1
|
Wang H, Fu D, Liu X, Chang X, Guo S, Cheng X, Tian Y, Ran J, Zhang J, Yin S. Prenatal exposure to a mixture of organophosphate ester and organophosphorus pesticides in relation to child neurodevelopment in the Shanghai Birth Cohort. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117618. [PMID: 39742648 DOI: 10.1016/j.ecoenv.2024.117618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Neurotoxicity of organophosphate esters (OPEs) and organophosphorus pesticides (OPPs) has been documented in toxicological studies, though epidemiological evidence remains inconsistent. The developing fetal brain is susceptible to environmental exposures. Thus, we aim to investigate how prenatal exposure to OPEs and OPPs as mixture affects offspring neurodevelopment in preschool-aged children. In a study involving 530 mother-child dyads from the Shanghai Birth Cohort (SBC) with enrollment occurring between 2013 and 2016, 14 OPEs/OPPs metabolites were evaluated using high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS) in maternal urine collected during both the first and second trimester. Child neurodevelopment was evaluated using the parent-reported Behavior Rating Inventory of Executive Function-Preschool version (BRIEF-P) and the Strengths and Difficulties Questionnaire (SDQ). We utilized multivariable linear regression and Bayesian kernel machine regression (BKMR) to estimate associations with individual and mixture component, respectively. We also investigated whether these associations varied by child sex. Of the 14 OPEs/OPPs metabolites, 6 were quantifiable in over 75 % of the samples. Higher prenatal O,O-dimethyl phosphate (DMP) concentrations in the first and second trimesters, as well as O,O-dimethyl thiophosphate (DMTP) in the second trimester, were associated with more behavioral difficulties. When stratified by child sex, the statistically significant inverse associations were observed exclusively in girls. Results from BKMR showed that the overall effect of prenatal exposure to OPEs and OPPs mixtures was associated with some neurodevelopmental domains in girls. For example, holding the mixture at the 75th percentile compared to the 50th percentile during the first trimester was associated with a 0.65 increase in SDQ total scores (95 % confidence interval: 0.03-1.26). DMP and DMTP may be the dominant contributors. Our findings add to the literature on the effect of prenatal exposure to OPEs and OPPs on offspring neurodevelopment and suggest that the effect seems to be sex-specific. Additional research is required to validate our findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Hui Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Dezheng Fu
- Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoning Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaochen Chang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Siyu Guo
- Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaomeng Cheng
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinjun Ran
- Department of Epidemiology and Statistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Shengju Yin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
2
|
Liu F, Li X, Chen J, Huang Y, Dang S. Maternal pesticide exposure and risk of birth defects: a population-based cross-sectional study in China. Front Public Health 2024; 12:1489365. [PMID: 39712309 PMCID: PMC11659231 DOI: 10.3389/fpubh.2024.1489365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Objective This study aimed to examine the association between maternal pesticide exposure during the periconceptional period and birth defects in their offspring. Methods A survey was conducted among 29,204 women with infants born between 2010 and 2013 in Shaanxi Province, Northwest China. All cases of birth defects were diagnosed using the International Classification of Diseases, Tenth Revision (ICD-10). Given the multistage sampling design, the generalized estimating equation (GEE) binomial regression models with log link and exchangeable correlation structures were used to analyze the association between maternal pesticide exposures and birth defects. Results Among the 29,204 subjects, 562 mothers had children with birth defects, resulting in an incidence rate of 192.44 per 10,000 live births. The incidence of birth defects was higher in the pesticide-exposed group compared to the control group (737.46/10,000 vs. 186.04/10,000). After adjusting for baseline demographic characteristics, fertility status, nutritional factors, and environmental factors in the GEE model, the results indicated that the risk of birth defects and cardiovascular system defects in mothers exposed to pesticides during the periconceptional period was 2.39 times (95% CI: 1.84-3.10) and 3.14 times (95% CI: 1.73-5.71) higher, respectively, compared to the control group. Conclusion This study demonstrated that maternal exposure to pesticides during the periconceptional period was associated with an increased risk of birth defects, particularly cardiovascular system defects in offspring. Consequently, it would be beneficial to avoid pesticide exposure from three months before pregnancy through the first trimester to lower birth defects in infants.
Collapse
Affiliation(s)
- Fangfang Liu
- Department of Stomatology, Xi’an Central Hospital, Xi’an, Shaanxi, China
| | - Xiayang Li
- Department of Epidemiology and Health Statistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jie Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yishuai Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shaonong Dang
- Department of Epidemiology and Health Statistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Alcala CS, Lane JM, Midya V, Eggers S, Wright RO, Rosa MJ. Exploring the link between the pediatric exposome, respiratory health, and executive function in children: a narrative review. Front Public Health 2024; 12:1383851. [PMID: 39478741 PMCID: PMC11521889 DOI: 10.3389/fpubh.2024.1383851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Asthma is a highly prevalent inflammatory condition, significantly affecting nearly six million U.S. children and impacting various facets of their developmental trajectories including neurodevelopment. Evidence supports a link between pediatric environmental exposures in two key areas: asthma and executive function (E.F.). E.F.s are a collective of higher-order cognitive processes facilitating goal-oriented behaviors. Studies also identify asthma-associated E.F. impairments in children. However, limited research has evaluated the inter-relationships among environmental exposures, asthma, and E.F. in children. This review explored relevant research to identify and connect the potential mechanisms and pathways underlying these dynamic associations. The review suggests that the role of the pediatric exposome may function through (1) several underlying biological pathways (i.e., the lung-brain axis, neuroendocrine system, and hypoxia), which could drive asthma and maladaptive E.F. in children and (2) the relationships between the exposome, asthma, and E.F. is a bidirectional linkage. The review reveals essential synergistic links between asthma and E.F. deficits, highlighting the potential role of the pediatric exposome.
Collapse
Affiliation(s)
- Cecilia S. Alcala
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jamil M. Lane
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vishal Midya
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shoshannah Eggers
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, United States
| | - Robert O. Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Maria José Rosa
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Macheka LR, Palazzi P, Iglesias-González A, Zaros C, Appenzeller BMR, Zeman FA. Exposure to pesticides, persistent and non - persistent pollutants in French 3.5-year-old children: Findings from comprehensive hair analysis in the ELFE national birth cohort. ENVIRONMENT INTERNATIONAL 2024; 190:108881. [PMID: 39002332 DOI: 10.1016/j.envint.2024.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
INTRODUCTION Exposure to endocrine disruptors during early childhood poses significant health risks. This study examines the exposure levels of French 3.5-year-old children to various persistent and non-persistent pollutants and pesticides using hair analysis as part of the ELFE national birth cohort. Differences in sex and geographical location among the children were investigated as ppossible determinants of exposure. METHODS Exposure biomarkers from 32 chemical families were analyzed using LC-MS/MS and GC-MS/MS in 222 hair samples from children in the ELFE cohort. Of these, 46 mother-child pairs from the same cohort provided unique insight into prenatal and postnatal exposure. Regressions, correlations and discriminate analysis were used to assess relationships between exposure and possible confounding factors. RESULTS AND DISCUSSION Among the biomarkers tested in children's hair samples, 69 had a detection frequency of ≥ 50 %, with 20 showing a 100 % detection rate. The most detected biomarkers belonged to the bisphenol, organochlorine and organophosphate families. Sex-specific differences were observed for 26 biomarkers, indicating the role of the child's sex in exposure levels. Additionally, regional differences were noted, with Hexachlorobenzene varying significantly across the different French regions. Nicotine presented both the highest concentration (16303 pg/mg) and highest median concentration (81 pg/mg) measured in the children's hair. Statistically significant correlations between the levels of biomarkers found in the hair samples of the mothers and their respective children were observed for fipronil (correlation coefficient = 0.32, p = 0.03), fipronil sulfone (correlation coefficient = 0.34, p = 0.02) and azoxystrobin (correlation coefficient = 0.29, p = 0.05). CONCLUSIONS The study highlights the elevated exposure levels of young children to various pollutants, highlighting the influence of sex and geography. Hair analysis emerges as a crucial tool for monitoring endocrine disruptors, offering insights into exposure risks and reinforcing the need for protective measures against these harmful substances.
Collapse
Affiliation(s)
- Linda R Macheka
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Alba Iglesias-González
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Cécile Zaros
- Ined-Inserm-EFS - Unité mixte Elfe (Campus Condorcet), 9, cours des Humanités, 93322 Aubervilliers, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Florence A Zeman
- Unité Toxicologie Expérimentale et Modélisation, Ineris, Institut National de l'Environnement Industriel et des Risques, Verneuil-en-Halatte, France; PériTox, UMR_I 01, CURS, Université de Picardie Jules Verne, Chemin du Thil, Amiens, France.
| |
Collapse
|
5
|
Zhang L, Zhu Y, Wang H, Zu P, Luo W, Chen Y, Zhou C, Tao F, Zhu P. Associations between particulate matter exposure during pregnancy and executive function of toddlers in a prospective cohort study. ENVIRONMENTAL RESEARCH 2024; 258:119463. [PMID: 38909950 DOI: 10.1016/j.envres.2024.119463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Exposure to particulate matter (PM) has been found to be associated with impaired cognitive function. However, limited evidence is available on the relationship between PM exposure in the prenatal period and toddler executive function (EF), and the potential influence of breastfeeding. METHODS The study included 1106 mother-toddler pairs recruited between 2015 and 2019. We assessed mothers' PM1, PM2.5, and PM10 prenatal exposure with a satellite-based dataset at a 1 × 1 km spatial resolution and assigned to participants based on residential addresses. Toddler EF was measured using the Behavior Rating Inventory of Executive Function for Preschoolers (BRIEF-P) questionnaire, higher BRIEF-P scores indicated poorer EF in toddlers. We determined the associations of PM exposure during pregnancy with BRIEF-P scores using multiple linear regression models. RESULTS In the first trimester, a 10 μg/m3 increase of PM was associated with 1.49 (95% confidence interval [CI]: 0.14-2.83; PM1), 0.68 (95% CI: 0.10-1.26; PM2.5), and 0.63 (95% CI: 0.07-1.20; PM10) elevated toddler global executive composite index scores, respectively. In the stratified analysis, a 10 μg/m3 increase in first trimester PM1 exposure was related to 0.54 (95% CI: 0.19-0.89) higher inhibition scores in toddlers who received complementary breastfeeding for less than six months and -0.15 (95% CI: 0.81-0.51) higher inhibition scores in toddlers who received complementary breastfeeding for six months or more (P for interaction: 0.046). Additionally, a 10 μg/m3 increment in first trimester PM1 exposure was related to 0.36 (95% CI: 0.13-0.59) higher emotional control scores in toddlers who received breastfeeding for less than 12 months and -0.54 (95% CI: 1.25-0.18) higher inhibition scores in toddlers who received breastfeeding for no less than 12 months (P for interaction: 0.043). CONCLUSIONS PM exposure during the first trimester, especially PM1, has been linked to lower toddler EF performance in toddlers; feeding with breast milk may be a potential protective measure.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Yuanyuan Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Haixia Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Ping Zu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Wei Luo
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Yunlong Chen
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Chenxi Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
6
|
Khan KM, Gaine ME, Daniel AR, Chilamkuri P, Rohlman DS. Organophosphorus pesticide exposure from house dust and parent-reported child behavior in Latino children from an orchard community. Neurotoxicology 2024; 102:29-36. [PMID: 38453034 PMCID: PMC11684323 DOI: 10.1016/j.neuro.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Organophosphorus pesticide (OP) exposure is known to have adverse effects on the nervous system. Children from agricultural communities are at risk of exposure to these chemicals from their indoor environments that can lead to neurological and developmental problems, including changes in behavior. OBJECTIVE The aim of this study is to evaluate whether the take-home pathway exposure is associated with behavioral and emotional problems in Latino Orchid Community children. METHOD The study was implemented over a period of two years (2008-2010) in an orchard farming community with a total of 324 parents who had children between the ages of 5-12 years old. Mothers of the children were asked to complete the Child Behavior Checklist (CBCL) and dust from their carpets was collected. Emotional and behavioral deficits were assessed based on the CBCL and house dust was assessed for OP concentrations. In this study, correlations between OPs in house dust and CBCL subscales were estimated using linear regression models with total OP concentrations classified by tertiles. This study also facilitated the comparison between the agricultural and non-agricultural families in terms of behavioral deficits and house dust concentrations of pesticides. RESULTS The data from the study shows that there was a positive association between the concentration of OP residues in house dust and internalizing behavior (β=2.06, p=0.05) whereas the association with externalizing behavior was not significant after accounting for sociocultural covariates. Significant positive associations of OP residues with somatic problems (p=0.02) and thought problems (p=0.05) were also found. CONCLUSION The data support a potential role of OP exposure in childhood development, with a specific focus on internalizing behavior. Future work focused on longitudinal studies may uncover the long-term consequences of OP exposure and behavior.
Collapse
Affiliation(s)
- Khalid M Khan
- Department of Public Health, College of Health Sciences, Sam Houston State University, 1901 Ave I, Huntsville, TX 77340, USA.
| | - Marie E Gaine
- Department of Pharmaceutical Sciences and Experimental Therapeutics (PSET), College of Pharmacy, University of Iowa, 546 CPB, 180 S Grand Ave, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Alyssa R Daniel
- Department of Pharmaceutical Sciences and Experimental Therapeutics (PSET), College of Pharmacy, University of Iowa, 546 CPB, 180 S Grand Ave, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Pavani Chilamkuri
- Department of Public Health, College of Health Sciences, Sam Houston State University, 1901 Ave I, Huntsville, TX 77340, USA
| | - Diane S Rohlman
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, S143 CPHB 145 N. Riverside Drive, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Nimmapirat P, Fiedler N, Suttiwan P, Sullivan MW, Ohman-Strickland P, Panuwet P, Barr DB, Prapamontol T, Naksen W. Predictors of executive function among 2 year olds from a Thai birth cohort. Infant Behav Dev 2024; 74:101916. [PMID: 38096613 PMCID: PMC10947867 DOI: 10.1016/j.infbeh.2023.101916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 09/05/2023] [Accepted: 12/06/2023] [Indexed: 01/31/2024]
Abstract
Executive function (EF) is a critical skill for academic achievement. Research on the psychosocial and environmental predictors of EF, particularly among Southeast Asian, agricultural, and low income/rural populations, is limited. Our longitudinal study explored the influence of agricultural environmental, psychosocial, and temperamental factors on children's emerging EF. Three-hundred and nine farm worker women were recruited during the first trimester of pregnancy. We evaluated the effects of prenatal insecticide exposure and psychosocial factors on "cool" (i.e., cognitive: A-not-B task, looking version) and "hot" EF (i.e., affective, response inhibition) measures of emerging EF. Maternal urine samples were collected monthly during pregnancy, composited, and analyzed for dialkylphosphate (DAP) metabolites of organophosphate insecticides. Psychosocial factors included socioeconomic status, maternal psychological factors, and quality of mother-child behavioral interactions. Backward stepwise regressions evaluated predictors of children's EF at 12 (N = 288), 18 (N = 277) and 24 (N = 280) months of age. We observed different predictive models for cool EF, as measured by A-not-B task, vs. hot EF, as measured by response inhibition tasks. Report of housing quality as a surrogate for income was a significant predictor of emerging EF. However, these variables had opposite effects for cool vs. hot EF. More financial resources predicted better cool EF performance but poorer hot EF performance. Qualitative findings indicate that homes with fewer resources were in tribal areas where children must remain close to an adult for safety reasons. This finding suggests that challenging physical environments (e.g., an elevated bamboo home with no electricity or running water), may contribute to development of higher levels of response inhibition through parental socialization methods that emphasize compliance. Children who tended to show more arousal and excitability, and joy reactivity as young infants in the laboratory setting had better cognitive performance. In contrast, maternal emotional availability was a significant predictor of hot EF. As expected, increased maternal exposure to pesticides during pregnancy was associated with worse cognitive performance but was not associated with inhibitory control. Identifying risk factors contributing to the differential developmental pathways of cool and hot EF will inform prevention strategies to promote healthy development in this and other unstudied rural, low income Southeast Asian farming communities.
Collapse
Affiliation(s)
- Pimjuta Nimmapirat
- Chulalongkorn University, Faculty of Psychology, LIFE Di Center, Bangkok, Thailand
| | - Nancy Fiedler
- Rutgers School of Public Health, Department of Environmental and Occupational Health and Justice, Piscataway, NJ, USA
| | - Panrapee Suttiwan
- Chulalongkorn University, Faculty of Psychology, LIFE Di Center, Bangkok, Thailand.
| | | | - Pamela Ohman-Strickland
- Rutgers School of Public Health, Department of Biostatistics and Epidemiology, Piscataway, NJ, USA
| | - Parinya Panuwet
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Dana Boyd Barr
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Tippawan Prapamontol
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Warangkana Naksen
- Chiang Mai University, Faculty of Public Health, Chiang Mai, Thailand
| |
Collapse
|
8
|
Wang JQ, He ZC, Peng W, Han TH, Mei Q, Wang QZ, Ding F. Dissecting the Enantioselective Neurotoxicity of Isocarbophos: Chiral Insight from Cellular, Molecular, and Computational Investigations. Chem Res Toxicol 2023; 36:535-551. [PMID: 36799861 DOI: 10.1021/acs.chemrestox.2c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Chiral organophosphorus pollutants are found abundantly in the environment, but the neurotoxicity risks of these asymmetric chemicals to human health have not been fully assessed. Using cellular, molecular, and computational toxicology methods, this story is to explore the static and dynamic toxic actions and its stereoselective differences of chiral isocarbophos toward SH-SY5Y nerve cells mediated by acetylcholinesterase (AChE) and further dissect the microscopic basis of enantioselective neurotoxicity. Cell-based assays indicate that chiral isocarbophos exhibits strong enantioselectivity in the inhibition of the survival rates of SH-SY5Y cells and the intracellular AChE activity, and the cytotoxicity of (S)-isocarbophos is significantly greater than that of (R)-isocarbophos. The inhibitory effects of isocarbophos enantiomers on the intracellular AChE activity are dose-dependent, and the half-maximal inhibitory concentrations (IC50) of (R)-/(S)-isocarbophos are 6.179/1.753 μM, respectively. Molecular experiments explain the results of cellular assays, namely, the stereoselective toxic actions of isocarbophos enantiomers on SH-SY5Y cells are stemmed from the differences in bioaffinities between isocarbophos enantiomers and neuronal AChE. In the meantime, the modes of neurotoxic actions display that the key amino acid residues formed strong noncovalent interactions are obviously different, which are related closely to the molecular structural rigidity of chiral isocarbophos and the conformational dynamics and flexibility of the substrate binding domain in neuronal AChE. Still, we observed that the stable "sandwich-type π-π stacking" fashioned between isocarbophos enantiomers and aromatic Trp-86 and Tyr-337 residues is crucial, which notably reduces the van der Waals' contribution (ΔGvdW) in the AChE-(S)-isocarbophos complexes and induces the disparities in free energies during the enantioselective neurotoxic conjugations and thus elucidating that (S)-isocarbophos mediated by synaptic AChE has a strong toxic effect on SH-SY5Y neuronal cells. Clearly, this effort can provide experimental insights for evaluating the neurotoxicity risks of human exposure to chiral organophosphates from macroscopic to microscopic levels.
Collapse
Affiliation(s)
- Jia-Qi Wang
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Zhi-Cong He
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tian-Hao Han
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- School of Environment, Nanjing University, Nanjing 210023, China
| | - Qiong Mei
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
- School of Land Engineering, Chang'an University, Xi'an 710054, China
| | - Qi-Zhao Wang
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Fei Ding
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| |
Collapse
|
9
|
Hall AM, Thistle JE, Manley CK, Roell KR, Ramos AM, Villanger GD, Reichborn-Kjennerud T, Zeiner P, Cequier E, Sakhi AK, Thomsen C, Aase H, Engel SM. Organophosphorus Pesticide Exposure at 17 Weeks' Gestation and Odds of Offspring Attention-Deficit/Hyperactivity Disorder Diagnosis in the Norwegian Mother, Father, and Child Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16851. [PMID: 36554732 PMCID: PMC9778918 DOI: 10.3390/ijerph192416851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Prenatal organophosphorus pesticides (OPs) are ubiquitous and have been linked to adverse neurodevelopmental outcomes. However, few studies have examined prenatal OPs in relation to diagnosed attention-deficit/hyperactivity disorder (ADHD), with only two studies exploring this relationship in a population primarily exposed through diet. In this study, we used a nested case-control study to evaluate prenatal OP exposure and ADHD diagnosis in the Norwegian Mother, Father, and Child Cohort Study (MoBa). For births that occurred between 2003 and 2008, ADHD diagnoses were obtained from linkage of MoBa participants with the Norwegian Patient Registry (N = 297), and a reference population was randomly selected from the eligible population (N = 552). Maternal urine samples were collected at 17 weeks' gestation and molar sums of diethyl phosphates (ΣDEP) and dimethyl phosphates metabolites (ΣDMP) were calculated. Multivariable adjusted logistic regression models were used to estimate the association between prenatal OP metabolite exposure and child ADHD diagnosis. Additionally, multiplicative effect measure modification (EMM) by child sex was assessed. In most cases, mothers in the second and third tertiles of ΣDMP and ΣDEP exposure had slightly lower odds of having a child with ADHD, although confidence intervals were wide and included the null. EMM by child sex was not observed for either ΣDMP or ΣDEP. In summary, we did not find evidence that OPs at 17 weeks' gestation increased the odds of ADHD in this nested case-control study of ADHD in MoBa, a population primarily experiencing dietary exposure.
Collapse
Affiliation(s)
- Amber M. Hall
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jake E. Thistle
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cherrel K. Manley
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kyle R. Roell
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amanda M. Ramos
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gro D. Villanger
- Department of Child Health and Development, Division of Mental and Physical Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Ted Reichborn-Kjennerud
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Mental Disorders, Division of Mental and Physical Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Pål Zeiner
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway
| | - Enrique Cequier
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Amrit K. Sakhi
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Cathrine Thomsen
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Heidi Aase
- Department of Child Health and Development, Division of Mental and Physical Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Stephanie M. Engel
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Zou M, Huang M, Zhang J, Chen R. Exploring the effects and mechanisms of organophosphorus pesticide exposure and hearing loss. Front Public Health 2022; 10:1001760. [PMID: 36438228 PMCID: PMC9692084 DOI: 10.3389/fpubh.2022.1001760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Many environmental factors, such as noise, chemicals, and heavy metals, are mostly produced by human activities and easily induce acquired hearing loss. Organophosphorus pesticides (OPs) constitute a large variety of chemicals and have high usage with potentiate damage to human health. Moreover, their metabolites also show a serious potential contamination of soil, water, and air, leading to a serious impact on people's health. Hearing loss affects 430 million people (5.5% of the global population), bringing a heavy burden to individual patients and their families and society. However, the potential risk of hearing damage by OPs has not been taken seriously. In this study, we summarized the effects of OPs on hearing loss from epidemiological population studies and animal experiments. Furthermore, the possible mechanisms of OP-induced hearing loss are elucidated from oxidative stress, DNA damage, and inflammatory response. Overall, this review provides an overview of OP exposure alone or with noise that leads to hearing loss in human and experimental animals.
Collapse
|