| | - Xing Yang
- College of Ecology and Environment, Hainan University, Haikou 570100, China
| | - Xiaosan Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Fengyu Huang
- College of Environment and Resource, Xichang University, Xichang 615000, China; College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Faqin Dong
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, University of Wuppertal, Pauluskirchstraße 7, Wuppertal 42285, Germany
| |
Collapse
|
4
|
Nath A, Paul B, Deka P. Chemical characterization of road dust during diwali festival in Guwahati city of Assam, Northeast India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:484. [PMID: 38684530 DOI: 10.1007/s10661-024-12628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
The present study focuses on the elemental analysis of road dust in Guwahati, the largest city of Assam and the largest metropolis of Northeast India during the Diwali festival. Road dust samples were collected on pre-Diwali (PD), the Day after Diwali (DaD), and one week after Diwali (WaD) from two sites (Lankeshwar; LKW and Patharquarry; PTQ). Three composite samples were collected from 3 points at each site. The elemental concentration was analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations of Ba and Sr increased by 1.6 and 1.7 times, respectively, after Diwali. Among other firework-related elements (FREs), Mg, Al, K, and Cu increased at LKW following Diwali (both DaD and WaD), whereas Mg, Al, and K increased in DaD dust at PTQ. The average concentration of Traffic Related Elements (TREs) at PTQ was significantly higher than at LKW (p < 0.05; 75.40 mg/kg vs 63.96 mg/kg). Cd had the highest enrichment (EF), followed by Ni and Zn. EF for Cd, Ni, and Zn ranged from high to extremely high enrichment. Ni and Cd exhibited moderate contamination (CF). The ecological risk (ER) values for Cd at LKW and PTQ were 54.32 and 56.71, respectively, indicating a moderate ER. Pearson's correlation was performed to study the relationship between elements, while PCA analysis was used to identify the main sources of these elements. Although the health hazard indices presently do not suggest any immediate danger, hazard quotient (HQ) values for ingestion, inhalation, and dermal exposure were higher for children than adults. In children, the contribution of HQing to HI (total risk) was the highest, accounting for more than 65% of all elements. There is no apparent lifetime cancer risk due to road dust exposure through inhalation.
Collapse
Affiliation(s)
- Anamika Nath
- Department of Environmental Science, Tezpur University, Napaam-784028, Tezpur, Assam, India
| | - Baishali Paul
- Department of Environmental Science, Tezpur University, Napaam-784028, Tezpur, Assam, India
| | - Pratibha Deka
- Department of Environmental Science, Tezpur University, Napaam-784028, Tezpur, Assam, India.
| |
Collapse
|
5
|
Giordano A, Malandrino M, Ajmone Marsan F, Padoan E. Potentially toxic elements and lead isotopic signatures in the 10 μm fraction of urban dust: Environmental risk enhanced by resuspension of contaminated soils. ENVIRONMENTAL RESEARCH 2024; 242:117664. [PMID: 38029818 DOI: 10.1016/j.envres.2023.117664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
In urban environments, soils are a sink of pollutants and might become a source of contamination, as they commonly display potentially toxic elements (PTE) concentrations above the legislative limits. Particularly, the inhalable fraction of soils (<10 μm) is enriched in PTE compared to bulk soils (BS). The enrichment makes these particles an environmental hazard because of their susceptibility to resuspension and their potential contribution to road dust (RD) and atmospheric particulate matter (PM10) pollution. To gain a better insight into urban contamination dynamics we studied the BS, the resuspended <10 μm fraction of BS (Res-BS) and RD (Res-RD) in a European historically industrialized and densely populated city. Compared to BS, the Res-BS and Res-RD showed higher PTE concentrations and a higher variability for most of the elements. Lead was the only PTE showing similar concentrations in all the matrices, suggesting shared sources and redistribution pathways within the city. Chemometric elaborations identified Res-BS as a transition between BS and Res-RD or, rather, a Res-RD precursor. Also, Pb was confirmed to be ubiquitous in all the media. In all the matrices, Pb isotopic signatures were investigated and compared with PM10 fingerprints from the same city. The anthropogenic isotopic signature in Res-BS and Res-RD was evident, and samples belonging to neighboring sites showed comparable isotopic ratios. The Res-BS appeared as a key driver for Pb distribution within the city both in Res-RD and in PM10. These results demonstrate the intimate interaction between urban environmental compartments (soil, road dust and PM10), and the active contribution of fine soil fractions to anthropogenic pollution, with relevant policy implications in urban areas since soils were found to contribute directly to air pollution.
Collapse
Affiliation(s)
- Annapaola Giordano
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, I-10095, Italy
| | - Mery Malandrino
- Department of Chemistry, University of Turin, Turin, I-10125, Italy.
| | - Franco Ajmone Marsan
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, I-10095, Italy
| | - Elio Padoan
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, I-10095, Italy
| |
Collapse
|
6
|
El Fadili H, Ben Ali M, Rahman MN, El Mahi M, Lotfi EM, Louki S. Bioavailability and health risk of pollutants around a controlled landfill in Morocco: Synergistic effects of landfilling and intensive agriculture. Heliyon 2024; 10:e23729. [PMID: 38205322 PMCID: PMC10776943 DOI: 10.1016/j.heliyon.2023.e23729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Toxic contamination of agricultural soils by trace metal(oid)s can pose detrimental effects on human health and agroecological systems. In this view, the current research explored total and available metal(oid)s in surface soils and assessed the associated hazards using pollution indices, PMF modeling, PCA, and Montecarlo probabilistic human risk assessment with 10,000 repetitions. The mean concentrations of Cd, Pb, As, Cr, Ni, Cu, Zn, and Fe were 0.89, 24.86, 1.81, 19.10, 25.44, 7.98, 49.12 and 6183.32 mg kg-1 dry weight, respectively. These findings highlighted that the concentration of pollutants exceeded the values measured in the geochemical background. Soil enrichment by heavy metal (oid)s was confirmed by analyzing available fractions using DTPA ,CaCl2 and enrichment factor (EF). Additionally, pollution indicators (Igeo, PLI, and PERI) displayed significant contamination levels, with a higher ecological risk. Matrix Factorization (PMF) receptor and multivariate statistical analysis reflected that anthropogenic activities, particularly landfilling and agricultural practices were the main causes of the contamination. Furthermore, probabilistic and deterministic human risk assessments showed that carcinogenic risks exceeded the threshold values (10-4) set by the USEPA. Consequently, it is crucial to implement continuous monitoring and supervision of landfill sites to prevent additional pollution. These measures should be integrated into the management plans for waste management.
Collapse
Affiliation(s)
- Hamza El Fadili
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Materials for Environment Team, ENSAM, Mohammed V University in Rabat, Morocco
| | - Mohammed Ben Ali
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Materials for Environment Team, ENSAM, Mohammed V University in Rabat, Morocco
| | - Md Naimur Rahman
- Center for Archaeological Studies, University of Liberal Arts Bangladesh, Dhaka, Bangladesh
| | - Mohammed El Mahi
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Materials for Environment Team, ENSAM, Mohammed V University in Rabat, Morocco
| | - El Mostapha Lotfi
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Materials for Environment Team, ENSAM, Mohammed V University in Rabat, Morocco
| | - Sami Louki
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Materials for Environment Team, ENSAM, Mohammed V University in Rabat, Morocco
| |
Collapse
|
7
|
Tepanosyan G, Yenokyan T, Sahakyan L. Geospatial patterns and geochemical compositional characteristics of molybdenum in different mediums of an urban environment. ENVIRONMENTAL RESEARCH 2023; 239:117340. [PMID: 37816423 DOI: 10.1016/j.envres.2023.117340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
Urban areas are characterized by the presence of certain potentially toxic elements including molybdenum (Mo). Therefore, compositional data analysis combined with geospatial mapping was applied in this study to reveal the spatial distribution characteristics of Mo in courtyard surface dust (dust), soils, and river sediments (sediments), to identify potential sources of Mo, and to reveal Mo geochemical associations in different urban environmental mediums. The mean contents of Mo decreased in the following order: dust (11.9 mg/kg) - soil (5.84 mg/kg) - sediment (4.87 mg/kg). The highest maximum Mo content among the studied mediums (61.8 mg/kg) was detected in dust. It was the only investigated medium where a very high level of Mo enrichment was observed (4.4% of samples). Moreover, a significant level of enrichment predominated in dust (47% of samples) whereas in soil, moderate enrichment prevails (68.5%). A significant correlation of Mo contents was observed with Zn contents in all the studied mediums, and with Ca contents in soil and sediments. A significant negative correlation was observed only between Mo contents in dust and sampling site altitudes suggesting that high-rise buildings might play the role of geochemical barriers. Principal component analysis, k-means and hierarchical clustering showed that in the geogenic elements soil group Mo showed an affinity to be bound by Fe/Mn oxide/hydroxides whereas the Mo coprecipitation, complexation and absorption by carbonates predominated in the Mo-related soil group (geochemical compositional association of Mo, Zn, Cu, Pb, and Ca) under anthropogenic influence. For dust, the geochemical compositional association was the same, but in the geogenic-related group, Cu was the most closely associated element instead of Zn. The spatial location of the Mo-related group of samples identified by k-means clustering indicates that Mo concentrate processing plant may be a potential source of Mo introduction into the urban environment.
Collapse
Affiliation(s)
- Gevorg Tepanosyan
- The Center for Ecological-Noosphere Studies NAS, Yerevan 0025, Abovian-68, Armenia.
| | - Tatevik Yenokyan
- The Center for Ecological-Noosphere Studies NAS, Yerevan 0025, Abovian-68, Armenia
| | - Lilit Sahakyan
- The Center for Ecological-Noosphere Studies NAS, Yerevan 0025, Abovian-68, Armenia
| |
Collapse
|
8
|
Das M, Proshad R, Chandra K, Islam M, Abdullah Al M, Baroi A, Idris AM. Heavy metals contamination, receptor model-based sources identification, sources-specific ecological and health risks in road dust of a highly developed city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8633-8662. [PMID: 37682507 DOI: 10.1007/s10653-023-01736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
The present study quantified Ni, Cu, Cr, Pb, Cd, As, Zn, and Fe levels in road dust collected from a variety of sites in Tangail, Bangladesh. The goal of this study was to use a matrix factorization model to identify the specific origin of these components and to evaluate the ecological and health hazards associated with each potential origin. The inductively coupled plasma mass spectrometry was used to determine the concentrations of Cu, Ni, Cr, Pb, As, Zn, Cd, and Fe. The average concentrations of these elements were found to be 30.77 ± 8.80, 25.17 ± 6.78, 39.49 ± 12.53, 28.74 ± 7.84, 1.90 ± 0.79, 158.30 ± 28.25, 2.42 ± 0.69, and 18,185.53 ± 4215.61 mg/kg, respectively. Compared to the top continental crust, the mean values of Cu, Pb, Zn, and Cd were 1.09, 1.69, 2.36, and 26.88 times higher, respectively. According to the Nemerow integrated pollution index (NIPI), pollution load index (PLI), Nemerow integrated risk index (NIRI), and potential ecological risk (PER), 84%, 42%, 30%, and 16% of sampling areas, respectively, which possessed severe contamination. PMF model revealed that Cu (43%), Fe (69.3%), and Cd (69.2%) were mainly released from mixed sources, natural sources, and traffic emission, respectively. Traffic emission posed high and moderate risks for modified NIRI and potential ecological risks. The calculated PMF model-based health hazards indicated that the cancer risk value for traffic emission, natural, and mixed sources had been greater than (1.0E-04), indicating probable cancer risks and that traffic emission posed 38% risk to adult males where 37% for both adult females and children.
Collapse
Affiliation(s)
- Mukta Das
- Department of Zoology, Government Saadat College, Tangail, 1903, Bangladesh
| | - Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Krishno Chandra
- Faculty of Agricultural Engineering and Technology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Maksudul Islam
- Department of Environmental Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Mamun Abdullah Al
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Artho Baroi
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, 62529, Abha, Saudi Arabia
| |
Collapse
|
9
|
Gekière A, Vanderplanck M, Michez D. Trace metals with heavy consequences on bees: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165084. [PMID: 37379929 DOI: 10.1016/j.scitotenv.2023.165084] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The pervasiveness of human imprint on Earth is alarming and most animal species, including bees (Hymenoptera: Apoidea: Anthophila), must cope with several stressors. Recently, exposure to trace metals and metalloids (TMM) has drawn attention and has been suggested as a threat for bee populations. In this review, we aimed at bringing together all the studies (n = 59), both in laboratories and in natura, that assessed the effects of TMM on bees. After a brief comment on semantics, we listed the potential routes of exposure to soluble and insoluble (i.e. nanoparticle) TMM, and the threat posed by metallophyte plants. Then, we reviewed the studies that addressed whether bees could detect and avoid TMM in their environment, as well as the ways bee detoxify these xenobiotics. Afterwards, we listed the impacts TMM have on bees at the community, individual, physiological, histological and microbial levels. We discussed around the interspecific variations among bees, as well as around the simultaneous exposure to TMM. Finally, we highlighted that bees are likely exposed to TMM in combination or with other stressors, such as pesticides and parasites. Overall, we showed that most studies focussed on the domesticated western honey bee and mainly addressed lethal effects. Because TMM are widespread in the environment and have been shown to result in detrimental consequences, evaluating their lethal and sublethal effects on bees, including non-Apis species, warrants further investigations.
Collapse
Affiliation(s)
- Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000 Mons, Belgium.
| | - Maryse Vanderplanck
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 Route de Mende, 34090 Montpellier, France.
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000 Mons, Belgium.
| |
Collapse
|
10
|
Zhang J, Guan H, Wang T, Du S, Xu J, Liu X. Enrichment of cadmium and selenium in soil-crop system and associated probabilistic health risks in black shale areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95988-96000. [PMID: 37561298 DOI: 10.1007/s11356-023-29173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Selenium (Se) is the essential component of selenoenzymes and contributes to antioxidant defenses. The capability of Se to antagonize the toxicity of heavy metals makes it an essential trace element for human and plant health. Soils derived from black shales are naturally enriched with Se; however, these soils often contain high geological cadmium (Cd), due to the weathering of black shales rich in Cd and Se. Cadmium, as a known Group I carcinogen, could induce damage to various organs. This therefore poses a major challenge for safe cultivation of Se-rich land resources. In this study, a total of 247 paired soil-crop samples were collected from a typical farmland derived from black shales. The concentrations of Cd and Se in the samples were analyzed by inductively coupled plasma mass spectroscopy and atomic fluorescence spectrometry. Monte Carlo simulation was applied to evaluate potential health risks associated with Cd exposure. Cadmium was the critical pollutant in the study area, with the average value of 1.53 mg/kg. Moreover, both children and adults living in the area had a significant non-carcinogenic health risk. Additional health risk assessments revealed that diet was the main contributor for both children and adults among the four pathways (diet > soil ingestion > soil dermal adsorption > soil inhalation). Furthermore, our results revealed that leguminous vegetables and maize were ideal for this site due to their high Se and low Cd accumulation abilities. These findings provide support for adjusting planting structure by variety screening to mitigate the health risk induced by Cd.
Collapse
Affiliation(s)
- Jiawen Zhang
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou, 310058, China
| | - Haoran Guan
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou, 310058, China
| | - Tong Wang
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou, 310058, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jianming Xu
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou, 310058, China
| | - Xingmei Liu
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Wang Z, Lu X, Yu B, Yang Y, Wang L, Lei K. Ascertaining priority control pollution sources and target pollutants in toxic metal risk management of a medium-sized industrial city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164022. [PMID: 37172841 DOI: 10.1016/j.scitotenv.2023.164022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Re-suspended surface dust (RSD) often poses higher environmental risks due to its specific physical characteristics. To ascertain the priority pollution sources and pollutants for the risk control of toxic metals (TMs) in RSD of medium-sized industrial cities, this study took Baotou City, a representative medium-sized industrial city in North China, as an example to systematically study TMs pollution in RSD. The levels of Cr (242.6 mg kg-1), Pb (65.7 mg kg-1), Co (54.0 mg kg-1), Ba (1032.4 mg kg-1), Cu (31.8 mg kg-1), Zn (81.7 mg kg-1), and Mn (593.8 mg kg-1) in Baotou RSD exceeded their soil background values. Co and Cr exhibited significant enrichment in 94.0 % and 49.4 % of samples, respectively. The comprehensive pollution of TMs in Baotou RSD was very high, mainly caused by Co and Cr. The main sources of TMs in the study area were industrial emissions, construction, and traffic activities, accounting for 32.5, 25.9, and 41.6 % of the total TMs respectively. The overall ecological risk in the study area was low, but 21.5 % of samples exhibited moderate or higher risk. The carcinogenic risks of TMs in the RSD to local residents and their non-carcinogenic risks to children cannot be ignored. Industrial and construction sources were priority pollution sources for eco-health risks, with Cr and Co being the target TMs. The south, north and west of the study area were the priority control areas for TMs pollution. The probabilistic risk assessment method combining of Monte Carlo simulation and source analysis can effectively identify the priority pollution sources and pollutants. These findings provide scientific basis for TMs pollution control in Baotou and constitute a reference for environmental management and protection of residents' health in other similar medium-sized industrial cities.
Collapse
Affiliation(s)
- Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| |
Collapse
|
12
|
Yang Y, Lu X, Yu B, Zuo L, Wang L, Lei K, Fan P, Liang T, Rennert T, Rinklebe J. Source-specific risk judgement and environmental impact of potentially toxic elements in fine road dust from an integrated industrial city, North China. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131982. [PMID: 37413801 DOI: 10.1016/j.jhazmat.2023.131982] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
The contamination of potentially toxic elements (PTEs) in road dust of large industrial cities is extremely serious. Determining the priority risk control factors of PTE contamination in road dust is critical to enhance the environmental quality of such cities and mitigate the risk of PTE pollution. The Monte Carlo simulation (MCS) method and geographical models were employed to assess the probabilistic pollution levels and eco-health risks of PTEs originating from different sources in fine road dust (FRD) of large industrial cities, and to identify key factors affecting the spatial variability of priority control sources and target PTEs. It was observed that in FRD of Shijiazhuang, a typical large industrial city in China, more than 97% of the samples had an INI > 1 (INImean = 1.8), indicating moderately contaminated with PTEs. The eco-risk was at least considerable (NCRI >160) with more than 98% of the samples, mainly caused by Hg (Ei (mean) = 367.3). The coal-related industrial source (NCRI(mean) = 235.1) contributed 70.9% to the overall eco-risk (NCRI(mean) = 295.5) of source-oriented risks. The non-carcinogenic risk of children and adults are of less importance, but the carcinogenic risk deserves attention. The coal-related industry is a priority control pollution source for human health protection, with As corresponding to the target PTE. The major factors affecting the spatial changes of target PTEs (Hg and As) and coal-related industrial sources were plant distribution, population density, and gross domestic product. The hot spots of coal-related industrial sources in different regions were strongly interfered by various human activities. Our results illustrate spatial changes and key-influencing factors of priority source and target PTEs in Shijiazhuang FRD, which are helpful for environmental protection and control of environmental risks by PTEs.
Collapse
Affiliation(s)
- Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Ling Zuo
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Peng Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Thilo Rennert
- Department of Soil Chemistry and Pedology, Institute of Soil Science and Land Evaluation, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Soil-and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| |
Collapse
|
13
|
Yu B, Lu X, Wang L, Liang T, Fan X, Yang Y, Lei K, Zuo L, Fan P, Bolan N, Rinklebe J. Potentially toxic elements in surface fine dust of residence communities in valley industrial cities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121523. [PMID: 37003587 DOI: 10.1016/j.envpol.2023.121523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
A comprehensive analysis of content, pollution characteristics, health hazard, distribution, and source of some broadly concerned potentially toxic elements (PTEs, Pb, V, Mn, Cr, Ba, Zn, Ni, and Cu) in surface fine dust with particle size <63 μm (SFD63) from residence communities in Xi'an, a representative valley industrial city, was conducted in this research to analyze the quality of environment and influencing factors of valley industrial cities in China. The average contents of Ba (794.1 mg kg-1), Cu (61.3 mg kg-1), Pb (99.9 mg kg-1), Zn (408.1 mg kg-1), Cr (110.0 mg kg-1), and Ni (33.4 mg kg-1) in SFD63 of Xi'an residence communities surpassed their background contents of local soil. The high enrichment-value regions of PTEs were chiefly located in the regions with high traffic flow, high population density, and areas around industries. Zn and Pb had moderate enrichment, and the overall pollution level of PTEs was unpolluted-to-moderate and moderate pollution. Three source categories (including natural geogenic source, industrial anthropogenic source, and mixed anthropogenic source of transportation, residential activities, and construction) were identified as the predominant sources for the PTEs pollution in SFD63, with the contribution levels of 29.9%, 32.4%, and 37.7%, respectively. The assessment of health risks according to Monte Carlo simulation revealed that the 95% of the non-cancer risk of PTEs to residents (the elderly, working people, and children) was less than the threshold of 1, while the probability of cancer risk exceeding the acceptable threshold of 1E-6 was 93.76% for children, 68.61% for the elderly, and 67.54% for working people. Industrial source was determined as priority pollution source and Cr was determined as priority pollutant, which should be concerned.
Collapse
Affiliation(s)
- Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinyao Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, China
| | - Ling Zuo
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Nanthi Bolan
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| |
Collapse
|
14
|
Chen X, Cao S, Wen D, Zhang Y, Wang B, Duan X. Domestic dogs as sentinels of children lead exposure: Multi-pathway identification and source apportionment based on isotope technique. CHEMOSPHERE 2023; 316:137787. [PMID: 36623594 DOI: 10.1016/j.chemosphere.2023.137787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/06/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Environmental lead exposure poses risks to children' health, thus exposure sources and pathways identification remain important concern and research scope. Due to sharing the same environment, domestic animals, especially dogs, have been used as useful sentinels to identify human lead exposure. However, more evidence is needed on whether domestic dogs could be used to identify the lead exposure pathways and sources of children. Thus, this study investigated the dietary habits, behaviors, and household environment of children and dogs in a typical coal-fired area in China. The lead levels and lead isotope ratios (Acronym: LIRs, expressed as 208Pb/206Pb and 207Pb/206Pb) in dogs' and children's blood, as well as in environmental media (food, PM2.5, indoor/outdoor dust, drinking water and soil) were measured to explore the predominant lead pollution sources and exposure pathways of children. The results showed that the LIRs of children's blood (208Pb/206Pb = 2.0703 ± 0.0076, 207Pb/206Pb = 0.8501 ± 0.0052) were similar to those of dogs' blood (208Pb/206Pb = 2.0696 ± 0.0085, 207Pb/206Pb = 0.8499 ± 0.0052), as well as similar to the LIRs of environmental media, i.e. children's food (208Pb/206Pb = 2.0731 ± 0.0057, 207Pb/206Pb = 0.8491 ± 0.0036) and coal (208Pb/206Pb = 2.0683 ± 0.017, 207Pb/206Pb = 0.8515 ± 0.01). Children and dogs had similar lead exposure pathways, but the contributions of each exposure pathway were different, i.e., 83.1% vs. 76.9% for children and dogs via food ingestion, 1.4% vs. 5.6% via particulate matter exposure, and 15.5% vs. 17.5% via household dust exposure, respectively. The contribution of food via ingestion to lead exposure remains dominant, and coal combustion is a main lead exposure source for children and domestic dogs.
Collapse
Affiliation(s)
- Xing Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - SuZhen Cao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongsen Wen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yaqun Zhang
- Gansu Academy of Eco-environmental Sciences, Lanzhou, 730000, China
| | - Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|