1
|
Cleary E, Atuhaire F, Sorichetta A, Ruktanonchai N, Ruktanonchai C, Cunningham A, Pasqui M, Schiavina M, Melchiorri M, Bondarenko M, Shepherd HER, Padmadas SS, Wesolowski A, Cummings DAT, Tatem AJ, Lai S. Comparing lagged impacts of mobility changes and environmental factors on COVID-19 waves in rural and urban India: A Bayesian spatiotemporal modelling study. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0003431. [PMID: 40305435 PMCID: PMC12043145 DOI: 10.1371/journal.pgph.0003431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/16/2025] [Indexed: 05/02/2025]
Abstract
Previous research in India has identified urbanisation, human mobility and population demographics as key variables associated with higher district level COVID-19 incidence. However, the spatiotemporal dynamics of mobility patterns in rural and urban areas in India, in conjunction with other drivers of COVID-19 transmission, have not been fully investigated. We explored travel networks within India during two pandemic waves using aggregated and anonymized weekly human movement datasets obtained from Google, and quantified changes in mobility before and during the pandemic compared with the mean baseline mobility for the 8-week time period at the beginning of 2020. We fit Bayesian spatiotemporal hierarchical models coupled with distributed lag non-linear models (DLNM) within the integrated nested Laplace approximation (INLA) package in R to examine the lag-response associations of drivers of COVID-19 transmission in urban, suburban and rural districts in India during two pandemic waves in 2020-2021. Model results demonstrate that recovery of mobility to 99% that of pre-pandemic levels was associated with an increase in relative risk of COVID-19 transmission during the Delta wave of transmission. This increased mobility, coupled with reduced stringency in public intervention policy and the emergence of the Delta variant, were the main contributors to the high COVID-19 transmission peak in India in April 2021. During both pandemic waves in India, reduction in human mobility, higher stringency of interventions, and climate factors (temperature and precipitation) had 2-week lag-response impacts on the [Formula: see text] of COVID-19 transmission, with variations in drivers of COVID-19 transmission observed across urban, rural and suburban areas. With the increased likelihood of emergent novel infections and disease outbreaks under a changing global climate, providing a framework for understanding the lagged impact of spatiotemporal drivers of infection transmission will be crucial for informing interventions.
Collapse
Affiliation(s)
- Eimear Cleary
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, United Kingdom
| | - Fatumah Atuhaire
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, United Kingdom
| | - Alessandro Sorichetta
- Department of Earth Sciences “Ardito Desio”, Università degli Studi di Milano, Milan, Italy
| | - Nick Ruktanonchai
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Cori Ruktanonchai
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Alexander Cunningham
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, United Kingdom
| | - Massimiliano Pasqui
- Institute for Bioeconomy, National Research Council of Italy (IBE-CNR), Rome, Italy
| | | | | | - Maksym Bondarenko
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, United Kingdom
| | - Harry E R Shepherd
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, United Kingdom
| | - Sabu S Padmadas
- Department of Social Statistics & Demography, Faculty of Social Sciences, University of Southampton, Southampton, United Kingdom
- Department of Public Health & Mortality Studies, International Institute for Population Sciences, Mumbai, India
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Derek A T Cummings
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Andrew J Tatem
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, United Kingdom
| | - Shengjie Lai
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
2
|
Cleary E, Atuhaire F, Sorcihetta A, Ruktanonchai N, Ruktanonchai C, Cunningham A, Pasqui M, Schiavina M, Melchiorri M, Bondarenko M, Shepherd HER, Padmadas SS, Wesolowski A, Cummings DAT, Tatem AJ, Lai S. Comparing lagged impacts of mobility changes and environmental factors on COVID-19 waves in rural and urban India: a Bayesian spatiotemporal modelling study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.12.24308871. [PMID: 38946988 PMCID: PMC11213100 DOI: 10.1101/2024.06.12.24308871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Previous research in India has identified urbanisation, human mobility and population demographics as key variables associated with higher district level COVID-19 incidence. However, the spatiotemporal dynamics of mobility patterns in rural and urban areas in India, in conjunction with other drivers of COVID-19 transmission, have not been fully investigated. We explored travel networks within India during two pandemic waves using aggregated and anonymized weekly human movement datasets obtained from Google, and quantified changes in mobility before and during the pandemic compared with the mean baseline mobility for the 8-week time period at the beginning of 2020. We fit Bayesian spatiotemporal hierarchical models coupled with distributed lag non-linear models (DLNM) within the integrated nested Laplace approximate (INLA) package in R to examine the lag-response associations of drivers of COVID-19 transmission in urban, suburban, and rural districts in India during two pandemic waves in 2020-2021. Model results demonstrate that recovery of mobility to 99% that of pre-pandemic levels was associated with an increase in relative risk of COVID-19 transmission during the Delta wave of transmission. This increased mobility, coupled with reduced stringency in public intervention policy and the emergence of the Delta variant, were the main contributors to the high COVID-19 transmission peak in India in April 2021. During both pandemic waves in India, reduction in human mobility, higher stringency of interventions, and climate factors (temperature and precipitation) had 2-week lag-response impacts on the R t of COVID-19 transmission, with variations in drivers of COVID-19 transmission observed across urban, rural and suburban areas. With the increased likelihood of emergent novel infections and disease outbreaks under a changing global climate, providing a framework for understanding the lagged impact of spatiotemporal drivers of infection transmission will be crucial for informing interventions.
Collapse
Affiliation(s)
- Eimear Cleary
- WorldPop, School of Geography and Environmental Science, University of Southampton, UK
| | - Fatumah Atuhaire
- WorldPop, School of Geography and Environmental Science, University of Southampton, UK
| | - Alessandro Sorcihetta
- Department of Earth Sciences “Ardito Desio”, Universita degli Studi di Milano, Milan, Italy
| | - Nick Ruktanonchai
- Department of Population Health Sciences, VA-MD College of Veterinary Medicine, Virginia Tech, USA
| | - Cori Ruktanonchai
- Department of Population Health Sciences, VA-MD College of Veterinary Medicine, Virginia Tech, USA
| | - Alexander Cunningham
- WorldPop, School of Geography and Environmental Science, University of Southampton, UK
| | - Massimiliano Pasqui
- Institute for Bioeconomy, National Research Council of Italy (IBE-CNR), Rome, Italy
| | - Marcello Schiavina
- European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Michele Melchiorri
- European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Maksym Bondarenko
- WorldPop, School of Geography and Environmental Science, University of Southampton, UK
| | - Harry E R Shepherd
- WorldPop, School of Geography and Environmental Science, University of Southampton, UK
| | - Sabu S Padmadas
- Department of Social Statistics & Demography, Faculty of Social Sciences, University of Southampton, UK
- Department of Public Health & Mortality Studies, International Institute for Population Sciences, Mumbai, India
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Derek A T Cummings
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Andrew J Tatem
- WorldPop, School of Geography and Environmental Science, University of Southampton, UK
| | - Shengjie Lai
- WorldPop, School of Geography and Environmental Science, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Zoran M, Savastru R, Savastru D, Tautan M, Tenciu D. Linkage between Airborne Particulate Matter and Viral Pandemic COVID-19 in Bucharest. Microorganisms 2023; 11:2531. [PMID: 37894189 PMCID: PMC10609195 DOI: 10.3390/microorganisms11102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The long-distance spreading and transport of airborne particulate matter (PM) of biogenic or chemical compounds, which are thought to be possible carriers of SARS-CoV-2 virions, can have a negative impact on the incidence and severity of COVID-19 viral disease. Considering the total Aerosol Optical Depth at 550 nm (AOD) as an atmospheric aerosol loading variable, inhalable fine PM with a diameter ≤2.5 µm (PM2.5) or coarse PM with a diameter ≤10 µm (PM10) during 26 February 2020-31 March 2022, and COVID-19's five waves in Romania, the current study investigates the impact of outdoor PM on the COVID-19 pandemic in Bucharest city. Through descriptive statistics analysis applied to average daily time series in situ and satellite data of PM2.5, PM10, and climate parameters, this study found decreased trends of PM2.5 and PM10 concentrations of 24.58% and 18.9%, respectively compared to the pre-pandemic period (2015-2019). Exposure to high levels of PM2.5 and PM10 particles was positively correlated with COVID-19 incidence and mortality. The derived average PM2.5/PM10 ratios during the entire pandemic period are relatively low (<0.44), indicating a dominance of coarse traffic-related particles' fraction. Significant reductions of the averaged AOD levels over Bucharest were recorded during the first and third waves of COVID-19 pandemic and their associated lockdowns (~28.2% and ~16.4%, respectively) compared to pre-pandemic period (2015-2019) average AOD levels. The findings of this research are important for decision-makers implementing COVID-19 safety controls and health measures during viral infections.
Collapse
Affiliation(s)
- Maria Zoran
- C Department, National Institute of R&D for Optoelectronics, 409 Atomistilor Street, MG5, 077125 Magurele, Romania; (R.S.); (D.S.); (M.T.); (D.T.)
| | | | | | | | | |
Collapse
|
4
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Peculiar weather patterns effects on air pollution and COVID-19 spread in Tokyo metropolis. ENVIRONMENTAL RESEARCH 2023; 228:115907. [PMID: 37080275 PMCID: PMC10111861 DOI: 10.1016/j.envres.2023.115907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
As a pandemic hotspot in Japan, between March 1, 2020-October 1, 2022, Tokyo metropolis experienced seven COVID-19 waves. Motivated by the high rate of COVID-19 incidence and mortality during the seventh wave, and environmental/health challenges we conducted a time-series analysis to investigate the long-term interaction of air quality and climate variability with viral pandemic in Tokyo. Through daily time series geospatial and observational air pollution/climate data, and COVID-19 incidence and death cases, this study compared the environmental conditions during COVID-19 multiwaves. In spite of five State of Emergency (SOEs) restrictions associated with COVID-19 pandemic, during (2020-2022) period air quality recorded low improvements relative to (2015-2019) average annual values, namely: Aerosol Optical Depth increased by 9.13% in 2020 year, and declined by 6.64% in 2021, and 12.03% in 2022; particulate matter PM2.5 and PM10 decreased during 2020, 2021, and 2022 years by 10.22%, 62.26%, 0.39%, and respectively by 4.42%, 3.95%, 5.76%. For (2021-2022) period the average ratio of PM2.5/PM10 was (0.319 ± 0.1640), showing a higher contribution to aerosol loading of traffic-related coarse particles in comparison with fine particles. The highest rates of the daily recorded COVID-19 incidence and death cases in Tokyo during the seventh COVID-19 wave (1 July 2022-1 October 2022) may be attributed to accumulation near the ground of high levels of air pollutants and viral pathogens due to: 1) peculiar persistent atmospheric anticyclonic circulation with strong positive anomalies of geopotential height at 500 hPa; 2) lower levels of Planetary Boundary Layer (PBL) heights; 3) high daily maximum air temperature and land surface temperature due to the prolonged heat waves (HWs) in summer 2022; 4) no imposed restrictions. Such findings can guide public decision-makers to design proper strategies to curb pandemics under persistent stable anticyclonic weather conditions and summer HWs in large metropolitan areas.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania.
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| |
Collapse
|
5
|
Sangkham S, Islam MA, Sarndhong K, Vongruang P, Hasan MN, Tiwari A, Bhattacharya P. Effects of fine particulate matter (PM 2.5) and meteorological factors on the daily confirmed cases of COVID-19 in Bangkok during 2020-2021, Thailand. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2023; 8:100410. [PMID: 38620170 PMCID: PMC10286573 DOI: 10.1016/j.cscee.2023.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 04/17/2024]
Abstract
The ongoing global pandemic caused by the SARS-CoV-2 virus, known as COVID-19, has disrupted public health, businesses, and economies worldwide due to its widespread transmission. While previous research has suggested a possible link between environmental factors and increased COVID-19 cases, the evidence regarding this connection remains inconclusive. The purpose of this research is to determine whether or not there is a connection between the presence of fine particulate matter (PM2.5) and meteorological conditions and COVID-19 infection rates in Bangkok, Thailand. The study employs a statistical method called Generalized Additive Model (GAM) to find a positive and non-linear association between RH, AH, and R and the number of verified COVID-19 cases. The impacts of the seasons (especially summer) and rainfall on the trajectory of COVID-19 cases were also highlighted, with an adjusted R-square of 0.852 and a deviance explained of 85.60%, both of which were statistically significant (p < 0.05). The study results assist in preventing the future seasonal spread of COVID-19, and public health authorities may use these findings to make informed decisions and assess their policies.
Collapse
Affiliation(s)
- Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Phayao, 56000, Thailand
| | - Md Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Kritsada Sarndhong
- Department of Community Health, School of Public Health, University of Phayao, Phayao, 56000, Thailand
| | - Patipat Vongruang
- Department of Environmental Health, School of Public Health, University of Phayao, Phayao, 56000, Thailand
- Atmospheric Pollution and Climate Change Research Unit, School of Energy and Environment, University of Phayao, Phayao, 56000, Thailand
| | - Mohammad Nayeem Hasan
- Department of Statistics, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Ananda Tiwari
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland
| | - Prosun Bhattacharya
- COVID-19 Research, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE, 10044, Stockholm, Sweden
| |
Collapse
|
6
|
Núñez-Delgado A, Ahmed W, Bontempi E, Domingo JL. The environment, epidemics, and human health. ENVIRONMENTAL RESEARCH 2022; 214:113931. [PMID: 35921907 PMCID: PMC9339168 DOI: 10.1016/j.envres.2022.113931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this editorial piece, the Editors of the Virtual Special Issue (VSI) "The environment, epidemics, and human health" comment on the papers accepted for publication, which were selected after peer-reviewing among all those manuscripts submitted to the Special Issue. In view of the title of the VSI, it is clear that its aim goes beyond the COVID-19 pandemic, trying to explore relations among environmental aspects, any kind of epidemics, and human health. However, COVID-19 is still hitting as a global and current main issue, causing that manuscripts dealing with this disease and the SARS-CoV-2 virus are of high relevance in the whole set of research papers published.
Collapse
Affiliation(s)
- Avelino Núñez-Delgado
- Dept. Soil Sci. and Agric. Chem., Univ. Santiago de Compostela, Engineering Polytechnic School, Campus Univ. S/n, 27002, Lugo, Spain.
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld, 4102, Australia
| | - Elza Bontempi
- INSTM and University of Brescia, Via Branze 38, 25123, Brescia, Italy
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, Reus, Spain
| |
Collapse
|
7
|
Manik S, Mandal M, Pal S. Impact of air pollutants on COVID-19 transmission: a study over different metropolitan cities in India. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2022; 25:1-13. [PMID: 35975212 PMCID: PMC9371967 DOI: 10.1007/s10668-022-02593-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/22/2022] [Indexed: 05/16/2023]
Abstract
India is affected strongly by the Coronavirus and within a short period, it becomes the second-highest country based on the infected case. Earlier, there was an indication of the impact of pollution on COVID-19 transmission from a few studies with early COVID-19 data. The study of the effect of pollution on COVID-19 in Indian metropolitan cities is ideal due to the high level of pollution and COVID-19 transmission in these cities. We study the impact of different air pollutants on the spread of coronavirus in different cities in India. A correlation is studied with daily confirmed COVID-19 cases with a daily mean of ozone, particle matter (PM) in size ≤ 10 μ m, carbon monoxide, sulfur dioxide, and nitrogen dioxide of different cities. It is found that particulate matter concentration decreases during the nationwide lockdown period and the air quality index improves for different Indian regions. A correlation between the daily confirmed cases with particulate matter (PM2.5 and PM10 both) is observed. The air quality index also shows a positive correlation with the daily confirmed cases for most of the metropolitan Indian cities. The correlation study also indicates that different air pollutants may have a role in the spread of the virus.
Collapse
Affiliation(s)
- Souvik Manik
- Midnapore City college, Kuturia, Bhadutala, Paschim Medinipur, West Bengal 721129 India
| | - Manoj Mandal
- Midnapore City college, Kuturia, Bhadutala, Paschim Medinipur, West Bengal 721129 India
| | - Sabyasachi Pal
- Midnapore City college, Kuturia, Bhadutala, Paschim Medinipur, West Bengal 721129 India
| |
Collapse
|