1
|
Chanti-Ketterl M, Aranda MP, Plassman BL. Ethnic and Sex Differences in the Association Between Organochlorine Exposure and Cognitive Function in Late Life. J Gerontol A Biol Sci Med Sci 2025; 80:glaf037. [PMID: 40108875 PMCID: PMC12070189 DOI: 10.1093/gerona/glaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Organochlorine pesticides persist in the environment and body for extended periods. However, little is known about their long-term impact on cognition in older adults and if their influence differs by race/ethnicity (hereinafter ethnicity) and sex. METHODS We evaluated cognitive function and organochlorine levels by ethnicity and sex in 979 adults, age 60+ from the National Health and Nutrition Examination Surveys (2011-2014). We utilized weighted linear generalized estimating equations to measure differences between 7 log-transformed lipid-adjusted organochlorines (ng/g) and cognitive function. A composite cognitive function score was created using the mean of the z-scores from immediate and delayed of a word-list memory test, verbal fluency, and digit substitution test. Covariates included age, education, marital status, sex, and ethnicity. Exploratory sensitivity analyses included body mass index, ratio of income-to-poverty, and occupation, which were added to the models individually. Weighted sample included: 55.4% females; 79.8% NH-White; 9.2% NH-Black; 3.4% Mexican-American; 4.0% Other-Hispanic; 3.5% NH-Asian. RESULTS We found significant differences in cognitive outcomes and organochlorine levels across ethnic and sex groups. The variability in cognitive performance and organochlorine exposure both within and between these groups, suggests that organochlorines may play a role in cognitive disparities, despite limited significant interaction effects. Sensitivity analyses adjusting for body mass index, ratio of income-to-poverty, and longest occupation held indicated that most specific-organochlorine associations remained significant. CONCLUSIONS Our findings emphasize the importance of examining both the distributions of organochlorines and cognition by ethnicity and sex and their interactions to understand how each may contribute to cognitive health disparities in older adults.
Collapse
Affiliation(s)
- Marianne Chanti-Ketterl
- Division of Behavioral Medicine & Neurosciences, Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, North Carolina, USA
| | - María P Aranda
- USC Suzanne Dworak-Peck School of Social Work, Edward R. Roybal Institute on Aging, Alzheimer’s Disease Research Center, University of Southern California, Los Angeles, California, USA
| | - Brenda L Plassman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Gerloff C, Yücel MA, Mehlem L, Konrad K, Reindl V. NiReject: toward automated bad channel detection in functional near-infrared spectroscopy. NEUROPHOTONICS 2024; 11:045008. [PMID: 39497725 PMCID: PMC11532795 DOI: 10.1117/1.nph.11.4.045008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/27/2024] [Accepted: 08/15/2024] [Indexed: 11/07/2024]
Abstract
Significance The increasing sample sizes and channel densities in functional near-infrared spectroscopy (fNIRS) necessitate precise and scalable identification of signals that do not permit reliable analysis to exclude them. Despite the relevance of detecting these "bad channels," little is known about the behavior of fNIRS detection methods, and the potential of unsupervised and semi-supervised machine learning remains unexplored. Aim We developed three novel machine learning-based detectors, unsupervised, semi-supervised, and hybrid NiReject, and compared them with existing approaches. Approach We conducted a systematic literature search and demonstrated the influence of bad channel detection. Based on 29,924 signals from two independently rated datasets and a simulated scenario space of diverse phenomena, we evaluated the NiReject models, six of the most established detection methods in fNIRS, and 11 prominent methods from other domains. Results Although the results indicated that a lack of proper detection can strongly bias findings, detection methods were reported in only 32% of the included studies. Semi-supervised models, specifically semi-supervised NiReject, outperformed both established thresholding-based and unsupervised detectors. Hybrid NiReject, utilizing a human feedback loop, addressed the practical challenges of semi-supervised methods while maintaining precise detection and low rating effort. Conclusions This work contributes toward more automated and reliable fNIRS signal quality control by comprehensively evaluating existing and introducing novel machine learning-based techniques and outlining practical considerations for bad channel detection.
Collapse
Affiliation(s)
- Christian Gerloff
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
- University Hospital RWTH Aachen, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Child Neuropsychology Section, Aachen, Germany
- University of Cambridge, Cambridge Centre for Data-Driven Discovery, Department of Applied Mathematics and Theoretical Physics, Cambridge, United Kingdom
| | - Meryem A. Yücel
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, United States
- Massachusetts General Hospital, Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Lena Mehlem
- University Hospital RWTH Aachen, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Child Neuropsychology Section, Aachen, Germany
| | - Kerstin Konrad
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
- University Hospital RWTH Aachen, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Child Neuropsychology Section, Aachen, Germany
| | - Vanessa Reindl
- University Hospital RWTH Aachen, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Child Neuropsychology Section, Aachen, Germany
- Nanyang Technological University, School of Social Sciences, Department of Psychology, Singapore
| |
Collapse
|
3
|
Cajachagua-Torres KN, Quezada-Pinedo HG, Wu T, Trasande L, Ghassabian A. Exposure to Endocrine Disruptors in Early life and Neuroimaging Findings in Childhood and Adolescence: a Scoping Review. Curr Environ Health Rep 2024; 11:416-442. [PMID: 39078539 PMCID: PMC11324673 DOI: 10.1007/s40572-024-00457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE OF REVIEW: Evidence suggests neurotoxicity of endocrine disrupting chemicals (EDCs) during sensitive periods of development. We present an overview of pediatric population neuroimaging studies that examined brain influences of EDC exposure during prenatal period and childhood. RECENT FINDINGS: We found 46 studies that used magnetic resonance imaging (MRI) to examine brain influences of EDCs. These studies showed associations of prenatal exposure to phthalates, organophosphate pesticides (OPs), polyaromatic hydrocarbons and persistent organic pollutants with global and regional brain structural alterations. Few studies suggested alteration in functional MRI associated with prenatal OP exposure. However, studies on other groups of EDCs, such as bisphenols, and those that examined childhood exposure were less conclusive. These findings underscore the potential profound and lasting effects of prenatal EDC exposure on brain development, emphasizing the need for better regulation and strategies to reduce exposure and mitigate impacts. More studies are needed to examine the influence of postnatal exposure to EDC on brain imaging.
Collapse
Affiliation(s)
- Kim N Cajachagua-Torres
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA.
- Department of Pediatrics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | - Hugo G Quezada-Pinedo
- Department of Pediatrics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Tong Wu
- Department of Radiology and Nuclear Medicine, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Akhgar Ghassabian
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Yang Y, Zheng T, Tang Q, Xiang B, Yang M, Zeng J, Zhou F, Xie X. Developmental dyslexia genes are selectively targeted by diverse environmental pollutants. BMC Psychiatry 2024; 24:509. [PMID: 39020327 PMCID: PMC11256705 DOI: 10.1186/s12888-024-05952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Developmental dyslexia, a complex neurodevelopmental disorder, not only affects children's academic performance but is also associated with increased healthcare costs, lower employment rates, and reduced productivity. The pathogenesis of dyslexia remains unclear and it is generally considered to be caused by the overlap of genetic and environmental factors. Systematically exploring the close relationship between exposure to environmental compounds and susceptibility genes in the development of dyslexia is currently lacking but high necessary. METHODS In this study, we systematically compiled 131 publicly reported susceptibility genes for dyslexia sourced from DisGeNET, OMIM, and GeneCards databases. Comparative Toxicogenomics Database database was used to explore the overlap between susceptibility genes and 95 environmental compounds, including metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, and pesticides. Chemical bias towards the dyslexia risk genes was taken into account in the observation/expectation ratios > 1 and the corresponding P value obtained by hypergeometric probability test. RESULTS Our study found that the number of dyslexia risk genes targeted by each chemical varied from 1 to 109. A total of 35 chemicals were involved in chemical reactions with dyslexia-associated genes, with significant enrichment values (observed/expected dyslexia risk genes) ranging from 1.147 (Atrazine) to 66.901 (Dibenzo(a, h)pyrene). CONCLUSION The results indicated that dyslexia-associated genes were implicated in certain chemical reactions. However, these findings are exploratory, and further research involving animal or cellular experiments is needed.
Collapse
Affiliation(s)
- Yangyang Yang
- Research Center for Health Promotion in Women, Youth and Children, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, West Huangjiahu Road, Hongshan District, Wuhan, 430065, China
| | - Tingting Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qidi Tang
- Research Center for Health Promotion in Women, Youth and Children, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, West Huangjiahu Road, Hongshan District, Wuhan, 430065, China
| | - Bing Xiang
- Research Center for Health Promotion in Women, Youth and Children, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, West Huangjiahu Road, Hongshan District, Wuhan, 430065, China
| | - Mei Yang
- Research Center for Health Promotion in Women, Youth and Children, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, West Huangjiahu Road, Hongshan District, Wuhan, 430065, China
| | - Jing Zeng
- Research Center for Health Promotion in Women, Youth and Children, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, West Huangjiahu Road, Hongshan District, Wuhan, 430065, China
| | - Feng Zhou
- Research Center for Health Promotion in Women, Youth and Children, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, West Huangjiahu Road, Hongshan District, Wuhan, 430065, China
| | - Xinyan Xie
- Research Center for Health Promotion in Women, Youth and Children, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, West Huangjiahu Road, Hongshan District, Wuhan, 430065, China.
| |
Collapse
|
5
|
Carlos FMJ, Gabriel DLTCC, Genoveva PPA, Antonio VSJ, Nelinho PMI. Expression levels and network analysis of inflammamiRs in peripheral blood mononuclear cells exposed to DDE "in vitro". ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104032. [PMID: 36473620 DOI: 10.1016/j.etap.2022.104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Recent studies have demonstrated that dichlorodiphenyldichloroethylene (DDE) induced a pro-inflammatory condition in peripheral blood mononuclear cells (PBMC). However, the molecular mechanisms implicated in this condition are poorly understood. Therefore, this study aimed to evaluate miR-155, miR-126, and miR-21 expression levels in PBMC exposed "in vitro" to DDE. PBMC were dosed with increasing concentrations of DDE (10-80 µg mL-1) at different treatment times (0-24 h). The results showed an up-regulation in the expression levels of assessed miRNAs (miR-155, miR-146, and miR-21) after PBMCs were exposed to DDE. Besides, bioinformatic analysis was performed to understand the biological roles of assessed miRNAs. The bioinformatic analysis shows that assessed miRNAs are associated with regulating signaling pathways involved in cancer, apoptosis, cell cycle, inflammation, metabolism, etc. These findings offer new insights into the molecular mechanisms related to the inflammatory processes and their regulation induced by DDE in PBMC exposed "in vitro".
Collapse
Affiliation(s)
- Fernández-Macías Juan Carlos
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - De la Trinidad-Chacón Carlos Gabriel
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - Pozos-Perez Ayari Genoveva
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - Varela-Silva José Antonio
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, Mexico
| | - Pérez-Maldonado Iván Nelinho
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico.
| |
Collapse
|
6
|
Li R, Hosseini H, Saggar M, Balters SC, Reiss AL. Current opinions on the present and future use of functional near-infrared spectroscopy in psychiatry. NEUROPHOTONICS 2023; 10:013505. [PMID: 36777700 PMCID: PMC9904322 DOI: 10.1117/1.nph.10.1.013505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/13/2023] [Indexed: 05/19/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is an optical imaging technique for assessing human brain activity by noninvasively measuring the fluctuation of cerebral oxygenated- and deoxygenated-hemoglobin concentrations associated with neuronal activity. Owing to its superior mobility, low cost, and good tolerance for motion, the past few decades have witnessed a rapid increase in the research and clinical use of fNIRS in a variety of psychiatric disorders. In this perspective article, we first briefly summarize the state-of-the-art concerning fNIRS research in psychiatry. In particular, we highlight the diverse applications of fNIRS in psychiatric research, the advanced development of fNIRS instruments, and novel fNIRS study designs for exploring brain activity associated with psychiatric disorders. We then discuss some of the open challenges and share our perspectives on the future of fNIRS in psychiatric research and clinical practice. We conclude that fNIRS holds promise for becoming a useful tool in clinical psychiatric settings with respect to developing closed-loop systems and improving individualized treatments and diagnostics.
Collapse
Affiliation(s)
- Rihui Li
- Stanford University, Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford, California, United States
| | - Hadi Hosseini
- Stanford University, Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford, California, United States
| | - Manish Saggar
- Stanford University, Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford, California, United States
| | - Stephanie Christina Balters
- Stanford University, Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford, California, United States
| | - Allan L. Reiss
- Stanford University, Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford, California, United States
- Stanford University, Department of Radiology and Pediatrics, Stanford, California, United States
- Stanford University, Department of Pediatrics, Stanford, California, United States
- Address all correspondence to Allan L. Reiss,
| |
Collapse
|
7
|
Mora AM, Baker JM, Hyland C, Rodríguez-Zamora MG, Rojas-Valverde D, Winkler MS, Staudacher P, Palzes VA, Gutiérrez-Vargas R, Lindh C, Reiss AL, Eskenazi B, Fuhrimann S, Sagiv SK. Pesticide exposure and cortical brain activation among farmworkers in Costa Rica. Neurotoxicology 2022; 93:200-210. [PMID: 36228750 PMCID: PMC10014323 DOI: 10.1016/j.neuro.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous epidemiological studies have reported associations of pesticide exposure with poor cognitive function and behavioral problems. However, these findings have relied primarily on neuropsychological assessments. Questions remain about the neurobiological effects of pesticide exposure, specifically where in the brain pesticides exert their effects and whether compensatory mechanisms in the brain may have masked pesticide-related associations in studies that relied purely on neuropsychological measures. METHODS We conducted a functional neuroimaging study in 48 farmworkers from Zarcero County, Costa Rica, in 2016. We measured concentrations of 13 insecticide, fungicide, or herbicide metabolites or parent compounds in urine samples collected during two study visits (approximately 3-5 weeks apart). We assessed cortical brain activation in the prefrontal cortex during tasks of working memory, attention, and cognitive flexibility using functional near-infrared spectroscopy (fNIRS). We estimated associations of pesticide exposure with cortical brain activation using multivariable linear regression models adjusted for age and education level. RESULTS We found that higher concentrations of insecticide metabolites were associated with reduced activation in the prefrontal cortex during a working memory task. For example, 3,5,6-trichloro-2-pyridinol (TCPy; a metabolite of the organophosphate chlorpyrifos) was associated with reduced activation in the left dorsolateral prefrontal cortex (β = -2.3; 95% CI: -3.9, -0.7 per two-fold increase in TCPy). Similarly, 3-phenoxybenzoic acid (3-PBA; a metabolite of pyrethroid insecticides) was associated with bilateral reduced activation in the dorsolateral prefrontal cortices (β = -3.1; 95% CI: -5.0, -1.2 and -2.3; 95% CI: -4.5, -0.2 per two-fold increase in 3-PBA for left and right cortices, respectively). These associations were similar, though weaker, for the attention and cognitive flexibility tasks. We observed null associations of fungicide and herbicide biomarker concentrations with cortical brain activation during the three tasks that were administered. CONCLUSION Our findings suggest that organophosphate and pyrethroid insecticides may impact cortical brain activation in the prefrontal cortex - neural dynamics that could potentially underlie previously reported associations with cognitive and behavioral function. Furthermore, our study demonstrates the feasibility and utility of fNIRS in epidemiological field studies.
Collapse
Affiliation(s)
- Ana M Mora
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA 94720, USA.
| | - Joseph M Baker
- Center for Interdisciplinary Brain Sciences Research, Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA
| | - Carly Hyland
- School of Public Health and Population Science, Boise State University, 1910 W University Dr, Boise, ID 83725, USA
| | - María G Rodríguez-Zamora
- Escuela de Ingeniería en Seguridad Laboral e Higiene Ambiental (EISLHA), Instituto Tecnológico de Costa Rica, Calle 15, Avenida 14, 1 km Sur de la Basílica de los Ángeles, Cartago 30101, Provincia de Cartago, Costa Rica
| | - Daniel Rojas-Valverde
- Centro de Investigación y Diagnóstico en Salud y Deporte, Escuela Ciencias del Movimiento Humano y Calidad de Vida, Campus Benjamin Nuñez, Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Mirko S Winkler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 55, 4051 Basel, Switzerland; University of Basel, Peterspl. 1, 4001 Basel, Switzerland
| | - Philipp Staudacher
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Ueberlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Vanessa A Palzes
- Drug and Alcohol Research Team at the Kaiser Permanente Northern California's Division of Research, 2000 Broadway, Oakland, CA 94612, USA
| | - Randall Gutiérrez-Vargas
- Centro de Investigación y Diagnóstico en Salud y Deporte, Escuela Ciencias del Movimiento Humano y Calidad de Vida, Campus Benjamin Nuñez, Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, Scheelevägen 2, 22363 Lund, Sweden
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA; Department of Radiology, School of Medicine, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA 94720, USA
| | - Samuel Fuhrimann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 55, 4051 Basel, Switzerland; University of Basel, Peterspl. 1, 4001 Basel, Switzerland
| | - Sharon K Sagiv
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Brienza M, Garcia-Segura S. Electrochemical oxidation of fipronil pesticide is effective under environmental relevant concentrations. CHEMOSPHERE 2022; 307:135974. [PMID: 35988763 DOI: 10.1016/j.chemosphere.2022.135974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Pesticide overuse has posed a threat to agricultural community as well as for the environment. In order to treat this pollution at its source, decentralized and selective technologies such as electrochemical processes appear especially relevant to avoid the possible generation of toxic degradation products. Electrochemical oxidation (ECO) is a promising electrochemically-driven process, but most studies evaluate performance under pollutant concentrations that are orders of magnitude higher than environmental relevant conditions. This work explores ECO treatment of fipronil using boron-doped diamond (BDD) as anode and titanium plate as cathode at small concentrations found in agricultural run-off. The effect of applied current density and initial contaminant concentrations were also studied. For a current density of 20 mA cm-2 the decrease of COD and fipronil were about 97% and 100% after 360 min of electrolysis, respectively. Engineering figures of merit were evaluated to assess competitiveness of ECO decentralized propositions. Results suggest effective and feasible treatment of fipronil by ECO.
Collapse
Affiliation(s)
- Monica Brienza
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy; National Science Foundation Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287-3005, USA.
| | - Sergi Garcia-Segura
- National Science Foundation Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287-3005, USA.
| |
Collapse
|