1
|
Carducci NGG, Dey S, Hickey DP. Recent Developments and Applications of Microbial Electrochemical Biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:149-183. [PMID: 38273205 DOI: 10.1007/10_2023_236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
This chapter provides a comprehensive overview of microbial electrochemical biosensors, which are a unique class of biosensors that utilize the metabolic activity of microorganisms to convert chemical signals into electrical signals. The principles and mechanisms of these biosensors are discussed, including the different types of microorganisms that can be used. The various applications of microbial electrochemical biosensors in fields such as environmental monitoring, medical diagnostics, and food safety are also explored. The chapter concludes with a discussion of future research directions and potential advancements in the field of microbial electrochemical biosensors.
Collapse
Affiliation(s)
- Nunzio Giorgio G Carducci
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Sunanda Dey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - David P Hickey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Zhou L, Wu Y, Jiang Q, Sun S, Wang J, Gao Y, Zhang W, Du Q, Song X. Pyrolyzed sediment accelerates electron transfer and regulates rhodamine B biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167126. [PMID: 37739087 DOI: 10.1016/j.scitotenv.2023.167126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Electron transfer efficiency is a key factor that determined the removal of environmental pollution through biodegradation. Electron shuttles exogenously addition is one of the measures to improve the electron transfer efficiency. In this study, the sediment was pyrolyzed at different temperature to investigate its properties of mediating electron transfer and removing of rhodamine B (RhB) in microbial electrochemical systems (MESs). Sediments pyrolyzed at 300 °C (PS300) and 600 °C (PS600) have promoted electron transfer which led to 16 % enhancement of power generation while the result is reversed at 900 °C (PS900). Although power output of PS300 and PS600 are similar, the removal efficiency of RhB is not consistent, which may be caused by the biofilm structure difference. Microbial community analysis revealed that the abundance of EAB and toxicity-degrading bacteria (TDB) in PS600 was 6 % higher than that in PS300. The differentiation of microbial community also affected the metabolic pathway, the amino synthesis and tricarboxylic acid cycle were primarily upregulated with PS600 addition, which enhanced the intracellular metabolism. However, a more active cellular anabolism occurred with PS300, which may have been triggered by RhB toxicity. This study showed that pyrolytic sediment exhibits an excellent ability to mediate electron transport and promote pollutant removal at 600 °C, which provides a techno-economically feasible scenario for the utilization of low-carbon-containing solid wastes.
Collapse
Affiliation(s)
- Lean Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Yongliang Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Qian Jiang
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Shiquan Sun
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jinting Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yang Gao
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Wei Zhang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Qing Du
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xin Song
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Wu H, Li A, Gao S, Xing Z, Zhao P. The performance, mechanism and greenhouse gas emission potential of nitrogen removal technology for low carbon source wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166491. [PMID: 37633391 DOI: 10.1016/j.scitotenv.2023.166491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
Excessive nitrogen can lead to eutrophication of water bodies. However, the removal of nitrogen from low carbon source wastewater has always been challenging due to the limited availability of carbon sources as electron donors. Biological nitrogen removal technology can be classified into three categories: heterotrophic biological technology (HBT) that utilizes organic matter as electron donors, autotrophic biological technology (ABT) that relies on inorganic electrons as electron donors, and heterotrophic-autotrophic coupling technology (CBT) that combines multiple electron donors. This work reviews the research progress, microbial mechanism, greenhouse gas emission potential, and challenges of the three technologies. In summary, compared to HBT and ABT, CBT shows greater application potential, although pilot-scale implementation is yet to be achieved. The composition of nitrogen removal microorganisms is different, mainly driven by electron donors. ABT and CBT exhibit the lowest potential for greenhouse gas emissions compared to HBT. N2O, CH4, and CO2 emissions can be controlled by optimizing conditions and adding constructed wetlands. Furthermore, these technologies need further improvement to meet increasingly stringent emission standards and address emerging pollutants. Common measures include bioaugmentation in HBT, the development of novel materials to promote mass transfer efficiency of ABT, and the construction of BES-enhanced multi-electron donor systems to achieve pollutant prevention and removal. This work serves as a valuable reference for the development of clean and sustainable low carbon source wastewater treatment technology, as well as for addressing the challenges posed by global warming.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sicong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
4
|
Zhu X, Xiao L, Ding Y, Zhang J, Jiang Y. The chloroperoxidase immobilized on porous carbon nanobowls for the detection of trichloroacetic acid by electroenzymatic synergistic catalysis. ENVIRONMENTAL RESEARCH 2023; 234:116590. [PMID: 37423369 DOI: 10.1016/j.envres.2023.116590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Trichloroacetic acid (TCA), as a by-product of chlorination disinfection, is a highly carcinogenic chemical. Due to the widespread use of chlorination disinfection, it is critical to detect TCA in drinking water to decrease the incidence of disease. In this work, we developed an efficient TCA biosensor via electroenzymatic synergistic catalysis. The porous carbon nanobowls (PCNB) are prepared and wrapped by an amyloid like proteins formed by phase-transitioned lysozyme (PTL-PCNB), then, chloroperoxidase (CPO) is abounding to PTL-PCNB owing to its strong adhesion. The ionic liquid of 1-ethyl-3-methylimidazolium bromide (ILEMB) is co-immobilized on PTL-PCNB to from CPO-ILEMB@PTL-PCNB nanocomposite to assist the direct electron transfer (DET) of CPO. The PCNB plays two roles here. In addition, to increasing the conductivity, it serves as an ideal support for holding CPO; The CPO-ILEMB@PTL-PCNB nanocomposite modified electrode presents high efficiency for sensing TCA. Through electroenzymatic synergistic catalysis, a wide detection range of 33 μmol L-1 to 98 mmol L-1 can be achieved with a low detection limit of 5.9 μmol L-1, and high stability, selectivity as well as reproducibility, which ensures its potential practical applicability. This work provides a new platform for the electro-enzyme synergistic catalysis in one pot.
Collapse
Affiliation(s)
- Xuefang Zhu
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, PR China.
| | - Ling Xiao
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, PR China.
| | - Yu Ding
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, PR China.
| | - Jing Zhang
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, PR China.
| | - Yucheng Jiang
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, PR China.
| |
Collapse
|
5
|
Gao L, Wei D, Ismail S, Wang Z, El-Baz A, Ni SQ. Combination of partial nitrification and microbial fuel cell for simultaneous ammonia reduction, organic removal, and energy recovery. BIORESOURCE TECHNOLOGY 2023; 386:129558. [PMID: 37499920 DOI: 10.1016/j.biortech.2023.129558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The chemical oxygen demand (COD) in municipal wastewater has become an obstacle for anammox in mainstream applications. In this study, the single chamber microbial fuel cell (MFC) was installed as an influent device for a partial nitrification-sequencing batch reactor (PN-SBR) to realize integrating COD removal and partial nitrification. After 80 days of operation, the nitrite accumulation rate reached 93%, while the COD removal efficiency was 56%. The output voltage and the power density of MFC were 66.62 mV and 2.40 W/m3, respectively. The content of EPS, especially polysaccharides in the stable phase, has increased compared with the seed sludge. The most dominant genus in MFC anode biofilm and SBR granular sludge was Thauera, which has organic compounds degradation capacity and could degrade nitrate. This study revealed the microbial interaction between MFC and partial nitrification and provided a new strategy for stable ammonia and nitrite supply for mainstream anammox plants.
Collapse
Affiliation(s)
- Linjie Gao
- Shandong Key Laboratory of Environmental Processes and Health, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Dong Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, China.
| | - Sherif Ismail
- Shandong Key Laboratory of Environmental Processes and Health, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Zhibin Wang
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Amro El-Baz
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Shou-Qing Ni
- Shandong Key Laboratory of Environmental Processes and Health, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
6
|
Xiao J, Zhu S, Bu L, Chen Y, Wu R, Zhou S. Facile synthesis of Ag/ZIF-8@ZIF-67 as an electrochemical sensing platform for sensitive detection of halonitrophenols in drinking water. RSC Adv 2023; 13:27203-27211. [PMID: 37701286 PMCID: PMC10493855 DOI: 10.1039/d3ra04039a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Halonitrophenols (HNPs) are an emerging type of aromatic disinfection byproduct, with detected concentrations of ∼nmol L-1 in source water and drinking water. Currently, there are no standard methods for identifying HNPs, and most of the reported methods are time-consuming and equipment-dependent. A core-shell metal-organic framework (MOF) based electrochemical sensor (Ag/ZIF-8@ZIF-67) capable of detecting 2,6-dichloro-4-nitrophenol (2,6-DCNP) is reported in this study. The electrochemical sensor obtains the concentration of 2,6-DCNP by detecting the peak current passing through the sensor. In this sensor, Ag nanoparticles (AgNPs) play a key role in electrochemical sensing by reducing nitro groups via electron transfer, and porous structure with a large surface area is offered by ZIF-8@ZIF-67. The cyclic voltammetry (CV) response of Ag/ZIF-8@ZIF-67 was found to be approximately 1.75 times and 2.23 times greater than that of Ag/ZIF-8 and Ag/ZIF-67, respectively, suggesting an ideal synergistic effect of the core-shell structures. The Ag/ZIF-8@ZIF-67 sensor exhibited exceptional sensitivity to 2,6-DCNP, exhibiting a broad linear response range (R2 = 0.992) from 240 nmol L-1 to 288 μmol L-1 and a low detection limit of 20 nmol L-1. Furthermore, the sensor exhibited good anti-interference for isomers and common distractors in water, excellent stability and reproducibility, and high recovery in actual water samples. Our reported sensor gives a novel strategy for sensitive, selective, and in situ detection of 2,6-DCNP in practical analysis.
Collapse
Affiliation(s)
- Jiaxin Xiao
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University Changsha 410082 PR China +86 731 88821441
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University Changsha 410082 PR China
| | - Shumin Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University Changsha 410082 PR China +86 731 88821441
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University Changsha 410082 PR China
| | - Lingjun Bu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University Changsha 410082 PR China +86 731 88821441
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University Changsha 410082 PR China
| | - Yuan Chen
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University Changsha 410082 PR China +86 731 88821441
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University Changsha 410082 PR China
| | - Ruoxi Wu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University Changsha 410082 PR China +86 731 88821441
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University Changsha 410082 PR China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University Changsha 410082 PR China +86 731 88821441
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University Changsha 410082 PR China
| |
Collapse
|
7
|
Wu H, Li A, Zhang H, Gao S, Li S, Cai J, Yan R, Xing Z. The potential and sustainable strategy for swine wastewater treatment: Resource recovery. CHEMOSPHERE 2023; 336:139235. [PMID: 37343397 DOI: 10.1016/j.chemosphere.2023.139235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Swine wastewater is highly polluted with complex and harmful substances that require effective treatment to minimize environmental damage. There are three commonly used biological technologies for treating swine wastewater: conventional biological technology (CBT), microbial electrochemical technology (MET), and microalgae technology (MT). However, there is a lack of comparison among these technologies and a lack of understanding of their unique advantages and efficient operation strategies. This review aims to compare and contrast the characteristics, influencing factors, improvement methods, and microbial mechanisms of each technology. CBT is cost-effective but has low resource recovery efficiency, while MET and MT have the highest potential for resource recovery. However, all three technologies are affected by various factors and toxic substances such as heavy metals and antibiotics. Improved methods include exogenous/endogenous enhancement, series reactor operation, algal-bacterial symbiosis system construction, etc. Though MET is limited by construction costs, CBT and MT have practical applications. While swine wastewater treatment processes have developed automatic control systems, the application need further promotion. Furthermore, key functional microorganisms involved in CBT's pollutant removal or transformation have been detected, as have related genes. The unique electroactive microbial cooperation mode and symbiotic mode of MET and MT were also revealed, respectively. Importantly, the future research should focus on broadening the scope and scale of engineering applications, preventing and controlling emerging pollutants, improving automated management level, focusing on microbial synergistic metabolism, enhancing resource recovery performance, and building a circular economy based on low-cost and resource utilization.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Huaiwen Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Sicong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Suqi Li
- College of Life and Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jindou Cai
- School of Culture and Tourism, Chongqing City Management College, Chongqing, 402160, PR China
| | - Ruixiao Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| |
Collapse
|
8
|
Wang J, Dong C, Li Q, Yang X, Li D, Zhang L, Zhang Y, Zhan G. Innovative electrochemical biosensor with nitrifying biofilm and nitrite oxidation signal for comprehensive toxicity detection in Tuojiang River. WATER RESEARCH 2023; 233:119757. [PMID: 36822111 DOI: 10.1016/j.watres.2023.119757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Water toxicity detection, as a valuable supplement to conventional water quality measurement, is an important method for evaluating water environmental quality standards. However, the toxicity of composite pollutants is more complicated due to their mixture effects. This study developed a novel, rapid and interference-resistant detection method for water toxicity based on an electrochemical biosensor using peak current from nitrite oxidation as a signal. Toxicants could weaken the characteristic peak current of nitrite to indicate the magnitude of toxicity. The proof-of-concept study was first conducted using a synthetic water sample containing trichloroacetic acid (TCAA), and then the results were compared with those of the traditional toxicity colorimetric method (CCK-8 kit) and laser confocal microscopy (CLSM). The accuracy of the biosensor was further verified with water samples containing individual pollutants such as Cd2+ (50-150 μg/L), Cr6+ (20-80 μg/L) mixture, triclosan (TCS; 0.1-1.0 μg/L) and TCAA (10-80 μg/L), or a mixture of the above. The viability of the sensor was further validated with the actual water sample from the Tuojiang River. The results demonstrated that although the concentration of a single conventional pollutant in water did not exceed the discharge standard for surface water, the comprehensive toxicity of natural water should not be ignored. This method could be a beneficial supplement to conventional water quality detection to understand the characteristics of the water, and thus contribute to the next stage of water treatment.
Collapse
Affiliation(s)
- Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology Chinese Academy of Science, Chengdu 610041, PR China
| | - Chong Dong
- CAS Key Laboratory of Environmental and Applied Microbiology Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology Chinese Academy of Science, Chengdu 610041, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Yang
- CAS Key Laboratory of Environmental and Applied Microbiology Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology Chinese Academy of Science, Chengdu 610041, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology Chinese Academy of Science, Chengdu 610041, PR China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology Chinese Academy of Science, Chengdu 610041, PR China
| | - Yifeng Zhang
- Department of Environmental & Resource Engineering, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology Chinese Academy of Science, Chengdu 610041, PR China.
| |
Collapse
|
9
|
Wu H, Li A, Yang X, Wang J, Liu Y, Zhan G. The research progress, hotspots, challenges and outlooks of solid-phase denitrification process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159929. [PMID: 36356784 DOI: 10.1016/j.scitotenv.2022.159929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/30/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen pollution is one of the main reasons for water eutrophication. The difficulty of nitrogen removal in low-carbon wastewater poses a huge potential threat to the ecological environment and human health. As a clean biological nitrogen removal process, solid-phase denitrification (SPD) was proposed for long-term operation of low-carbon wastewater. In this paper, the progress, hotspots, and challenges of the SPD process based on different solid carbon sources (SCSs) are reviewed. Compared with synthetic SCS and natural SCS, blended SCSs have more application potential and have achieved pilot-scale application. Differences in SCSs will lead to changes in the enrichment of hydrolytic microorganisms and hydrolytic genes, which indirectly affect denitrification performance. Moreover, the denitrification performance of the SPD process is also affected by the physical and chemical properties of SCSs, pH of wastewater, hydraulic retention time, filling ratio, and temperature. In addition, the strengthening of the SPD process is an inevitable trend. The strengthening measures including SCSs modification and coupled electrochemical technology are regarded as the current research hotspots. It is worth noting that the outbreak of the COVID-19 epidemic has led to the increase of disinfection by-products and antibiotics in wastewater, which makes the SPD process face challenges. Finally, this review proposes prospects to provide a theoretical basis for promoting the efficient application of the SPD process and coping with the challenge of the COVID-19 epidemic.
Collapse
Affiliation(s)
- Heng Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Anjie Li
- College of Grassland and Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xu Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yiliang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
10
|
Recent advances in morphology, aperture control, functional control and electrochemical sensors applications of carbon nanofibers. Anal Biochem 2022; 656:114882. [PMID: 36063917 DOI: 10.1016/j.ab.2022.114882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 01/13/2023]
Abstract
Among many nanomaterials, electrospun carbon nanofibers (CNFs) have become one of the hot spots in nanoscience research because of their interesting physicochemical and biological properties such as large specific surface area, easy functionalization and biocompatibility. Polyacrylonitrile(PAN) has also become the most widely used precursor fiber for CNF manufacturing. In this paper, the latest advances in the synthesis of CNF by electrospinning were reviewed, including using template method, heat treatment, coaxial spinning technology to control the morphology and aperture, as well as the functionalization of electrospinning doped with chemical substances such as heteroatoms, nanoparticles (NPs), carbon nanotubes (CNTs) and grapheme (Gr), in order to further expand its application scope. The application of electrospun CNFs as electrochemical sensing platform for toxic and harmful substances in food and environment was also briefly introduced.
Collapse
|